空心玻璃微球表面仿生沉积磷灰石涂层细胞微载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程研究的主要目的是利用活细胞和生物材料,体外培养或者构建组织和器官,以修复或替代损伤的组织或器官。种子细胞是实现组织重建的前提和基础,利用微载体培养技术对组织工程种子细胞进行体外扩增,是现如今最常用、最有效的方法。目前,大多数微载体材料仍是聚合物,制备新型的生物性能优良的微载体材料仍是组织工程与再生医学比较重要的问题。羟基磷灰石(HA)具有优良的生物活性和生物相容性,被认为是一种潜在的细胞培养微载体材料。然而,因HA的理论密度较高限制了其作为微载体材料的应用。对HA复合高分子类材料的微载体已有研究,但是HA复合无机材料作为细胞培养微载体的相关研究还很少。空心玻璃微球(HGM)以其良好的物理化学性质被广泛地开发利用,在其表面涂覆不同性质的涂层,可使其具有不同的功能特性。
     本研究针对HGM的物理化学性质,选择NaOH, Ca(OH)2和Piranha溶液三种不同的表面处理方式对其进行表面活化,通过简易的仿生沉积的方法在其表面沉积了HA涂层,制备出了HA-HGM复合空心微球。同时,对三种不同表面处理方式的机理进行了讨论,优化了每种处理方式的工艺参数,并对其结构和性能进行表征,确定了合适的表面处理方式。通过调整沉积时间、模拟体液(SBF)的浓度、液固比等参数,分别利用X射线衍射仪(XRD)、红外光谱分析仪(FTIR)、场发射扫描电子显微镜(FE-SEM)、比表面积分析仪(SSA)、高分辨透射电镜(HRTEM)、X射线光电子能谱仪(XPS)、扫描探针显微镜(SPM)等手段对涂层的相组成、原子团、形貌、比表面积、微观结构、表面成分以及表面粗糙度进行了系统的分析,优化出沉积工艺,并探索了煅烧对HA涂层微观结构和性能的影响。在此基础上,选取了两种HA-HGM复合空心微球,对MC3T3成骨细胞进行细胞培养,通过MTT法检测了细胞的增殖率,并检测了碱性磷酸酶(ALP)活性和细胞分泌蛋白的功能,初步研究了HA-HGM复合空心微球作为成骨细胞培养微载体的性能。
     结果表明,HGM主要组成成分是Si02和A1203,呈中空灰白色的规则球形,表面光滑,主要由短棒状的晶体和非晶玻璃体组成。三种表面处理方式均可激发HGM的化学活性,激发的机理有所不同,但是关键还是使Si-O键和Al-O键断裂,破坏其Si-O-Si或Si-O-A1网络结构。经过三种方式不同表面处理后,利用仿生沉积法均可在HGM表面沉积碳酸化的HA。通过分析HA涂层的结构和性能,以操作简便易行和无危险性为原则,选择最优的表面处理方式是HGM在1mol/L NaOH溶液中于36.5℃下处理2h。
     沉积时间、SBF的浓度以及液固比等条件对沉积层HA的结构和性能有明显的影响。随着沉积时间的延长,HA涂层的厚度不断增加,沉积速度约为0.14μm/dayo沉积时间延长到15天后,沉积层的生长速度变得缓慢,浸泡18天后生长进入平台期。这主要是由于沉积层厚度增加,使得作为HA的形核点的富硅层溶解出的速度降低引起的。同时,浸泡时间为15天时,涂层表面部分出现微裂纹,而且随浸泡时间的继续延长,微裂纹增加,甚至使涂层从HGM表面脱落。在低浓度的SBF溶液中,HGM表面不能沉积HA涂层,只有在1.5倍以上浓度的SBF溶液中才能顺利沉积HA涂层。SBF浓度增大对沉积层生长速度的影响并不明显。液固比也是影响沉积层性能的一个重要因素,研究表明,在1.5SBF溶液中,只有液固比在高于150:1以上才能沉积HA涂层。在本研究条件下,合适的工艺参数是无生物玻璃活化,1.5SBF,液固比150:1,沉积时间15天。
     仿生沉积的HA涂层表面以片状的结构相互交错,弯曲排列而成,形成花瓣状。涂层的结晶度不高,并且是含有碳酸根的类骨磷灰石,厚度约为2μm,孔径大小约为100nm,可以促进细胞在材料表面的响应,有利于细胞的黏附与增殖和营养物质的传递功能。HA沉积层由近基体的致密层和近表面的多孔疏松层的双层结构组成。
     在500-800℃之间对微球进行煅烧处理,总体上随煅烧温度升高,HA涂层的比表面积迅速降低,孔径尺寸不断增大,花瓣状多孔形貌消失,逐渐由纳米颗粒代替。煅烧温度为600℃时,总孔体积最大(0.0359ml/g),孔分布均匀。这主要是因为煅烧过程中碳酸根不断从HA涂层晶体中释放出来,同时,多孔花瓣状结构变成均匀的纳米颗粒组成的多孔网状结构。煅烧温度升高到700℃时,沉积层内晶体结构发生变化生成磷酸三钙(TCP)。HRTEM结果表明,沉积层HA中含有少量的非晶,片状结构存在于整个涂层中。经过煅烧处理后,组成HA的颗粒成棒状结构,结晶度升高,表面粗糙度先降低后升高。
     选取未煅烧(HA-w)和600℃(HA-600)煅烧30min的HA-HGM复合空心微球为研究对象,以MC3T3成骨细胞为目标细胞,研究了复合微球对成骨细胞培养的能力。研究表明,对MC3T3培养24h后,成骨细胞能较好的在空心微球表面进行黏附和铺展。煅烧后的样品,因HA涂层与基体HGM结合强度降低,使得在细胞培养过程中部分涂层发生脱落现象,对细胞培养和形貌观察造成了不利影响。而且发现,成骨细胞在HGM基体上呈现薄膜状态,无细胞核存在,这说明HGM本身不利于成骨细胞的生长。
     HA-HGM复合空心微球表面具有良好的生物相容性和活性,同时,在培养板中又增加了培养的面积。因此,MTT试验表明成骨细胞在HA-w微球存在下的增殖率高于空白对照组的增殖率。成骨细胞功能检测也表明,实验组ALP的活性要高于空白对照组。试验表明,HGM表面仿生沉积HA涂层所得到的HA-HGM复合空心微球适用于成骨细胞的大规模培养。
In general, tissue engineering utilizes living cells and biomaterials, as well as suitable biochemical and physical factors to create tissue-like structure through engineering and materials methods, aiming to repair or regenerate damaged tissue or organ. For tissue engineering purpose, large numbers of cells with appropriate phenotypes are needed in engineering the many different living tissues, and microcarrier culture has become a newly arisen cell culture technology, facilitating not only the acquirement of large number of cells but also the investigation of cell behavior in vitro. However, most of the materials used to manufacture microcarriers were polymer materials. Therefore, it is of great theoretical and practical significance to explore new microcarrier for tissue engineering and regenerative medicine. Hydroxyapatite (HA) has been extensively investigated for biomedical applications because of its favorable characteristics, including good biocompatibility, osteoconduction and excellent adsorption properties. Furthermore, some researchers described HA as a potential material of cell microcarrier. Unfortunately, the application was limited due to its large theoretical density. In addition, HA has been used in cell culture in the forms of HA-polymer composite microspheres, but lack of research on HA-coated inorganic material. Hollow glass microsphere (HGM) has been extensively investigated in many fields because of their excellent physical and chemical properties. With different surface modifications, the applications of HGM have been extended, such as photocatalyst, microwave adsorption and electromagnetic wave shielding materials.
