生物人工肝的构建及其治疗急性肝衰的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性肝衰(ALF)的治疗是当代临床医学的一大难题,常规治
    疗病死率高达80%。虽然肝移植(LT)可将ALF的病死率降低到
    30-50%,但是,LT存在急诊手术时供体来源困难、手术复杂、患
    者需要终生接受免疫抑制治疗及费用昂贵等缺点。作为肝脏替代疗
    法的另一个方向,人工肝的研究在近40年来取得了长足的进展。目
    前,国外以培养的肝细胞与人工辅助装置相结合的生物人工肝
    (BAL)所进行的动物实验及临床初步应用结果已表明,BAL不仅
    可能代偿ALF患者肝脏解毒、生物合成功能及稳定内环境、阻断恶
    性循环,而且为具有强大再生能力的肝细胞提供了再生的条件和时
    间。经过逐渐成熟和完善后,BAL可望将不会仅停留为等待LT的
    一种过渡治疗手段,而极有可能象肾透析曾给肾功能衰竭的治疗带
    来革命性变化一样,为ALF的现代治疗提供最大的希望。结合本课
    题的前期工作,本研究用微载体粘附悬浮培养的原代正常猪肝细胞
    作为生物材料构建BAL,进行治疗猪ALF的实验,旨在为BAL早
    期进入临床Ⅰ期试验提供依据。
     第一部分:猪肝细胞的分离与微载体粘附悬浮培养
     目的 获得一个具有丰富来源的肝细胞生产技术。
     方法 取本地杂种小猪作为肝细胞供体。用Seglen改良二步胶
    原酶原位循环灌注法分离获取肝细胞悬液,台盼蓝(TB)染色法计
    算细胞数及细胞活率。将Cytodex-3微载体按5mg/mL的浓度加入
    经5%甲基硅树脂乙酸乙酯溶液硅化的STUART搅拌培养瓶中。猪
    肝细胞按5×10~6/mL的密度全部接种于培养瓶,随后加入培养液及
    附加因子至1/3最终体积,搅拌培养6小时后加入培养液及附加因
    子至最终体积200mL,然后持续搅拌培养。光镜及电镜下观察细胞
    
    
    生长情况,动态检测培养上清中白蛋白及尿素浓度。
     结果 每只猪肝平均获取肝细胞数为N.26土 0.75)XIO‘\活
    率为o91.22士0.83)%。猪肝细胞在接种后即呈明显的Cytodex刁
    聚集趋势,在培养48-72小时后可见典型的多细胞聚球形成,该形
    态特点及白蛋白、尿素合成能力可保持约4周左右。
     结论 采用IV型胶原酶原位门腔循环灌注可分离获取大量。高
    活性的原代正常猪肝细胞,经微载体粘附悬浮培养后可达到高密度。
    高活性、长期离体培养的目的,可满足BAL对生物材料的要求。
The treatment of acute liver failure (ALF) is extremely difficult in
     the current medicine. With a routine treatment, the mortality of ALF is
     high about 80%. Although liver transplantation (LT) can reduce that to
     30-50%, LT has the shortcomings such as the shortage of donor liver
     so not to be able to meet the urgent need of treating ALF with
     emergency LT, complex operation, the life-long immunosuppressant
     treatment on sufferer and high expenses. As another way of
     liver-substituting therapy, the study on artificial liver has made great
     achievements in the past forty years. Nowadays the animal
     experiments and primary clinical applications with bioartificial liver
     (BAL) based on cultured hepatocytes and artificial assistant device at
     abroad have shown that BAL can not only be possible to compenste
     the functions of detoxification and biosynthesis of liver, stabilization
     of inner condition and interdiction of vicious circle, but also provide
     conditions and time for regeneration of hepatocytes which possess
     great ability to regenerate. With gradually maturation and perfection
     BAL can be promise to bring the lightest hope for the treatment of
     ALF just as the revolutionary change of the treatment of kidney failure
     with kidney dialysis instead of only being a bridging therapy for
     waiting LT. Combining with the prophase work on this subject, we
     cultured the normal primary porcine hepatocytes on microcarriers
     suspendingly as biomaterial to develop BAL to experiment on treating
     ALF pigs with aiming to provide evidences for BAL to enter phase I
     clinical examination earlier.
    
