光催化降解2,4-二氯苯酚废水的Bi_2O_3-V_2O_5和Bi_2O_3-Y_2O_3催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚类化合物是一类很难降解的有机化合物,具有致癌、致畸、致变的潜在毒性,是炼油、炼焦、造纸、塑料、化工等工业废水中的主要污染物。传统的酚类化合物污水处理方法可行。随着环保技术的发展和对水体质量要求的提高,近20年来逐渐发展起来的多相光催化降解技术可以有效地降解难以降解的酚类化合物。光催化降解酚类废水是将酚类化合物全部矿化为CO_2、H_2O或毒性较小的有机物,达到无害处理的要求。该方法与其他废水处理方法比较,具有能耗低、降解较完全、工艺较简单等特点,在废水处理领域中具有巨大的应用前景。本论文研制了一种新型的光催化剂,该催化剂对光的响应范围较经典的TiO_2光催化剂宽,光催化降解性能好,是一种具有较好开发应用前景的光催化剂。
     本文通过多种方法合成了一系列光催化剂,并对其催化活性进行比较分析,发现Bi_2O_3-V_2O_5和Bi_2O_3-Y_2O_3光催化剂具有较高的催化活性,并对催化剂制备的有关影响因素,如物料配比、焙烧温度及焙烧时间等进行了研究。采用固体漫反射紫外扫描(DRS)、X射线衍射(XRD)、综合热分析(TG-TDA、DSC)、傅立叶红外扫描(FT-IR)、正电子湮没(PLS)等现代分析手段对催化剂进行了表征,并关联其活性数据,得出催化剂
    
     广西大学2001级硕士研究生毕业论文光催化降解2,4一二氯苯酚废水的Bi:03一vZo。和BiZ氏一YZ氏催化剂研究
    的催化性能与结构的关系。
     研究表明,Bi203一V205催化剂在Bi203与V205氧化物配比为1:l、焙烧
    温度为850℃、焙烧时间为9h时,催化剂的活性最好,对二氯苯酚的降
    解率可达86.6%,比纯Bi203提高了1.1.0%。分析表明,Bi203一20。催化剂
    的禁带宽度为2.4eV,比Ti02的3.2 eV禁带宽度较窄。Bi203一Y203催化剂
    在Bi203和Y203氧化物配比为1:0.5、焙烧温度为8加℃、焙烧时间为9h,
    催化剂的活性最好,对二氯苯酚的降解率可达92.7%,比纯Bi203提高了
    17.1%,分析表明,该催化剂的禁带宽度为2.Zev。正电子湮没实验和傅
    立叶红外扫描得知,Bi203一v20。催化剂含有丰富的表面经基及氧空缺,并
    且由于催化剂的禁带宽度窄,所以在光照条件下,能产生较多的电子一空
    穴对,进行较多的光催化降解反应。
     工艺条件研究表明,在光催化降解50mg/L的2,4一二氯酚废水时,
    Bi203一V20。最佳催化剂用量为0.3759/’L、最佳溶液pH值为6.0、最佳H202
    用量为50mL/L,二氯苯酚降解反应在低浓度时降解速率符合L一H动力学
    方程,而在高浓度时降解速率与初始浓度无关。
The phenolic compound is an organic compound, which can hardly be degraded. It is a toxic material with latent possibility to cause cancer, abnormality, and aberrance as well. It is also an aquatic and main pollutant that exists in industrial wastewater coming from the oil refining, coke, deckle, plastics, chemical engineering etc. Various traditional methods of disposing of wastewater containing phenolic compound such as physics, chemistry, biological chemistry, do not function properly because of them shortcoming. Along with the development of the environmental protection technique and the improvement of demand for the quality of water, heterogeneous photocatalytic degradation technique gradually developing in the last twenty years can effectively degrade the phenolic compound that is not easy to dispose. Photocatalytic
    