     In this research, HA-coated HGM were prepared using a biomimetic process after three different surface modifications. The technical parameters optimization and mechanism of surface modification, structure and property characterization of HGM surface were carried out. Based on previous work, the emphasis was put on the factors influencing the deposition of HA coating on HGM, such as simulated body fluid (SBF) concentration, immersion time, solid/liquid ratio and activation of HGM. The phase composition, morphology, specific surface areas, microstructure and surface element of them were characterized by X-ray diffractmeter (XRD), fourier transform infrared spectrum analyzer (FTIR), field emission scanning electron microscope (FE-SEM), surface area analyzer (SSA), high resolution transmission electron microscope (HRTEM), X-ray photoelectron spectrometer (XPS), and scanning probe microscope (SPM), respectively. The MC3T3osteoblastic cells were cultured by HA-coated HGM, the cell morphology, cell proliferation rate, alkaline phosphate (ALP) activity and total protein were detected.
     The results revealed that HGM with the main composition of SiO2and Al2O3, had regular spherical structure and smooth surface morphology. Because of the formation mechanism, HGM structure was composed of amorphous phases and crystalline. Besides, the surface of HGM had higher chemical activity after treated with three different surface treatments, due to the breakage of smooth and dense surface structure of HGM, which were compounded of Si-O-Si and Si-O-Al. After pretreatment, a dense and uniform HA coating was successfully deposited on HGM. By analyzing the structure and performance of HA coating, it could be determined that the proper pretreatment was treated with1mol/L NaOH for2h at36.5℃.
     The immersion time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. The results showed that the coating thickness increased with the immersion time in SBF. Meanwhile, the coating thickness increased rapidly with the immersion rate about0.14μm/day when immersed within15days, and then the increase became obviously slow and reached a platform after18days. This was distributed to, after immersion for15days, the thickness of HA coating on the HGM was about2μm, which impeded the releasing of Si-OH acting as the nucleation sites of HA in the process. It also could be observed that more microcracks appeared on HA layers with the increased immersion time. Furthermore, HA coating was not formed on the surface of HGM until the concentration increased to1.5SBF, and the effect of SBF concentration on the HA thickness was trivial. In addition, a uniform HA coating was formed on the surface of HGM when the liquid/solid ratio was increased to150:1. From above, it could be deduced that the optimum immersion parameters were1.5SBF, immersion time of15days, and the liquid/solid ratio of150:1.
     The HA coatings with a bilayer structure were adjacent curled flakes joint together by the flake-like crystals, and the inner coatings were dense and uniform HA. Besides, the obtained HA coatings with the thickness of2μm and pore size of100nm were poorly crystalline and carbonated, similar to biological apatite. This kind of nanotopography was suggested to improve cell response and enhance mass transfer in the aggregates.
     Obvious changes took place on the surface morphology and specific surface area with the increase of calcination temperature, and highest total pore volumes (0.0359ml/g) and uniform porous structure composed of nanoparticles appeared when the temperature reached600℃. Moreover, extra phase (tricalcium phosphate, TCP) appeared because carbonated HA decomposed at700℃. With the increase of the calcination temperature, the partial carbonate was firstly released from HA, but apatite-type structure remained unchanged. When the calcination temperature arrived at700℃, the flakelets of porous HA coatings began to partially decompose into TCP nanoparticles. HRTEM micro structure of HA coating showed that a mass of amorphous phase and flakelets existed in the coating. Further, the HA coating had high crystallinity, and the rod like particles in situ replaced the flakelets.
     The MC3T3osteoblastic cells were cultured on two kinds of HA-coated HGM, before calcined (HA-w) and calcined at600℃for30min (HA-600). The results indicated that the two kinds of HA-coated HGM improved the attachment, migration and differentiation of MC3T3osteoblastic cells after culture for different times. However, much of the coatings of HA-600peeled off in the culture process because the bonding strength decreased after calcination. Moreover, the cells on the HGM surface were relatively flatter and tended to attach HA coating. It was obviously that HGM had inhibitory effects for proliferation of MC3T3osteoblastic cells.
     On the surface of HA-coated HGM, the cells displayed lamellipodia and filopodia extensions. MTT assay demonstrated that there was significant difference between HA-w and control group at4days. Meanwhile, the ALP activity test showed that the cells cultured on HA-w was significant greater than on the control group after21and28days. Therefore, the preliminary study on preparation and MC3T3osteoblastic cells culture of HA-coated HGM is successful, and could have potential use as microcarrier for large-scale cell culture.
引文
1 曹宜林.组织工程学的研究进展[J].中国美容医学,2005,14:134-135.
    2余耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000,1-2.
    3 李玉宝.生物医学材料[M].北京:化学工业出版社,2003,1-5.
    4 Williams D F. On the nature of biomaterials[J]. Biomaterials,2009,30: 5897-5909.
    5 Bres E F, Moebus G, Kleebe J J, Pourry G, Wekmann J, Ehret G. High resolution electron microscopy study of amorphous calcium phosphate[J]. Journal of Crystal Growth,1993,129:149-162.
    6 Hench L L. Biomaterials:a forecast for the future [J]. Biomaterials,1998,19: 1419-1423.
    7 Horlington M. Biomaterials:present and future [J]. Materials World,1995,3: 332-333.
    8 Schilling K M, Carson R G, Bosko C A, Golikeri G D, Bruinooge A, Hoyberg K, Waller A M, Hughes N P. A microassay for bacterial adherence to hydroxyapatite[J]. Colloids and Surfaces B:Biointerfaces,1994,3:31-38.
    9 Ginebra M P, Traykova T, Planell J A. Calcium phosphate cements:Competitive drug carriers for the musculoskeletal system[J]. Biomaterials,2006,27: 2171-2177.
