8-烷基黄连碱同系物的合成与药理活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄连碱属异喹啉类生物碱,为黄连等传统中药的活性成分之一,黄连碱在临床上的应用极少,现代科学研究显示,黄连碱表现出很好的降血糖,降血压,抗传染性原虫和保护胃粘膜等等多种药理活性。本实验以黄连碱为先导化合物,通过在黄连碱分子C8位引入直链烷基的方法制备了不同碳链取代的8-烷基黄连碱同系物(Cop-C8-n, n= 4,6,8,10,12,),并采用相应的实验方法研究了Cop-C8-n的体外抗菌活性,体内外降糖活性和体内毒性。实验方法与结果如下:
     1.利用黄连中黄连碱硫酸盐溶解度的差异,通过一系列处理,反复在乙醇中重结晶,成功制备了黄连碱单体,利用聚酰胺成功分离了药根碱和表小檗碱。
     2.8-烷基黄连碱同系物的合成与鉴定
     采用格氏试剂引入烷基的方法进行中间体8-烷基二氢黄连碱的合成,对反应溶剂进行优选,最后以THF为溶剂顺利制备了不同碳数烷基特别是长链烷基取代的cop-C8-n。合成化合物的分子结构分别通过1H NMR和13C NMR等方法进行了确认。
     3.8-烷基黄连碱同系物的体外抗菌活性
     抑菌圈法研究了5种微生物(包括G+菌,G-菌和真菌)对Cop-C8-n的敏感性,并采用比浊法测定了5种敏感微生物的MIC值。实验结果显示,G+菌和真菌对Cop-C8-n敏感性明显强于G-菌;Cop-C8-n的抗菌活性规律为:在黄连碱C8位接入烷基后抗菌活性随烷基碳数的增加而提高,但当烷基碳数>8时,cop-C8-n的抗菌活性则随烷基碳数的增加而下降,即8-辛基黄连碱(Cop-C8-8)在同系物中表现出最高抗菌活性。
     4.8-烷基黄连碱同系物与溶菌酶的作用机制进行研究
     应用荧光猝灭法对8-烷基黄连碱同系物与溶菌酶的作用机制进行研究。研究发现,黄连碱同系物对溶菌酶的内源性荧光产生了极强的猝灭作用,通过测定不同温度下的猝灭常数,表明猝灭作用过程既有静态猝灭又有动态猝灭,同时热力学参数通过计算得出黄连碱同系物与溶菌酶的结合作用力主要为疏水作用力。随着烷基链的增长溶菌酶的紫外吸收逐渐下降,而在荧光分析中,室温下溶菌酶与Cop-C8-8的结合位点为2以及结合常数为206.3×105,都显著高于其它物质,与抑菌结果一致
     4.8-烷基黄连碱的体外和体内降糖活性
     采用与人肝细胞表型相似的HepG2细胞,检测24 h后培养液中葡萄糖消耗量,用MTT法监测细胞增殖的情况,研究了8-烷基黄连碱同系物在体外对细胞糖代谢和细胞增殖的影响。8-烷基黄连碱同系物在葡萄糖浓度(10 mmol/L)状态下可使HepG2细胞的葡萄糖消耗量有不同程度的增加,其中以8-已基黄连碱最为显著。8-烷基黄连碱同系物对HepG2细胞的增殖有显著的抑制作用。通过对昆明小鼠尾部静脉注射四氧嘧啶获得实验性糖尿病模型,将糖尿病小鼠分为若干组,黄连碱及8-烷基黄连碱及二甲双胍灌胃治疗15天,并检测其血糖值、糖耐量、血清中SOD和MDA等含量变化。结果显示,经过黄连碱及其同系物和二甲双胍的治疗后,小鼠的血糖值和糖耐量得到改善。模型小鼠在治疗前,其血清中MDA含量高于正常水平,SOD活力低于正常水平,经15天黄连生物碱灌胃治疗后,药物组的血清SOD活性明显升高,MDA含量明显下调。说明黄连生物碱及其同系物可提高糖尿病小鼠机体SOD活性,清除自由基,抑制脂质过氧化。8-己基黄连碱是具有一定潜力的降糖先导化合物。
     5.8-烷基黄连碱同系物的体内毒性。
     昆明种小鼠为实验动物模型,采用改良寇氏法测定了8-烷基黄连碱同系物的LDso值,并以昆明小鼠为实验动物,经小鼠皮下注射,初步确定了8-烷基黄连碱同系物的急性毒性,实验结果表明,接入短链烷基后8-烷基黄连碱同系物的LD50值与其先导化合物盐酸黄连碱比较大幅度减小,即毒性大幅增加。但随着接入烷基碳数的增加,8-烷基黄连碱同系物的LD50值随之增加,即毒性逐步下降。8-月桂基黄连碱有几乎和黄连碱的毒性相当。
The isoquinoline alkaloids coptisine, is an important active component of Rhizoma Coptidis, and seldom used in clinic. Modern scientific research indicated that coptisine has not only antimicrobial activity in vitro and in vivo, has hypoglycemic antioxidant, Gastric-Mucous Membrane Protection anti-diabetic and Antibacteria Activity To increase the pharmaceutica activity of coptisine 8-alkylcoptisine homologues with seriate different lipophilic property were synthesized in our laboratory by introducing different length alkyl at C8 position, some pharmacological effects of 8-alkyl-coptisine homologues were studied including the antimicrobial activity, glucose consumption effect and toxicity. The methods and results are as follows:
     1. The synthesis and molecular structure identification of 8-alkyl-berberine homologues
     The synthesis approaches to 8-alkyl-dihydro coptisine were carried out in tetrahydrofuran. The result showed that the highest recovery of the compound had been achieved when synthesized in tetrahydrofuran. The structure of 8-alkyl-coptisine homologues synthesized was affirmed with,1H NMR and 13C NMR.