    
    
     ??
    
    
    
    
    
    
    
    
    
     Part I Seperation and culture on microcarriers suspendingly of
    
     porcine hepatocytes
    
     Aim To establish a technique of harvesting hepatocytes of
     abundant sources.
    
     Methods Hepatocytes were from the donors of native hybrid
     pigs and isolated on the way of two-step orthotopic collagenase
     circulating perfusing method as described by Seglen. The yield and
     viability were assessed by trypan blue exclusion test. Microcarriers
     Cytodex-3 were added at the concentration of Smg/L into the
     STUART stirring culture vessel siliconized by 5% methyl silicon resin
     ethyl acetate. Porcine hepatocytes were entirely inoculated into the
     vessel at the concentration of 5 X 106/mL. Together with the
     supplemental factors, the culture matrix was added in according to one
     third of the final volume. After being stirred for 6 hours the culture
     matrix and supplemental factors were added to the 200mL final
     volume and from then on stirring were kept on. Cell growth was
     observed on light and electron microscopes. Concentrations of
     albumin and urea were examined dynamically in the supemation.
    
     Results Each liver provided (4.26?.75) X 1010 hepatocytes
     averagely and their vivid rate was (91.22 ?0.83)%. Most hepatocytes
     tended to conglomerate obviously after being inoculated and 48-72
     hours later typical multicellular aggregate spheroids could be observed.
     Their morphological characteristics and abilities to synthesize albumin
     and urea could be maintained for about 4 weeks.
    
     Conclusion large-amount and high-activity normal primary
     porcine hepatocytes could be isolated on the way of two-step
     orthotopic tyep IV collagenase circulating perfusing method. When
     being cultured on microcarriers they could be achieved to the objects
     of high
引文
1. Uchino J, Matsushita M. Strategies for the rescue of patients with liver failure. ASAIO J, 1994; 40(1) : 74-7
    2. Gerlach J, Ziemer R, Neuhaus P. Fulminant liver failure: relevance of extracorporeal hybrid liver support system. Int J Artif Organs, 1996; 19(1) : 7-13
    3. Killey JE, Pendder JC, Welch HF, et al. Ammonia intoxication treated by hemodialysis. N Engl J Med, 1958; 259: 1156-61
    4. Nyberg SL, Peshwa MV, Payme WD, et al. Evolution of the bioartificial liver: the need for randomized clinical trials. The Am JSurg, 1993; 166: 512-21
    5. Nyberg SL, Shatford RA, Hu WS, et al. Hepatocytes culture system for artificial liver support: implication for clinical care medicine (bioartificial liver support). Crit Care Med, 1992, 20(8) : 1157-68
    6. Li AP, Barker G, Beck D, et al. Culturing of primary hepatocytes as entrapped aggregates in a packed bed bioreactor. 1993; 29A(3) : 249-54
    7. Stage J, Mitzner S. Hepatocytes encapsulation-initial intentions and new aspects for its use in bioartificial liver support. Int J of Artif Organs, 1996; 19(1) : 45-8
    8. Suzuki T. Application of porous bioceramics for a hybrid type artificial liver system. Nippon Rinsho, 1997; 55(8) : 2140-7
    9. Gerlach J, Brombacher J, et al. Comparison of four methods for mass hepatocytes isolation from pig and human livers. Transplantation, 1994; 57: 1318-22
    