    10 Rauschmann M A, Wichelhaus T A, Stirnal V, Dingeldein E, Zichner L, Schnettler R, Alt V. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections[J]. Biomaterials,2005,26:2677-2684.
    11 Vallet-Regi M, Gonzalez-Calbet J M. Calcium phosphates as substitution of bone tissues[J]. Progress in Solid States Chemistry,2004,32:1-31.
    12 Niwa M, Sato T, Li W, Aoki H, Aoki H, Daisaku T. Polishing and whitening properties of toothpaste containing hydroxyapatite[J]. Journal of Materials Science:Materials in Medicine,2001,12:277-281.
    13 焦燕,吕宇鹏,王爱娟,李士同.特殊形态羟基磷灰石的制备及研究进展[J]. 生物骨科材料与临床研究,2009,6:47-51.
    14 Peng Q, Jiang F X, Huang P, et al. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. Preparation and characterization of scaffold [J]. Journal of Biomedical Materials Research Part A,2010,93A(3):920-929.
    15 Ferraz M P, Mateus A Y, Sousa J C, Monteiro F J. Nanohydroxyapatite microspheres as delivery system for antibiotics:Release kinetics, antimicrobial activity, and interaction with osteoblasts[J]. Journal of Biomedical Materials Research Part A,2007,81 A(4):994-1004.
    16 Eis C, Griessler R, Maier M, et al. Efficient downstream processing of maltodextrin phosphorylase from Escherichia and stabilization of the enzyme by immobilization onto hydroxyapatite [J]. Journal of Biotechnology,1997,58: 157-166.
    17叶桂生.碳羟基磷灰石纳米球的制备及其在含Cd2+废水处理中的应用[J].硅酸盐通报,2006,25(5):143-146.
    18 王正国.再生医学研究进展[J].中华创伤骨科杂志,2006,8:1-3.
    19 付小兵.对组织再生和再生医学发展的再思考[J].中华烧伤杂志,2011,27:1-2.
    20 International foundation for regenerative medicine gGmbH.(2005).
    21 Gomes M E, Reis R L. Tissue engineering:key elements and some trends[J]. Macromolecular Bioscience,2004,4(8):737-42.
    22 Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M. Embryonic stem cell lines derived from human blastocysts[J]. Science,1998,282:1145-1147.
    23 Fernandez Vina R, Saslavsky J, Andrin O, Vrsalovick F, Ferreyra de Silva J, Ferreyra O, et al. First word reported data from Argentina of implant and cellular therapy with autologous adult stemcells in type 2 diabetic patients (Teceldiar study 1).4th International Society for Stem Cell Research Annual Meeting. Toronto,2006.
    24 Uygunl B E, Soto-Gutierrez A, Yagi H, Izamis M L, Guzzardi M A. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix[J]. Nature Medicine,2010,16:814-820.
    25 Berthiaume F, Maguire T J, Yarmush M L. Tissue engineering and regenerative medicine history, progress, and challenges[J]. Annual Review of Chemical and Biomolecular Engineering,2011,2:403-430.
    26裴雪涛.干细胞生物学[M].北京:科学出版社,2003,3-18.
    27曹谊林.组织工程学理论与实践[M].上海:上海科学技术出版社,2004,3-7,111-160.
    28 Capstick P B, Telling R C, Chapman W G, Stewart D. Growth of a cloned strain of hamster kidney cells in suspended cultures and their susceptibility to the virus of foot -and -mouth disease[J]. Nature,1962,22(195):1163-1164.
    29 van Wezel A L. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture[J]. Nature,1967,216 (5110):64-65.
    30 Kretzmer G. Industrial processes with animal cells[J]. Applied Microbiology and Biotechnology,2002,59:135-142.
    31 Chu C, Lugovtsev V, Golding H, Betenbaugh M, Shiloach J. Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production[J]. Proceedings of the National Academy of Science of USA,2009,106:14802-14807.
    32 Chen T, Chen K P. Investigation and application progress of Vero cell serum-free culture[J]. International Journal of Biology,2009,1:41-47.
    33 刘洋.旋转壁式生物反应器中造血干/祖细胞体外扩增的研究[D].大连理工大学博士学位论文,2007,4-6.
    34 Collins P C, Nielsen L K, Patel S D, Papoutsakis E T, Miller W M. Characterization of hematopoietic cell expansion, oxygen uptake, and glycolysis in a controlled, stirred-tank bioreactor system[J]. Biotechnology Progress.1998, 14:466-472.
    35 于艳秋,任海琴,李昆,鲍春雨,刘天庆,金玉楠,云伟,董博.应用搅拌式生物反应器大量扩增人胎盘间充质干细胞的实验研究[J].中国生物医学工 程学报,2009,28:749-753.
    36 Trabelsi K, Majoul S, Rourou S, Kallel H. Development of a measles vaccine production process in MRC-5 cells grown on Cytodex1 microcarriers and in a stirred bioreactor[J]. Applied Microbiology and Biotechnology,2012,93: 1031-1040.
    37 Cabral J M S. Ex vivo expansion of hematopoietic stem cells in bioreactors[J]. Biotechnology Letters,2001,23:741-751.
    38 van den Dolder J, Bancroft G N, Sikavitsas V I, Spauwen P H M, Jansen J A, Mikos A G. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh[J]. Journal of Biomedical Materials Research-Part A,2003,64: 235-241.
    39谢幼专,朱振安,汤亭亭,戴尅戎,卢建熙,Pierre H.利用灌注型生物反应器促进干细胞在大段磷酸三钙载体内扩增[J].中华医学杂志,2006,86:1633-1637.
    40 Alvarez-Barreto J F, Linehan S M, Shambaugh R L, Sikavitsas V I. Flow perfusion improves seeding of tissue engineering scaffolds with different architectures[J]. Annals of Biomedical Engineering,2007,35:429-442.
    41 Katinger H W D, Scheirer W, Kromer E. cells in suspension culture[J]. German Chemical Engineering,1979,2:31-38.
    42 王晖,陈晓东.软骨组织工程生物反应器研究进展[J].国际骨科学杂志,2011,32:161-163.
    43 戴晓萍,戚艺华,欧阳藩Vero细胞在气升式反应器中的微载体培养[J].生物工程学报,1995,11:399-402.
    44 Highfill J, Haley S, Kompala D. Large- scale production of murine bone marrow cells in an airlift packed bed bioreactor[J]. Biotechnology Bioengineering,1996, 50:514-520.
    45 Wen Z Y, Teng X W, Chen F. A novel perfusion system of animal cell cultures by two step sequential sedimentation[J]. Journal of Biotechnology,2000,79:1-11.