     2. The antimicrobial activity of 8-alkyl- coptisine homologues in vitro
     The sensitivity of 5 microorganism come from G+ bacteria, G- bacteria and fungus to 8-alkyl- coptisine homologues respectively were evaluated by inhibition zone method and MICs of 8-alkylcoptisine homologues against 5 sensitive microorganisms were determined by turbidimetric method respectively.
     The result showed that G+ bacteria and fungus were more sensitive than G- bacteria. The antimicrobial activity increased as the length of aliphatic chain elongated and then decreased gradually when the alkyl chain exceeded 8 carbon atoms.8-octyl- coptisine showed the highest antimicrobial activity among all compounds.
     3. The antimicrobial mechanism of 8-alkyl-berberine homologues in vitro
     The mechanism of the interactions of coptisine analogues with lysozyme was studied by fluorescence quenching method. The result had revealed that there was a strong fluorescence quenching effect of coptisine analogues binding to lysozyme. The quenching constants of the synthesized compounds with lysozyme were measured and calculated at different temperatures. The data had indicated both dynamic and static quenchings were involved in the quenching process. The thermodynamic parameters of Gibbs free energy change(ΔG), Enthalpy change(ΔH), Entropy change(ΔS) were calculated. NegativeΔG value(ΔG<0) had found the interactions were spontaneous; PositiveΔH value(ΔH>0) had showed the benefit to the binding. UV absorption of lysozyme was more negatively affected by a longer alkyl chain. Cop-C8 had the highest binding constant which is 206.3×105 and two binding sites which is higher than othersbility to whole cells of B. subtilis (G+) and E. coli (G-) is nearly same while same compound.
     4. investigate the glycometabolism of 8-Alkylberberine in vitro
     To investigate the glycometabolism of 8-Alkyl coptisine in vitro. HepG2 cell s similar to human hepatic cells were used to test the glucose consumption (GC), MTT assay was used to monitor the proliferation of the HepG2 cells, The results indicated that In moderate high glucose concentration (10 mmol/L), the amounts of Glucose consumption of 8-hexyl coptisine is the highest by Glucose- consumption test in vitro. Glucose-Lowering Effect increased as the length of the aliphatic chain increased and we discovered the Glucose-Lowering Effect decreased when the length of the aliphatic chain exceeded six atoms,while a long aliphatic chain is beneficial for Glucose-Lowering Effect of HepG2. 8-hexyl Coptisine is a potential Hypoglycemic leading compound
     8-Alkyl coptisine could effectively decrease the blood glucose of the mouse t rel. It could aslo improve the glucose tolerance, body weight and food intake of diabetes rats. Moreover, 8-Alkyl coptisinein had ability to regulate the level of SOD, MDA and GSH-Ps in the secrum.