    
    
    degradation of the phenoic compound wastewater is a treatment that mineralize the phenoic compound into CO2, H2O or non-toxic organic compound thus achieves the demand for non-toxic process . Comparing with other disposition of wastewater, this method has the property such as energy conservation, much more complete degradation, simple technics, which shows a great perspective in the field of disposition of wastewater.
    The author develops a new type of photocatalyst, which has a wider responding value to the sunlight than the classic one--TiO2, and possesses good performance of photocatalytic degradation. This photocatalyst has nice applied perspective. This paper synthesizes a series of photocatalyst with various methods. Analyses and assessment of catalyst activity is carried out. It is found that both Bi2O3-V2O5 and Bi2O3-Y2O3 have higher activity than others. Various influencing factors in the process of preparing catalyst have been taken into consideration, for an instance, the ratio of materiel, baking temperature, baking time. The modern technology is used in the characterization of photocatalyst, for example, DRS, XRD, TG-TDA, DSC, FT- IR, and PLS as well. All the data gained in the experiment are related with the data from the assessment of catalyst act ivity, and finally the relationship of catalyst capacity with its
    
    
    structure is given out.
    The research shows, the Bi2O3-V2O5 catalyst has the best activity with the material(Bi2O3 and V2O5) ratio by 1:1, baking temperature by 850 C, baking time by 9h, the ratio of degradating 2,4-dichIorophenol reach by 86.6%, increase by 11.0% comparing to pure Bi2O3.The analysis found that the band gap of Bi2O3-V2O5 catalyst is 2.4 eV, and narrower than TiO2(3.2eV). The research shows ,the Bi2O3-Y2O3 catalyst has the best activity with the material (Bi2O3 and Y2O3) ratio by 1:0.5, baking temperature by 850 "C, baking time by 9h,the ratio of degradating 2,4-dichlorophenol reach by 92.7%, increase by 17.1% comparing to pure Bi2O3. The analysis found that the band gap of Bi2O3-Y2O3 catalyst is 2.2 eV. The surface of Bi2O3-V2O5 catalyst has hydroxyl and oxygen defects in abundances, which is supported by the PLS and FT-IR experiment. Catalyst under irradiation of mercury lamp can produce many electron-positive hole to favor the photocatalytic degradation reaction, since it has narrow band gap. It indicates in term of condition of technology that when photocatalytic reaction goes in the solution with 2,4-dichlorophenol wastewater concentration about 50mg/L, the best dose of catalyst is 0.375 g/L, pH 6.0 H2O2 50mL/L, the degradation rate accords with Langmuir-Hinshelwood kinetics at low concentration but irrelevant to original con-
    
    
    centration at high in 2,4-dichlorophenol degradation reaction.
引文
[1] 刘吕明、何希吾,中国21世纪水问题方略,科学出版社,1998年第一版
    [2] 高铁、钱朝勇,TiO_2光催化氧化水中有机污染物进展,工业水处理,2004,20(4):10~13
    [3] 辛梅华、陈东,反相高效液相色谱分离-安培法测定酚类化合物,分析化学,1994,22(5):505~508
    [4] 李晓平、徐宝琨,纳米TiO_2光催化降解水中有机物的研究与发展,功能材料,1999,30(3):242~246
    [5] Hoffmann M R, Martin S T, Choi W, etal. Environmental applications of semiconductor photocatalysis, Chemical Reviews, 1995,95(1): 69~96
    [6] 刘相伟,工业含酚废水处理技术的现状与进展,工业水处理,1998,18(2):25~27
    [7] 施汉昌,氯酚废水的生物处理技术的研究与进展,化学通报,1998,8:1~5
    [8] 钟文辉,二氯酚的微生物降解及相关基因的克隆,浙江大学博士论文,2001:1~29
    [9] 张锦、马军,含酚废水的危害及处理方法的应用特点,化学工程师,2001,4(2):36~37
    [10] BEETY MOTERS, J.Y.S. WU, Removal of Organic Precursors by Permanganate Oxidation and Alum Coagulation. Water Research1985,19(3):309~314,
    [11] 吴锡康,有机化工废水治理技术,化学工业出版社,1985:1~15
    [12] 杨风林、冯文国,水中氯代有机化合物处理方法及研究进展,环境科学进展,1996,4(6):36~42
    [13] 黄玉明、刘希东,活性炭吸附下TiO_2光催化降解苯酚的研究,西南师范大
    