    46 王佃亮,韩梅胜.动物细胞培养用生物反应器及相关技术[J].中国生物工程杂志,2003,23:24-27.
    47 Ku K, Kuo M J, Delente J, Wildi B S, Feder J. Development of a hollow-fiber system for large-scale culture of mammalian cells[J]. Biotechnology Bioengineering,1981,23:79-95.
    48 Grmaer M J, Poeschl D M. Comparison of cell growth in T-flasks, in micro hollow fiber bioreactors, and in an industrial scale hollow fiber bioreactor system[J]. Cytotechnology,2000,34:111-119.
    49 徐兵,吴林岚,魏建威,郑登滋,杨梅玉.中空纤维反应器管外腔胶原凝胶混合肝细胞培养[J].肝脏,2010,15:200-201.
    50 Vincenza C, Stefano C, Gabriele I. A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalyst[J]. Journal of Membrane Science,2002,206:217-241.
    51 Schwarz R P, Goodwin T J, Wolf D A. Cell culture for three-dimensional modeling in rotating-wall vessels:an application of simulated microgravity[J]. Journal of Tissue Culture Method,1992,14:51-58.
    52 Jessup J M, Goodwin T J, Spaulding G. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia[J]. Journal Cellular Biochemistry,1993,51:290-300.
    53 Terai H, Hannouche D, Ochoa E, Yamano Y, Vacanti J P. In vitro engineering of bone using a rotational oxygen-permeable bioreactor system[J]. Materials Science and Engineering C,2002,20:3-8.
    54 Botchwey E A, Pollack S R, Levine E M, Laurencin C T. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system[J]. Journal of Biomedical Materials Research,2001,55:242-253.
    55 Qiu Q Q, Ducheyne P, Ayyaswamy P S. Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors[J]. Biomaterials,1999,20: 989-1001.
    56 Liu Y, Liu T Q, Fan X B, Ma X H, Cui Z F. Ex vivo expansion of hematopoietic stem cells derive from umbilical cord blood in rotating wall vessel[J]. Journal of Biotechnology,2006,124(3):592-601.
    57 Marlovits S, Tichy B, Truppe M, Gruber D, Schlegel W. Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor[J]. The International Journal of Artificial Organs,2003,26:319-330.
    58 Clark J M, Gebb C, Hirtenstein M D. Serum supplements and serum-free media: applicability for microcarrier culture of animal cells[J]. Developments in Biological Standardization,1981,50:81-91.
    59 Clark J M, Hirtenstein M D. Optimizing culture conditions for the production of animal cells in microcarrier culture[J]. Annals of the New York Academy of Sciences,1981,369:33-46.
    60 Reuveny S, Mizrahi A, Kotler M, Freeman A. Factors affecting cell attachment, spreading, and growth on derivatized microcarriers. Ⅰ. Establishment of working system and effect of the type of the amino-charged groups[J]. Biotechnology and Bioengineering,1983,25:469-480.
    61 Reuveny S, Mizrahi A, Kotler M, Freeman A. Factors effecting cell attachment, spreading, and growth on derivatized microcarriers:Ⅱ introduction of hydrophobic elements[J]. Biotechnology and Bioengineering,1983,25: 2969-2980.
    62 Malda J, Frondoza C G. Microcarriers in the engineering of cartilage and bone[J]. Trends in Biotechnology,2006,24:299-304.
    63 Maroudas N G. Sulphonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions[J]. Journal of Cellular Physiology,1977,90:511-519.
    64 过琴媛,王辉,沈心亮.微载体培养动物细胞研究进展[J].微生物学免疫学进展,2007,35:73-75.
    65 Gustafson C J, Birgisson A, Junker J, Huss F, Salemark L, Johnson H, Kratz G. Employing human keratinocytes cultured on macroporous gelatin spheres to treat full thickness-wounds:an in vivo study on athymic rats[J]. Burns,2007, 33:726-735.
    66 Tielens S, Declercq H, Gorski T, Lippens E, Schacht E, Cornelissen M. Gelatinbased microcarriers as embryonic stem cell delivery system in bone tissue engineering:an in-vitro study[J]. Biomacromolecules,2007,8:825-832.
    67 Melero-Martin J M, Dowling M A, Smith M, Al-Rubeai M. Expansion of chondroprogenitor cells on macroporous microcarriers as an alternative to conventional monolayer systems[J]. Biomaterials,2006,27:2970-2979.
    68 George M, Abraham T E. Polyionic hydrocolloids for the intestinal delivery of protein drugs:alginate and chitosan-a review[J]. Journal of controlled release, 2006,114:1-14.
    69 Draget K I, Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications[J]. Food Hydrocolloid,2011,25:251-256.
    70 Gaissmaier C, Fritz J, Krackhardt T, Flesch I, Aicher W K, Ashammakhi N. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures[J]. Biomaterials,2005,26:1953-1960.
    71 Chayosumrit M, Tuch B, Sidhu K. Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm[J]. Biomaterials,2009, 31:505-514.
    72 de Vos P, Faas M M, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets[J]. Biomaterials,2006,27:5603-5617.
    73 Tang J S, Chao C F, Au M K. Growth and metabolism of cultured bone cells using microcarrier and monolayer techniques [J]. Clinical Orthopaedics and Related Research,1994,300:254-258.
    74 Malda J, van Blitterswijk C A, Grojec M, Martens D E, Tramper J, Riesle J. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation[J]. Tissue Engineering,2003,9:939-948.
    75 Frauenschuh S, Reichmann E, Ibold Y, Goetz P M, Sittinger M, Ringe J. A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells[J]. Biotechnology Progress,2007,23:187-193.
    76 Voigt M, Schauer M, Schaefer D J, Andree C, Horch R, Stark G B. Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds[J]. Tissue Engineering,1999, 5:563-572.
    77 Fok E Y, Zandstra P W. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation[J]. Stem Cells,2005,23: 1333-1342.
    78 Demetriou A A, Reisner A, Sanchez J, Levenson S M, Moscioni A D, Chowdhury J R. Transplantation of microcarrier-attached hepatocytes into 90% partially hepatectomized rats[J]. Hepatology,1988,8:1006-1009.
    79 Curran S J, Chen R, Curran J M, Hunt J A. Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres[J]. Tissue Engineering,2005,11:1312-1322.
    80 Weber C, Pohl S, Portner R, Wallrapp C, Kassem M, Geigle P, Czermak P. Expansion and harvesting of hMSC-TERT[J]. The Open Biomedical Engineering Journal,2007,1:38-46.
    81 Li K, Wang Y, Miao Z, Xu D, Tang Y, Feng M. Chitosan/gelatin composite microcarrier for hepatocyte culture[J]. Biotechnology Letters,2004,26:879-883.