     5. Preliminary study on toxicity of 8-alkyl coptisine homologues in vivo
     With kuming mouse o rats as animal model, the LD50 was determined to evaluate the toxicity of8-alkylcoptisine according to Karber, The route of administration is aintraperitoneal injection..inject 4ml drug one mouse every day according to different concentrations and groups, Result showed that the toxicity of 8-alkyl coptisine derivatives was stronger than that of coptisine. However, by elongating the aliphatic chain, toxicity decreased gradually.
引文
[1]于俊林,杨文娣.小檗碱的植物资源[J].中草药,2005,36(9):1434-1436
    [2]潘清平.黄连[M].北京:中国中医药出版社,2001,3-4.
    [3]江苏新医学院编.中药大辞典[M].上海:上海科学技术出版社.1996:2024-2025
    [4]W.-J. Kong, Y.-L. Zhao, X.-H. Xiaol, Z.-L. Li, C. Jinl and H.-B. LiInvestigation of the anti-fungal activity of coptisine onCandida albicans growth by microcalorimetry combinedwith principal component analysisjournal of Applied Microbiology 2009 4, (107) 1072-1080
    [5]Yang, Y., Ye, X. L. and Li, X. G. (2007) Anti-microbial effect offour alkaloids from Coptidis Rhizoma. Lishizhen Med MaterMed Res 2004 18,3013-3014.
    [6]郑鸿艳.原小檗碱类生物碱作用差异机理研究。天津医科大学硕士论文[C]天津17
    [7]彭琪黄连碱保留灌肠治疗小儿秋季腹泻58例疗效观察[J]儿科药学2001 Vol.7 No.2P.41
    [8]Wen-Hua Chen,* Yong Qin, Zongwei Cai, Chi-Leung Chan, Guo-An Luoand Zhi-Hong Jiang,* Spectrometric studies of cytotoxic protoberberine alkaloids binding to double-stranded DNA[J] Bioorganic & Medicinal Chemistry 2005,13 (5):1859-1 866.
    [9]田边宏树[日]国际中医中药杂志[J]2006年3月第28卷第2期
    [10]叶菲,申竹芳,谢明智.中药黄连及其复方对实验动物血糖的影响。[J]中国实验方剂学杂志,1999,5(3):23
    [11]Zhou L, Yang Y, Wang X, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism,2007,56:405-412.
    [12]Lee YS, Kim WS, Kim KH, et al。Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states。 Dia2betes,2006,55:2256-2264.
    [13]谷卫,曾文衡,胡海英.小檗碱3T3-L1脂肪细胞脂联素表达的影响.中国中药杂志,2005,30:286-288
    [14]郑鸿艳.原小檗碱类生物碱作用差异机理研究。天津医科大学硕士论文[C]天津17
    [15]Hyun Ah Jung, Na Young Yoon, Hyun Ju Bae, Byung-Sun Min1, and Jae Sue Choi. Inhibitory Activities of the Alkaloids from Coptidis Rhizoma againstAldose Reductase J, Arch Pharm Res Vol 31, No 11,2008,11 (31) 1452-1456
    [16]俞蕴莉卢守四刘李刘晓东,黄连中5种小集碱型生物碱在糖尿病小鼠体内的药动学中 国药科大学学报2008,39(6):526-529
    [17]朱家颖,李学刚黄连生物碱降糖活性协同作用研究。[J]时珍国医国药2010 21,(9):2282-2283
    [18]Hiroyuki HIRANO, Eriko OSAWA, Yumiko YAMAOKA, and Toshio YOKOI* Gastric-Mucous Membrane Protection Activity of Coptisine Derivatives Biol. Pharm. Bull.2001, 24(11) 1277-1281
    [19]Hiroyuki HIRANO, Eriko OSAWA, Yumiko YAMAOKA, and Toshio YOKOI* Gastric-Mucous Membrane Protection Activity of Coptisine Derivatives Biol. Pharm. Bull.2001, 24(11) 1277-1281
    [20]Hirano H黄连对胃粘膜的保护作用[英].国外医学中医中药分册,1998,20(6)31
    [21]Ching Lin,* Lean Teik Ng, Fen-Fang Hsu,* Den-En Shieh and Lien-Chai Chiang ctotxic effectd of coptis chinensis and epimedium sagittatum extracts and their major constituents(berberine coptisine and icariin) on hepatomaand leukaemia leukaemia cell growth [J]cnical and Experimental Pharmacology and Physiology (2004) 31 65-66
    [22]Schmeller, T., Latz-Bruning, B., Wink, M., Biochemical activitiesof berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbovires. Phytochemistry 1997;44(2):257-66.