    
    10. Javitt N. HepG2 cells as a resource for metabolic studies:lipoprotein, cholesterol and bile acids. FASEB J, 1990; 4:16-8
    11. Stevenson D, Lin H, et al. Characteristics of a cell line (TONG/HCC) established from a human hepatocellular carcinoma.Hepatology, 1987; 7:1291-5
    12. Schuetz EG, Schuetz JD, et al. Regulation of human liver cytochromes p-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology, 1993; 18:1254-62
    13. Fredrick D, Watanabe,M.D., Claudy JP, Mullon,Ph.D., et al. Clinical experience with a bioartificial liver in the treatment of severe liver failure: A phase Ⅰ clinical trial. Annals of Surgery,1997; 225(5): 484-94
    14. Baquerizo A, Mhoyan A, Kearns Jonker M, Arnaout WS,Shackleton C, Busuttil RW, Demetriou AA, Cramer DV. Characterization of human xenoreactive antibodies in liver failure patients exposed to pig hepatocytes after bioartificial liver treatment: an ex vivo model of pig to human xenotransplantation.Transplantation, 1999; 67(1): 5-18
    15. Flendrig LM, Sommeijer D, Ladiges NC, Te Velde AA, Maas MA,Jorning GG, Daalhuisen J, Chamuleau RA.Commercially available media for flushing extracorporeal bioartificial liver systems prior to connection to the patient's circulation: an in vitro comparative study in two and three dimensional porcine hepatocyte cultures. Int J Artif Organs, 1998; 21(8): 467-72
    16.鄂征,组织培养与分子细胞学技术,第二版,北京:北京出版社,1995:60-62
    17.王佃亮,微载体高密度培养Vero细胞:[硕士学位论文],军事医学科学院,1993年6月
    
    
    18. Takahashi T, Malchesky PS, Nose Y. Artificial liver. Nippon Geka Gakkai Zasshi, 1985; 86(9) : 1027-40
    19. Yamazaki Z, Kanai F, Idezuki Y, et al. Artificial liver. Nippon Geka Gakkai Zasshi, 1985; 86(9) : 1027-30
    20. Jauregai HO, Gann KL. Mammalian hepatocyte as a foundation for treatment in human liver failures. J Cell Biochem, 1991; 45: 359-65
    21. Taguchi K, Matsushita M, et al. Development of a bioartificial liver with sandwich-cultured hepatocytes between two collagen gel layers. Artif Organs, 1996; 20(1) : 178-185
    22. Koebe HG, Pahernik SA, et al. Porcine hepatocytes for biohybrid artificial liver devices: a comparison of hypothermic storage techniques. Artif Organs, 1996; 20(11) : 1181-90
    23. Sakai Y, Naruse K, et al. Development of a bioartificial liver using porcine hepatocytes spheroids. Nippon Rinsho, 1997; 55(9) : 2451-7
    24. Sielaff TD, Nyberg SL, et al. Characterization of the three-compartment gel-entrapment porcine hepatocyte bioartificial liver. Cell Bio Toxicol, 1997; 13(4-5) : 357-64
    25. Clark MG, Fisell OH, et al. Glucogenesis in isolated intact lamb liver cells: effects of glucagon and butyrate. Biochem J, 1976; 15: 671-80
    26. Aiello RJ, Armentano LE. Glucogenesis in goat hepatocytes is affected by calcium, ammonia and other key metabolites but not primary through cytosolic redox stage. Comp Biochem Physiol, 1987; 88B: 183-201
    27. Forsell JH, Jess BW, et al. A technique for isolation of bovine
    
    hepatocytes. J Animal Sci, 1985; 60(6): 1597-608
    28. Howard RB, Christensen AK, Gibbs FA, et al. The enzymatic preparation of isolated parenchymal cells from rat liver. J Biol Chem, 1967; 35:675
    29. Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells. The J Cell Biol, 1969; 43:506-19
    30. Seglen PO. Preparation of rat liver cells, Ⅰ. Effect of calcium on enzymatic dispersion in perfused liver. Exp Cell Res, 1972; 74:450-4
    31. Seglen PO. Preparation of rat liver cells, Ⅲ. Enzymatic requirements for tissue dispersion. Exp Cell Res, 1973; 82:391-8
    32. Pogson CI, Elliott KRF, Lomax MA, et al. Variations in hepatic metabolism between species. In: Harris RA, Cornell NW, et al. Isolation,characterization and use of hepatocytes. New York: Elsevieer Biomedical, 1983:21-30
    33. Shnyra A, Bocharova N, et al. Bioartificial liver using hepatocytes on biosilon microcarriers: treatment of chemically induced acute hepatic failure in rats. Artif Organs, 1991; 15(3): 189-97
    34.徐小平,微载体培养人肝细胞系作为人工肝生物材料的研究,[硕士学位论文],广州:第一军医大学,1997
    35. Mezey E, Rennie Tankersley L, Potter JJ. Effect of dihydrotestosterone on turnover of alcohol dehydrogenase in rat hepatocyte culture. Hepatology, 1998; 27(1): 185-90
    36. Kimura M, Ogihara M. Proliferation of adult rat hepatocytes in primary culture induced by insulin is potentiated by cAMP-elevating agents. Eur J Pharmacol. 1997; 327(1): 87-95
    37. Kono Y, Yang S, Roberts ES. Extended primary culture of human hepatocytes in a collagen gel sandwich system. In Vitro Cell Dev Biol Anim, 1997; 33(6): 467-472
    