    82 Yang Y, Rossi F M, Putnins E E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture[J]. Biomaterials, 2007,28:3110-3120.
    83 Phillips B W, Home R, Lay T S, Rust W L, Teck T T, Crook J M. Attachment and growth of human embryonic stem cells on microcarriers[J]. Journal of Biotechnology,2008,138:24-32.
    84 Overstreet M, Sohrabi A, Polotsky A, Hungerford D S, Frondoza C G. Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins[J]. In Vitro Cellular & Developmental Biology-Animal,2003,39: 228-234.
    85 Shikani A H, Fink D J, Sohrabi A, Phan P, Polotsky A, Hungerford D S, Frondoza C G. Propagation of human nasal chondrocytes in microcarrier spinner culture[J]. American Journal of Rhinology,2004,18:105-112.
    86 Lafrance M L, Armstrong D W. Novel living skin replacement biotherapy approach for wounded skin tissues[J]. Tissue Engineering,1999,5:153-170.
    87 Chen R, Curran S J, Curran J M, Hunt J A. The use of poly(1-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage[J]. Biomaterials,2006,27:4453-4460.
    88 Kim S S, Gwak S J, Choi C Y, Kim B S. Skin regeneration using keratinocytes and dermal fibroblasts cultured on biodegradable microspherical polymer scaffolds[J]. Journal of Biomedical Materials Research B Applied Biomaterials, 2005,75:369-377.
    89 Charlton D C, Peterson M G, Spiller K, Lowman A, Torzilli P A, Maher S A. Semi-degradable scaffold for articular cartilage replacement[J]. Tissue Engineering Part A,2008,14:207-213.
    90 Choi Y S, Park S N, Suh H. The effect of PLGA sphere diameter on rabbit mesenchymal stem cells in adipose tissue engineering[J]. Journal of Materials Science:Materials in Medicine,2008,19:2165-2171.
    91 Xu A S, Reid L M. Soft, porous poly(D,L-lactide-coglycotide) microcarriers designed for ex vivo studies and for transplantation of adherent cell types including progenitors [J]. Annals of the New York Academy of Sciences,2001, 944:144-159.
    92 Kim M, Choi Y S, Yang S H, Hong H N, Cho S W, Cha S M, Pak J H, Kim C W, Kwon S W, Park C J. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres[J]. Biochemical and Biophysical Research Communications,2006,348:386-392.
    93 Hong Y, Gong Y, Gao C, Shen J. Collagen-coated polylactide microcarriers/chitosan hydrogel composite:Injectable scaffold for cartilage regeneration[J]. Journal of Biomedical Materials Reserch A,2008,85:628-637.
    94 Ito A, Nakamura S, Aoki H, Teraoka K, Onuma K, Tateishi T. Hydrothermal growth of carbonate-containing hydroxyapatite single crystals[J]. Journal of Crystal Growth,1996,163:311-317.
    95 李新化,郑治祥,汤文明,吕君,刘君武.羟基磷灰石生物陶瓷材料的现状及展望[J].合肥工业大学学报,2002,25:1148-1153.
    96 Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J]. Journal of Materials Research,1998,13:94-117.
    97 Lopes M A, Knowles J C, Santos J D. Structural insights of glass-reinforced hydroxyapatite composites by rietveld refinement[J]. Biomaterials,2000,21: 1905-1910.
    98 Kay M I, Young R A, Posner A S. Crystal structure of hydroxyapatite [J]. Nature, 1964,204:1050-1052.
    99 Leventouri T H. Synthetic and biological hydroxyapatites:Crystal structure questions[J]. Biomaterials,2006,27:3339-3342.
    100 Yasushi S, Junzo T. Crystal growth and structure analysis of twin-free monoclinic hydroxyapatite [J]. Journal of Materials Science:Materials in Medicine,2002,13:767-772.
    101 Kawasaki T, Niikura M, Kobayashi Y. Fundamental study of hydroxyapatite high performance liquid chromatography:Ⅲ. Direct experimental confirmation of the existence of two types of adsorbing surface on the hydroxyapatite crystal[J]. Journal of Chromatography A,1990,515:125-148.
    102 Yuan H P, Yang Z J, Li Y B, Zhang X D. Osteoinduction by calcium phosphate biomaterials[J]. Journal of Materials Science:Materials in Medicine,1998,9: 723-726.
    103 李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000,84-95.
    104 Yuan H P, Kurashina K, de Bruijn J D, Li Y B, de Groot K, Zhang X D. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics[J]. Biomaterials,1999,20:1799-1806
    105 Paul W, Nesamony J, Sharma CP. Delivery of insulin from hydroxyapatite ceramic microspheres:Preliminary in vivo studies[J]. Journal of Biomedical Materials Research Part A,2002,61:660-662.
    106刘信安,李伟,王里奥.球状多孔羟基磷灰石生物材料的制备与结构[J].应用化学,2003,20:223-227.
    107 李校堃.药物蛋白质分离纯化技术[M].北京:化学工业出版社,2004,157-158.
    108余晓英,周纯益,余贤真,欧阳藩.新型、高效球形羟基磷灰石分离介质[J].生物工程进展,1996,16:17-19.
    109 Oliveira S M, Barrias C C, Almeida I F, Costa P C, Ferreira M R P, Bahia M F, Barbosa M A. Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle with in situ gel-forming ability[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2008,87B: 49-58.
    110 李乐道.药物控释制剂载体的研究进展[J].西北药学杂志,2011,26:229-232.
    111 Shi P J, Zuo Y, Li X W, Zou Q, Liu H H, Zhang L, Li Y B, Morsi Y S. Gentamicin-impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy[J]. Journal of Biomedical Materials Research Part A,2010,93 A:1020-1031.
    112 Paul W, Sharma C P. Development of porous spherical hydroxyapatite granules: application towards protein delivery[J]. Journal of Materials Science:Materials in Medicine.1999,10:383-388.
    113 Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A. Injectable porous hydroxyapatite micropraticles as a new carrier for protein and lipophilic drugs[J]. Journal of Controlled Release,2006,110:260-265.
    114 Tiselius A, Hjerten S, Levin O. Protein chromatography on calcium phosphate columns[J]. Archives of Biochemistry and Biophysics,1956,65:132-155.
    115 Karlsson G, Winge S. Separation between the α and β forms of human antithrombin by hydroxyapatite high-performance liquid chromatography [J]. Protein Expression and Purification,2003,28:196-201.
    116王爱娟,马小龙,吕宇鹏,蒋百灵,朱瑞富.羟基磷灰石微球的制备及表征与色谱性能[J].硅酸盐学报,2010,38:468-471.