    [23]Lucia Rackova', Magdale na Ma'jekova', Daniela Kos'lova and Milan S tefekAntiradical and antioxidant activities of alkaloids isolated fromMahonia aquifolium. Structural aspectsBioorganic & Medicinal Chemistry 2004 (12) 4709-4715
    [24]刘菊妍,刘小文,奚林明.寒凉药与温热药对吗啡依赖小鼠SOD活性和MDA含量的影响.江苏中医,1997,18(7):37-38
    [25]Ro JS, Lee SS, Lee KS, Lee MK. Inhibition of type A monoamine oxidase by coptisine in mouse brain.Life Sci.2001 70(6):639-45.
    [26]IwasaK, KamigauchiM, SugiuraM, eta.l Antimicrobial activity of some 13-alkyl substituted protoberberinium salts [J]. PlantaMed,1997,63:196-198.
    [27]IwasaK, Lee DU, Kang SI, et a.l Antimicrobial activity of8-alkayl and 8-phenyl-substituted berberines and their 12-bromo derivatives [J]. JNatProd, 1998,61:1150-
    [28]Park KD, Lee JH, Kim SH, et a.l Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents [J]. BioorgMed ChemLett,2006, 16:3913-3916.
    [29]Yang Y, Ye XL, Li XG. Synthesis and antimicrobial activity of 8-alkylberberine derivatives with a long aliphatic chain [J]. PlantaMed,2007,73:602-604
    [30]. Yang Y, Ye XL, Li XG. Synthesis and antimicrobial activity of 8-alkylberberine derivatives with a long aliphatic chain [J]. PlantaMed,2007,73:602-60
    [31]Kinuko Iwasa, Dong-Ung Lee, So-Im Kang, et al. Antimicrobial Activity of 8-Alkyl-and 8-Phenyl-Substituted Berberines and Their 12-Bromo Derivatives [J]. J. Nat. Prod.1998,61:1150-1153.
    [32]Hong SW, Kim SH, Jeun JA, et al. Antimicrobial activity of 9-0-acyl-and 9-0-benzoyl-substituted berberrubines[J]. Planta Med.,2000,66(4):361-363
    [33]K Iwasal,M Kamigauchil, M Ueki, et al. Antibacterial activity and structure-activity relationships of berberine analogs[J]. Eur. J. Med. Chem. 1996,31:469-478.
    [34]杨勇.8-烷基小檗碱同系物的合成与药理活性[C].西南大学博士论文
    [35]Kinuko Iwasa, Dong-Ung Lee, So-Im Kang, et al. Antimicrobial Activity of 8-Alkyl-and 8-Phenyl-Substituted Berberines and Their 12-Bromo Derivatives [J]. J. Nat. Prod.1998,61:1150-1153.
    [1]吴立军.天然药物化学[M].北京:人民卫生出版社,2004,365-366.