    
    38. Taguchi K, Matsushita M, Takahashi M, Uchino J. Development of a bioartificial liver with sandwich-cultured hepatocytes between two collagen gel layers. Artif Organs, 1996; 20(11):178-185
    39. Koike M, Matsushita M, Taguchi K, Uchino J. Function of culturing monolayer hepatocytes by collagen gel coating and co-culture with nonparenchymal cells. Artif Organs, 1996; 20(11):186-192
    40. Schuppan D, Schmid M, Somasundaram R, Ackermann R, Ruehl M, Naksmura T, et al. Collagens in the liver extracelluar matrix bind hepatocytes growth factor. Gastroenterology, 1998; 114(1):139-152
    41. Hu MY, Cipolle M, Begue JM, Sielaff T, Lovdahl MJ, Mann HJ,Rimmel RP, et al. Effect of hepatocytes growth factor on viability and biotransformation function of hepatocytes in gel entrapped and monolayer culture. Crit Care Med, 1995; 23(7): 1237-1242
    42. Flendrig LM, Te Velde AA, Chenuleau RA. Semipermeable hollow fiber membranes in hepatocyte bioreactors a prerequisite for a successful bioartificial liver? Artif Organs, 1997; 21(11):1177-1181
    43. Miyoshi H, Ookawa K, Ohshima N. Hepatocyte culture utilizing porous polyvinyl formal resin maintains long-term stable albumin secretion activity. J Biomater Sci Polym Ed, 1998; 9(3): 227-37
    44.贝莱斯编著,查良镒主译,胃肠病和肝病的最近治疗,第一版,北京:北京出版社,1994;600-16
    45. Kusler GGR, Woods JE. Auxiliary liver transplantation in the dog castemporary support in acute fulminating hepatic necrosis. Ann Surg, 1972; 176:732-5
    
    
    46. Sutherland DER, Numata M, Matas AJ, et al. Hepatocellular transplantation in acute liver failure. Surgery, 1977;82(1): 124-32
    47. Magee PN.Toxic liver injury: The metabolism of dimethylnitrosamine. Biochem J, 1956; 64:676
    48. Bames JM, Magee PN. Some toxic properties of dimethylnitrosamine. Br J Ind Med, 1954; 11:167
    49. Makowka L, Rotstein LE, Falk RE, et al. Reversal of toxic and antoxic induced hepatic failure by syngeneic, allogeneic, and xenogeneic hepatocyte transplantation. Surgery, 1980; 86:244-53
    50. Zimmerman HJ: in handbook of experimental pharmacology, Eichler Springer-Verlag New York, 1976; 16:1-98
    51. Sommer BG, Sutherland DER, Matas AJ, et al. Hepatocellular transplantation for treatment of D-Galactosamine induced acute liver failure in rats. Transplant Proc, 1979; 11:578
    52. Sielaff T, Hu M, Rollins M, et al. An anesthetized large animal model of fatal canine galactosamine hepatitis. Hepatology, 1995;21:796
    53. Sussman NL, Chong MG, Koussayer T, et al. Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology, 1992; 16(1): 60-5
    54. Kelly JH, Koussayer T, He D, et al. An improved model of acetaminophen-induced fulminant hepatic failure in dogs.Hepatology, 1992; 15(2): 329-35
    55.舒昌达,D-氨基半乳糖急性肝功能衰竭大白鼠的血浆皮质醇变化及其在ACAC血液灌流下的影响。中华器官移植杂志,1983;4(3):139-41
    