    117 Andrews-Pfannkoch C, Fadrosh D W, Thorpe J, Williamsonl S J. Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages[J].Applied and Environmental Microbiology,2010,76:5039-5045.
    118王斌,刘道杰.羟基磷灰石色谱在生物分子分离中的应用[J].药物分析杂志,2008,28:1009-1013.
    119 Starling L B, Stephan J E. Calcium phosphate microcarriers and microspheres: United States Patent,6358532[P].2001.
    120 Lee H H, Hong S J, Kim C H, Kim E C, Jang J H, Shin H I, Kim H W. Preparation of hydroxyapatite spheres with an internal cavity as a scaffold for hard tissue regeneration[J]. Journal of Materials Science:Materials in Medicine, 2008,19:3029-3034.
    121 Li Y F, Peng Q, Bao C Y, Qiu Y L, Wei X, Weng J. Preliminary study on novel bone tissue engineering scaffold with stacking hollow hydroxyapatite microspheres[J]. Key Engineering Materials,2008,361-363:951-954.
    122刘浩.玻璃微珠基复合吸波材料的制备及其性能研究[D].武汉理工大学硕士毕业论文,2010,10-15.
    123 Cai C, Shen Z, Wang M, Ma S, Xing Y. Surface metallization of cenospheres and precipitators by electroless plating[J]. China Particuology,2003,1:156-161.
    124唐耿平,程海峰,赵建峰,楚增勇,周永江.空心微珠表面改性及其吸波特性[J].材料工程,2005,6:11-12.
    125 Shukla S, Seal S, Rahaman Z, Scammon K. Electroless copper coating of cenospheres using silver nitrate activator[J]. Materials Letters,2002,57: 151-156.
    126张新荣,杨平,赵梦月.附载型复合光催化剂TiO2-Al2O3/beades降解有机磷农药[J].环境科学研究,2001,14:36-40.
    127 杜玉成,刘燕琴,黄坤良.空心微珠复合材料在橡胶中的应用研究[J].非金属矿,2001,24(6):33-34.
    128 Park J H, Oh C, Shin S I, Moon S K, Oh S G. Preparation of hollow silica microspheres in W/O emulsions with polymers[J]. Journal of Colloid and Interface Science,2003,266:107-114.
    129孙瑞雪,李木森,吕宇鹏.空心微球型材料的制备及应用进展[JJ.材料导报,2005,19:19-22.
    130 Huang W H, Rahaman M N, Day D E, Miller B A. Strength of hollow hydroxyapatite microspheres prepared by a glass conversion process[J]. Journal of Materials Science:Materials in Medicine,2009,20:123-129.
    131 Ye F, Guo H F, Zhang H J, He X L. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system[J]. Acta Biomaterialia,2010,6:2212-2218.
    132 Zhang H B, Zhou K C, Li Z Y, Huang S P. Synthesis of hollow hybrid hydroxyapatite microspheres based on chitosan-poly(acrylic acid) microparticles[J]. Biomedical Materials,2009,4(3):031002.
    133 罗德福,赵康,汤玉斐,马楚凡.羟基磷灰石空心微球的制备及其释药性能[J].硅酸盐通报,2010,3:651-656.
    134 Wang Y S, Moo Y X, Chen C P, Gunawan P, Xu R. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres[J]. Journal of Colloid and Interface Science,2010,352:393-400.
    135 Kawai T, Sekikawa H, Unuma H. Preparation of hollow hydroxyapatite microspheres utilizing poly(divinylbenzene) as a template[J]. Journal of the Ceramic Society of Japan,2009,117(3):340-343.
    136李湘南,陈晓明,彭志明,李世普.空心羟基磷灰石亚微球/壳聚糖可注射水凝胶的制备及表征[J].功能材料,2011,2(42):206-209.
    137 Park J S, Hong S J, Kim H Y, et al. Evacuated calcium phosphate spherical microcarriersfor bone regeneration[J]. Tissue Engineering Part A,2010,16(5): 1681-1691.
    138 Bertling J, Blomer J, Kummel R. Hollow microspheres[J]. Chemical Engineering & Technology,2004,27:829-837.
    139 孙瑞雪.多孔及空心羟基磷灰石微球的制备与表征[D].山东大学博士毕业论文,2007,5-6.
    140 Luo P, Nieh T G. Preparing hydroxyapatite powders with controlled morphology[J]. Biomaterials,1996,17:1959-1964.
    141 Sun R X, Lu Y P, Chen K Z. Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method[J]. Materials Science and Engineering C,2009,29:1088-1092.
    142 Jiao Y, Lu Y P, Xiao G Y, Xu W H, Zhu R F. Preparation and characterization of hollow hydroxyapatite microspheres by the centrifugal spray drying method[J]. Powder Technology,2012,217:581-584.
    143 Goula A M, Adamopoulos K G. Spray drying of tomato pulp in dehumidified air: Ⅱ The effect on powder properties[J]. Journal of Food Engineering,2005,66: 35-42.
    144 Goula A M, Adamopoulos K G. Spray drying of tomato pulp in dehumidified air: Ⅰ. The effect on product recovery[J]. Journal of Food Engineering,2005,66: 25-34.
    145 Apinan S, Fanny B, Hidefumi Y, Takeshi F, Masaaki O, Pekka L. Influence of emulsion and powder size on the stability of encapsulated d-limonene by spray drying[J]. Innovative Food Science and Emerging Technologies,2005,6: 107-114.
    146 Sun R X, Lu Y P, Li M S, Li S T, Zhu R F. Characterization of hydroxyapatite particles plasma-sprayed into water[J]. Surface and Coatings Technology,2005, 190:281-286.
    147 Dyshlovenko S, Pawlowski L, Roussel P, Muranob D, Le Maguer A. Relationship between plasma spray operational parameters and microstructure of hydroxyapatite coatings and powder particles sprayed into water[J]. Surface and Coatings Technology,2006,200:3845-3855.
    148 Dyshlovenko S, Pateyron B, Pawlowski L, Murano D. Numerical simulation of hydroxyapatite powder behaviour in plasma jet[J]. Surface and Coatings Technology,2004,179:110-117.
    149 Gan Y, Han D M, Gu F B, Wang Z H, Guo G S. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres[J]. Science China Chemistry, 2010,53(8):1723-1727.
    150 Kandori K, Noguchi Y, Fukusumi M, Morisada Y. Preparation of spherical and balloonlike calcium phosphate particles from forced hydrolysis of Ca(OH)2-triphosphate solution and their adsorption selectivity of water[J].The Journal of Physical Chemistry C,2010,114:6440-6445.
    151 Xia W, Grandfield K, Schwenke A, Engqvist H. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres[J]. Nanotechnology, 2011,22:305610 (10pp.).