    学学报(自然科学版),1999,24(1):50~53
    [14] 王怡中、陈雪梅,光催化氧发化与生物氧化组合技术对染料化合物降解研究,环境科学学报,2000,20(6):772~775
    [15] Matthews R W, McEvoy S R, Photocatalytic degradation of phenol in the presence of near UV illuminated titanium dioxide, J. Photochem. Photobiol, A: Chem, 1992,64:231~246
    [16] Okamoto K, Yamamato Y, Tanaka H, eatl, Heterogeneous photocatalytic decomposition of phenol over TiO_2 power, Bull,Chem.Soc,1985,58(7):2015~2022
    [17] Fujishima A. Honda K. Elecctrochemical Photolys is of Waterat at a Semiconductor Eletrode, Nature,1972,37(1): 238~245
    [18] S. R. Morrsion著,吴辉煌译,半导体与金属氧化膜的电化学,1980:205~208
    [19] Cunningham J.etal.Isotope-effect evidence for hydroxyl radical sensintized by TiO_2 in aqueous suspension. J. Photochem Photobiol.A.Chem,1988,43:329~345
    [20] Jaeger C.etal. Spin trapping and eledtron spin resonance detection of radical intermediates in the photode composition of water at TiO_2 particulate sytems, J. Phys.Chem, 1979,83:3146~3156
    [21] 魏宏斌、李田,水中有机污染物的光催化氧化,环境科学进展,1994,2(3):53~57
    [22] Weiss J. Investigation on the radical H_2O in solution, Trans. Faraday Soc., 1935,31(3):668
    [23] Barbenim. Pramauro etal. Chemosphere. 1985,14:195
    [24] Ollis D F.Aekabi H. Photocatalytic purifcation and treatment of water and air, Elsevier Science Publishers B V, 1993
    [25] Masakazu A J. Photocatalytic hydrogenation of CH_3CCH with H_2O on small-particle TiO_2: size quantization effects and reaction intermediates, Phys.Chem, 1987,91:4305~4310
    [26] 孙奉玉,二氧化钛的尺寸与光催化活性的关系,催化学报,1998,19(3):
    
    229~233
    [27] 梁延荣,水中硝基酚的纳米TiO_2光催化降解,分析测试学报,2002,21(1):1~4
    [28] 王传义、刘春艳,半导体光催化的表面修饰,1998。19(12):21~27
    [29] 李芳伯,WO_3/TiO_2复合半带头的光催化性能研究,环境科学,1999,20(4):75~78
    [30] 张彭义、余刚,半导体光催化剂及其改性技术进展,环境科学进展,1997,5(3):1~8
    [31] 一濑升著,赵修建译,超微颗粒导论,武汉工业大学出版社:武汉,1991:50
    [32] R.M.Baner and D.M.Macleod, Trans.Faraday.Soc., 1995, 51: 1-90
    [33] 梁娟主编,催化剂新材料,化学工业出版社:北京,1990:52
    [34] Ena, O.;Bard, A.J., J.Phys.Chem., 1986, 90: 301
    [35] Shoji Yamanaka; etal., Materials Chemistry and Physics, 1987, 17: 87
    [36] Miyoshi, Hirokazu: etal., Langmuir, 1991, 7(3): 503~507
    [37] 符小荣、张枝刚,TiO_2/Pt/纳米薄膜的制备及对可溶性染料的光电催化降解,应用化学,1997,4(14):77~79
    [38] Sukharev V, Caoo Y M, etal. Z.Solid State Chem.1995 115
    [39] Marcia M Kondo & Wilson F Jardim. Wal. Res.. 1991, 25 (7): 823
    [40] Choi Wanyong. The role of metal ion dopants-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem, 1994, 98: 13669-13679
    [41] 段晓东、朱质彬,掺铁二氧化钛为催化剂光催化氧化汽油研究,2002,34(4):725~729
    [42] Sugunan S, Meera V. Acid-base properties and catalytic activity of ABO_3(perovskite-type)Oxides consisting of Rare Earth and 3d Transtion Metals. React Catal Lett. 62 (2): 327~332
    
    
    [43] 古风才、王金明,钛酸钙和钛酸铅及其掺杂无的光催化性能,催化学报,1997,18(3):247~249
    [44] 杨秋华、王俊珍,钙钛矿型复合氧化物LaFeO_3和LaCoO_3的光催化活性,催化学报,1999,20(5):521~524
    [45] Sato T. Sato K. Fujishiro Y, etal. Chem Tech Biotechno, 1996, 67:345~349
    [46] Jihuai Wu, Uchida S, Fujishiro Y, etal Internal of Inorg Mater 1999, 1: 253~258
    [47] 曹跟华,光催化氧化法处理染料废水的研究,河北工业大学
    [48] Negishi N, Takeuchi K, lbusuki T, Appli Surf Sci, 1997, 121/122: 417
    [49] 藤屿昭,电气化学,1996,64(10):1052

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700