    
    56. Misra MK, Peng FK, Sayhoun A, et al. Acute hepatic coma: A canine model. Surgery, 1972; 72(4): 634-42
    57.胡同增主编,实验外科学,第一版,北京:人民卫生出版社,1991;158-63
    58. Roger V, Balladur P, Honiger J, et al. A good model of acute hepatic failure: 95% hepatectomy. Treatment by transplantation of hepatocytes. Chirurgie, 1996; 127(6): 470-3
    59. Vogels BA, Maas MA, Bosma A, et al. Significant improvement of intrasplenic hepatocyte transplantation in totally hepatectomized rats. Cell Transplant, 1996; 5(3): 369-78
    60. Sigel B. Partial hepatectomy in the dog. Arch Surg, 1963; 87:788
    61. Gaub J, Iversen J. Rat liver regeneration 90% partial hepatectomy.Hepatology, 1984; 4(5): 902
    62. Rappaport AM, Macdonald MH, Borowy ZJ. Hepatic coma following ischemia of the liver. SGO, 1953; 97:748-62
    63. Giges B, Dein HL, Sborov VM, et al. Experimental hepatic coma.SGO, 1953; 97:763-8
    64. Mattson WJ,Turcotte JG.Survival and metabolism in experimental endogenous hepatic coma. SGO, 1969; 128:557-68
    65. Farkouh EF, Daniel AM, Beaudoin JG, et al. Predictive value of liver biochemistry in acute hepatic ischemia. SGO, 1971; 132:832-8
    66. Abouma GM. Animal models of hepatic failure for evalution of artificial liver support techniques. Artificial Organs, Trathclyd Bio-engineering Seminars; 1977:351
    
    
    67. Rozga J, Williams F, Ro MS, Neuzil DF, Giorgio TD, Backfisch G, Moscioni AD, Hakim R, Demetriou AA. Development of a bioartificial liver: properties and function of a hollow-fiber module inoculated with liver cells. Hepatology, 1993; 17(2):258-65
    68.陈因良 陈志宏,细胞培养工程,第一版,上海:华东化工学院出版社,1992:73-114
    69. Riegler JL, Laka JR. Fulminant hepatic failure. The Med Clini North Am, 1993; 77(5): 1057-83
    70.江绍基主编,临床肝胆系病学,第一版,上海:上海科技出版社,1992;250-65
    71. Hoofnagle JH, Carithers-Jr RL, Shapiro C, et al. Fulminant hepatic failure: Summary of a workshop. Hepatology, 1995;21(1):240-52
    72. Stadt JV, Gelin M, Bourgeois N, et al. Liver transplantation for fulminant and subacute viral hepatic failure in adults. Transplant Proc, 1990; 22(4): 1505-8
    73. Cosimi AB. Update on liver transplantation. Transplant Proc,1991; 23(4): 2083-90
    74. Sussman NL, Gislason GT, Kelly JH. Extracorporeal liver support: Application to fulminant hepatic failure. J Clin Gastroenterol,1994; 18(4): 320-4
    75. Fausto N, Mead J. Regulation of liver growth: Protooncogents and transforming growth factors. Lab Invest, 1989; 60:4-13
    76. Fishback FC. A morphologic study of regeneration of the liver after bartial removal. Arch Pathol, 1992; 7:955-77
    77.吴孟超主编,肝脏外科学,第一版,上海:上海科学技术出版社,1982;93-96
    