    152 Cai Y R, Pan H H, Xu X R, Hu Q H, Li L, Tang R K. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres:A smart and biocompatible drug release system[J]. Chemistry of Materials,2007,19(13): 3081-3083.
    153 Michael P, Shanthi S L, Mangalaraja R V, Uthirakumar A P, Velmathi S, Balasubramanian T, Ashok M. Synthesis and characterization of porous shell-like nano hydroxyapatite using cetrimide as template[J]. Journal of Colloid and Interface Science,2010,350:39-43.
    154 Shchukin D G, Sukhorukov G B, Mohwald H. Biomimetic fabrication of nanoengineered hydroxyapatite/polyelectrolyte composite shell[J]. Chemistry of Materials,2003,15(20):3947-3950
    155 Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials,2006,20:2907-2915.
    156 Vassilev S V, Menendez R, Alvarez D, Diaz-Somoano M, Martinez-Tarazona M R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization.1. Characterization of feed coals and fly ashes[J]. Fuel,2003,82:1793-1811.
    157 Moreno N, Querol X, Andres J M, Stanton K, Towler M, Nugteren H, Janssen-Jurkovicova M, Jones R. Physico-chemical characteristics of European pulverized coal combustion fly ashes[J]. Fuel,2005,84:1351-1363.
    158 Li D X, Thomson W J. Mullite formation kinetics of a single-phase gel[J]. Journal of the American Ceramic Society,1990,73(4):963-969.
    159 Mackenzie K J D. Infrared frequency calculations for ideal mullite (3Al2O3-2SiO2)[J]. Journal of the American Ceramic Society,1972,55(2): 68-71.
    160 Popa M, Calderon-Moreno J M, Popescu L, Kakihana M, Torecillas R. Crystallization of gel-derived and quenched glasses in the ternary oxide Al2O-ZrO2-SiO2 system[J]. Journal of Non-Crystalline Solids,2002,297: 290-300.
    161 苏春辉,王艳,端木庆铎.透明莫来石陶瓷薄膜的光电子能谱研究[J].光学学报,1997,17(3):342-345.
    162 Gomes S, Francois M. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR[J]. Cement and concrete research,2000,30: 175-181.
    163 张磊,张茜,王雪平,杨久俊.粉煤灰中硅铝质微珠的矿物和结构特征[J].混凝土,2011,256:66-69.
    164 Kutchko B G, Kim A G. Fly ash characterization by SEM-EDS[J]. Fuel,2006, 58:2537-2544.
    165 Murayama N, Yamamoto H, Shibata J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction [J]. International Journal of Mineral Processing,2002,64(1):1-17.
    166 Majchrzak K, Nowak W. Application of model free kinetics to the study of dehydration of fly ash based zeolite[J]. Thermochimica Acta,2004,413(1-2): 23-29.
    167 Kazemian H, Naghdali Z, Ghaffari K T, Farhadi H. Conversion of high silicon fly ash to Na-P1 zeolite:Alkaline fusion followed by hydrothermal crystallization[J]. Advanced Powder Technology,2010,21(3):279-283.
    168杨玉芬,盖国胜,刘晓华,陈清如.粉煤灰微珠表面包覆机理研究[J].中国矿业大学学报,2007,36(5):592-596.
    169 Yang Y F, Gai G S, Cai Z F, Chen Q R. Surface modification of purified fly ash and application in polymer[J]. Journal of Hazardous Materials B,2006,133: 276-282.
    170 冯博.有限锚定液晶器件的光学特性研究[D].大连海事大学硕士论文,2012,23-26.
    171 孙昌国,张会臣.基于自组装技术改性处理钛金属的摩擦学特性研究[J].稀有金属材料与工程,2009,38(11):1978-1982.
    172 Peters R D, Yang X M, Kim T K, Sohn B H, Nealey P F. Using self-assembled monolayers exposed to X-rays to control the wetting behavior of thin films of diblock copolymers[J]. Langmuir,16(10):4625-4631.
    173 Ruthy S, Liu D Z, Iva Tu, Daniel M, Shlomo Y. Polyaniline monolayer self-assembled on hydroxyl-terminated surfaces[J]. Langmuir,2001,17: 2556-2559.
    174 Tian T, Jiang D, Zhang J, Lin Q. Fabrication of bioactive composite by developing PLLA onto the framework of sintered HA scaffold[J]. Materials Science and Engineering C,2008,28:51-56.
    175 Gibson I R, Best S M, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite[J]. Journal of Biomedical Materials Research, 1999,44:422-428.
    176 Tang X L, Xiao X F, Liu R F. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method[J]. Materials Letters, 2005,59:3841-3846.
    177 Li P, Zhang F. The electrochemistry of a glass surface and its application to bioactive glass in solution[J]. Journal of Non-Crystalline Solids,1990,119: 112-118.
    178 Lin R B, Shih S M. Characterization of Ca(OH)2/fly ash sorbents for flue gas desulfurization[J]. Powder Technology,2003,131:212-222.
    179 柯国军,杨晓峰,彭红,贾非,岳洪涛.化学激发粉煤灰活性机理研究进展[J].煤炭学报,2005,30(3):366-370.
    180 Shi C, Day R L. Acceleration of the reactivity of fly ash by chemical activation[J]. Cement and Concrete Research,1995,25(1):15-21.
    181 Douglas E, Brandseter J. Preliminary study on the alkali activation of ground granulated blast-furnace slag[J]. Cement and Concrete Research,1990,20 (5): 746-756.
    182 Zhang E L, Yang K. Biomimetic coating of calcium phosphate on biometallic materials[J].Transactions of Nonferrous Metals Society of China,2005,15: 1199-1205.
    183 Hata K, Kokubo T. Growth of a bonelike apatite layer on a substrate by a biomimetic process[J]. Journal of the American Ceramic Society,1995,78(4): 1049-4053.
    184 Chen X B, Li Y C, Hodgson P D, Wen C. Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Materials Science and Engineering C,2009,29:165-171.
    185 Kim H M, Kim Y, Park S J, Rey C, Lee H M, Glimcher M J, Ko J S. Thin film of low-crystalline calcium phosphate apatite formed at low temperature[J]. Biomaterials,2000,21(11):1129-1134.
    186 李亚东,刘敬肖.仿生合成制备磷灰石涂层的工艺研究进展[J].硅酸盐学报,2005,33(6):764-770.
    187 Ma J, Wong H, Kong L B, Peng K W. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium[J]. Nanotechnology,2003,14:619-623.
    188 Vallet-Regi M, Perez-Pariente J, Izquierdo-Barba I, Salinas A J. Compositional variations in the calcium phosphate layer growth on gel glasses soaked in a simulated body fluid[J]. Chemistry of Materials,2000,12 (12):3770-3775.
    189 Papadopoulou L, Kontonasaki E, Zorba T, Chatzistavrou X, Pavlidou E, Paraskevopoulos K, Sklavounos S, Koidis P. Dental ceramics coated with bioactive glass Surface changes after exposure in a simulated body fluid under static and dynamic conditions[J]. Physica Status Solidi A,2003,198(1):65-75.
    190宋博,翁占坤,肖作江,龚晓辉,刘慎忠,隋智通.提高铝合金上电镀镍层结合强度的研究[J].表面技术,2003,32(1):25-27.
    191 Iimori Y, Kameshima Y, Yasumori A, Okada K. Effect of solid-solution ratio on apatite formation from CaSiO3 ceramics in simulated body fluid[J]. Journal of Materials Science:Materials in Medicine,2004,15:1247-1253.
    192 Jones J R, Sepulveda P, Hench L L. Dose-dependent behavior of bioactive glass dissolution[J]. Journal of Biomedical Materials Research,2001,58(6):720-726.
    193 Li P J, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Degroot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants[J]. Journal of Biomedical Materials Research,1994,28:7-15.
    194 He Q J, Huang Z L, Cheng X K, Yu J. Thermal stability of porous A-type carbonated hydroxyapatite spheres[J]. Materials Letters,2008,62:539-542.
    195 王峰,李木森,吕宇鹏,白允强.模拟体液法合成晶须状类骨纳米羟基磷灰石的研究[J].材料热处理学报,2005,26(4):8-11.
    196 Dorozhkin S V. Amorphous calcium (ortho)phosphates[J]. Acta Biomaterialia, 2010,6(12):4457-4475.
    197 Flemming R G, Murphy C J, Abrams G A, Goodman S L, Nealey P F. Effects of synthetic micro- and nano-structured surfaces on cell behavior[J]. Biomaterials, 1999,20:573-588.
    198 Sebastian B, Patrik S, Klaus von der M, Jung P. Engineering biocompatible implant surfaces Part I:Materials and surfaces[J]. Progress in Materials Science, 2013,58:261-326.
    199 Chen W T, Singer S J, Immunoelectron studies of the sites of cell-substratum and cell-cell contacts in cultured[J]. The Journal of Cell Biology,1982,95: 205-222.
    200 Baier R E, Meyer A E. Implant surface preparation[J]. The International Journal of Oral and Maxillofacial Implants,1988,3:9-20.
    201 Weiss P. Experiments on cell and axon orientation in vitro:the role of colloidal exudates in tissue organization[J]. Journal of Experimental Zoology,1945,100: 353-386.
    202 Banes A J, Tsuzaki M, Yamamoto J, Brigman B, Fischer T, Brown T, Miller L. Mechanoreception at the cellular level:The detection, interpretation, and diversity of responses to mechanical signals[J]. Biochemistry and Cell Biology, 1995,73:349-365.
    203 Raynaud S, Champion E, Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio Ⅱ. Calcination and sintering[J]. Biomaterials, 2002,23:1073-1080.
    204 Hornez J C, Chai F, Monchau F, Blanchemain N, Descamps M, Hildebrand H F. Biological and physicochemical assessment of hydroxyapatite (HA) with different porosity[J]. Biomolecular Engineering,2007,24(5):505-509.
    205 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials,2005,26(27):5474-5491.
    206 Jones A C, Arns C H, Hutmacher D W, Milthorpe B K, Sheppard A P, Knackstedt M A. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth[J]. Biomaterials,2009,30(7):1440-1451.
    207 Olivares-Navarrete R, Hyzy S L, Hutton D L, Erdman C P, Wieland M, Boyan B D. Schwartz Z. Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage[J]. Biomaterials,2010,31:2728-2735.
    208 Gittens R A, Olivares-Navarrete R, Cheng A, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells[J]. Acta Biomaterialia,2013,9(4):6268-6277.
    209 周建略,陈树滋,左长明,吉晓江.羟基磷灰石中氢键的XPS考察[J].物理化学学报,1990,6(5):629-632.
    210 Sunny M C, Ramesh P, Varma H K. Microstructured microspheres of hydroxyapatite bioceramic[J]. Journal of Materials Science:Materials in Medicine,2002,13:623-632.
    211 Amrah-Bouali S, Rey C, Lebugle A, Bernache D. Surface modifications of hydroxyapatite ceramics in aqueous media[J]. Biomaterials,1994,15:269-272.
    212 Patel N, Gibson I Ke R S, Best S M, Bonfield W. Calcining influence on the powder properties of hydroxyapatite [J]. Journal of Materials Science:Materials in Medicine,2001,12:181-188.
    213 Hats K, Kokubo T, Yamamuro T. Growth bone like apatite layer on a substrate by a biomimetic process[J]. Journal of the American Ceramic Society,1995,78: 1049-1053.
    214 赵玮,凌均棨,于世风.碳酸基团(CO_3)在牙磷灰石中的定性定量分析[J].中山医科大学学报,2002,23(5S):7-8.
    215 董利民,王晨,田杰谟,昝青峰,李兆新.类骨磷灰石的结构分析与形成机制研究[J].功能材料,2004,35(增刊):2397-2400.
    216 王勇平,廖皴,蒋矗.成骨细胞的体外培养与鉴定[J].中国组织工程研究与 临床修复,2011,15(33):6231-6234.
    217杨灵芳.类仿生溶液中电沉积羟基磷灰石涂层的研究[D].北京化工大学硕士论文,2008,58-59.
    218 Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays[J]. Journal of Immunological Methods,1983,65(1-2):55-63.
    219 Herbertson A, Aubin J E. Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures[J]. Bone,1997,21(6):491-500.
    220 Genge B R, Sauer G R,Wu L N Y, McLean F M, Wuthier R E. Correlation between loss of alkaline phosphates activity and accumulation of calcium during matrix vesicle-mediated mineralization [J]. The Journal of Biological Chemistry,1988,263(34):18513-18519.
    221 Scwhartz Z, Boyan B D. Underlying mechanisms at the bone-biomaterials interface[J]. Journal of Cellular Biochemistry,1994,56:340-347.
    222 Sinha R K, Tuan R S. In vitro analysis of the bone-implant interface[J]. Seminars in Arthroplasty,1996,7:47-57.
    223 Boyan B D, Hummert T W, Dean D D, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response[J]. Biomaterials,1996,17:137-146.
    224 Martin J Y, Schwartz Z, Hummert T W, et al. Effect of titanium surface roughness on proliferation, differentiation and protein synthesis of human osteoblast-like cells(MG63)[J]. Journal of Biomedical Materials Research,1995, 29(3):389-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700