    
    78. Shatford RA, Nyberg SL, Meier SJ, et al. Hepatocyte function in a hollow fiber bioreactor: A potential bioartificial liver. J Surg Res,1992; 53:549-57
    79. Rozga J, Williams F, Ro MS, et al. Development of a hollow-fiber module inoculated with liver cells. Hepatology, 1993; 17:158-65
    80. Kamohara Y, Rozga J, Demetriou AA. Artificial liver: review and Cedars-Sinai experience. J Hepatobiliary Pancreat Surg, 1998; 5(3): 273-85
    81. Ledezma GA, Folch A, Bhatia SN, Balis UJ, Yarmush ML, Toner M. Numerical model of fluid flow and oxygen transport in a radial-flow microchannel containing hepatocytes. J Biomech Eng,1999; 121(1): 58-64
    82. Flendrig LM, Chamuleau RA, Maas MA, Daalhuisen J, Hasset B, Kilty CG, Doyle S, Ladiges NC, Jorning GG, La Soe JW, Sommeijer D, Te Velde AA. Evaluation of a novel bioartificial liver in rats with complete liver ischemia: treatment efficacy and species-specific alpha-GST detection to monitor hepatocyte viability. J Hepatol, 1999; 30(2): 311-20
    83. Kelly JH, Koussayer T, He D, Chong MG, Shang TA, Whisennand HH, Sussman NL. Assessment of an extracorporeal liver assist device in anhepatic dogs. Artif Organs, 1992; 16(4):418-22
    84.上海市卫生局,中华医学会上海分会编著,实验室诊断与基础治疗常规,第一版,上海:上海科学技术出版社,1999;98-107
    85. Mccaughan GW, Huynh JC, Feller R, et al. Fulminant hepatic failure post liver transplantation: clinical syndromes, correlations and outcomes. Transplant Int, 1995; 8(1): 20-6
    
    
    86. Seglen PO. Preparation of rat liver cells Ⅱ :Effects of ions and chelators on tissue dispersion. Exp Cell Res, 1973; 76: 25
    87. Shnyra A, Bocharov A, Bochataova N, et al. Large-scale production and cultivation of hepatocytes on biosilon microcarriers. Artif Organs, 1990; 14: 421
    88. Catapano G. Mass transfer limitations to the performance of memberane bioartificial liver support devices. Int J of Artif Organs, 1996; 19(1) : 18-31
    89. Jauregui HO, Mullon CJ, Trenkler D, et al. In vivo evaluation of a hollow fiber liver assist device. Hepatology, 1995; 21: 460
    90. Wolf CF, Munkelt BE. Bilirubin conjugation by an artificial liver composed of cultured cell and synthetic capillaries. ASAIO Trans, 1975; 21(1) : 16-27
    91. Nyberg SL, Platt JL, Shirabe K, et al. Immunoprotection of xenocytes in a hollow fiber bioartificial liver. ASAIO J, 1992; 38: 463-7
    92. Rozga J, Demetriou AA. Artificial liver evolution and future perspectives. ASAIO J, 1995; 41(6) : 831-6
    93. Yatzids H, Oreoploulos D, Triantaphyllides D, et al. Treatment of severe barbiturates poisoning. Lancet, 1965; 2: 216-7
    94. Hughes R, Williams R. Clinical experience with charcoal and resin hemoperfusion. Semin Liver Dis, 1986; 6: 164-73
    95. Denis J, Dclorme ML, Boschat M, et al. Respective roles of ammonia,amino acids and medium-sized molecules in the pathogenesis of experimentally induced acute hepatic encephalopathy. J Neurochem, 1983; 40: 10-9
    96. Basile A, Janes E, Skolnick P. The pathogenesis and treatment of
    
    hepatic encephalopathy: evidence for the involvement of hepatic encephalopathy and benzodiazepine receptor ligands. Pharmacol Rev, 1991; 43: 27-71
    97. Chang TMS. Clinical experience with ACAC coated charcoal hemoperfusion in acute intoxication. Clin Toxicol, 1980; 7: 529-42
    98. Mito M, Hepatic assist: present and future. Artif Organs, 1986; 10(3) : 214-8
    99. Omori Y. New apparatus for artificial liver support: PAT resin-removal of protein-bound substance and its effect on hepatic failure in animals. Nippon Geka Gakkai Zasshi, 1985; 86(5) : 566-75
    100. Sakagami K, Miyazaki M, Matsuoka J, et al. Artificial liver support for postoperative hepatic failure with anion exchange resin(BR-601) . Acta Med Okayama, 1986; 40(5) : 249-55
    101. Filip K, Maly J, Horky J, et al. Bilirubin and bile acids removal by hemoperfusion through synthetic resin "Persorb" . Czech Med, 1990; 13(1) : 34-7
    102. Gerlach J. Special issue:hybrid liver support. Int J of Artif Organs, 1996; 19(1) : 1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700