    [2]应懿,何志红,周世文,汤建林,杨雪,王璐,测定黄连中5种生物碱含量的高效液相色谱法[J].第三军医大学学报,2007,5:843
    [3]游元元,王天志,陈 璐,吴维碧 草连生物碱成分的研究[J]华西药学杂志2005,20(6):505·506
    [4]杨异卉黄连化学成分的分离与鉴定[J]黑农江中医药2009,22,(4)56
    [5]李峰黄连的化学成分及质量标准研究[C].四川大学硕士论文2004,17
    [6]杨义芳,孔德云中药提取分离手册[M]化学工业出版社,北京2008,5,189
    [7]薛杨,吴唯,聚酰胺树脂的层析分离应用[J].化工新型材料,2005,4,50
    [8]冯艳明,徐康明,从生产盐酸黄连素的母液中提取分离盐酸药根碱[J].中国中药杂志,1989,14(1):
    [9]李峰,黄连的化学成分及质量标准研究[C].四川大学硕士论文2004,17
    [10]陶剑虹,张晓琦,叶文才,等.苏元胡的生物碱成分研究[J].中药材,2005,28(7):556-557
    [11]马兆堂,杨秀伟,钟国跃黄连解读汤中1个新的黄酮苷[J].中国中药杂志,2009,5(34) 156
    [1]Ye XL, Li XG, Yuan LJ, He HM Effect of the surface activityon the antibacterial activity of octadecanoyl acetal sodium sulfiteseries. Colloids Surf A Physicochem Eng Aspects 2005,268:85-89
    [2]Yang Y, Ye XL, Li XG, Zhen J, Zhang BS, Yuan LJ Synthesis and antimicrobial activity of 8-alkylberine derivatives with a long aliphatic chain. Planta Medica 2007,73:602-604
    [3]Wang LJ, Ye X. L, Chen Z, Li XG, Sun QL, Zhang BS, Cao XG, Yu G (2009) Synthesis and antimicrobial activity of 3-octyloxy-8-alkyljatrorrhizine, derivatives. Journal of Asian Natural Products Research.2009,11:365-370
    [4]Iwasa K., Nishiyama Y, Ichimaru M, Moriyasu M, Kim HS, and WatayaY etal. structure-activity relationships of Quaternary Protoberberinealkaloids having an antimalarial activity Eur. J. Med. Chem.1999.34:1077.
    [5]杨勇,叶小利,郑静,张保顺,等.8-烷基小檗碱的合成[J].有机化学,2007,11,1438.
    [6]Park K S, Kang K C, Kim K Y, et al. HWY-289, a novel semi-synthetic protoberberine derivative with multiple target sites in Candida albicans[J]. J. Antimicrob. Chemother.,2001,47(5):513~519.
    [1]杨勇叶小利李学刚4种黄连生物碱的抑菌作用时珍国医国药[J].2007,12,3013-3014
    [2]Kong WJ,Zhao YL, Xiao XH,Li ZL. Investigation of the anti-fungal activity of coptisine onCandida albicans growth by microcalorimetry combinedwith principal component analysis.Journal of Applied Microbiology2009,107:1072-1080
    [3]Iwasa K, Lee DU, Kang SI, et al. Antimicrobial activity of 8-alkyl-and 8-phenyl-substituted berberines and their 12-bromo derivatives [J]. J Nat Prod,1998,61(9):1150-1153.
    [4]Iwasa K, Kamigauchi M, Sugiura M, and Nanba H.Antimicrobial activity of some 13-alkyl substituted protoberberinium salts.Planta Medica.1997.63:196
    [5]Iwasa K,Lee DU,Kang SI, and Wiegrebe W. (.Antimicrobial activity of 8-alkyl- and 8-phenyl-substituted berberines and their 12-bromo derivatives .J.Nat. Prod.1998 61:1150
    [6]PArk KD, Lee JH,Kim SH,Kang,TH,Moon JS, Kim SU. Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents Bioorg. Med. Chem. Lett.200616:3913.
    [7]yang Y, Ye XL, Li XG, Zhen J, Zhang BS, Yuan LJ Synthesis and antimicrobial activity of 8-alkylberine derivatives with a long aliphatic chain. Planta Medica 2007,73:602-604
    [8]Wang Li-jun, Ye Xiao-li, Li Xue-gang, et al.Synthesis and Antimicrobial Activity of 3-Alkoxyjatrorrhizine Derivatives. Planta Medica,2008,74(3),290-292
    [9]Wang Li-jun, Ye Xiao-li, Li Xue-gang, et al.Synthesis and antimicrobial activity of 3-octyloxy -8-alkyljatrorrhizine derivatives. Journal of Asian Natural Products Research
    [10]徐文方药物化学实验方法学[M]人民卫生出版社2010,6
    [11]Ye XL, Li XG, Yuan LJ, He HM (2005) Effect of the surface activityon the antibacterial activity of octadecanoyl acetal sodium sulfiteseries. Colloids Surf A Physicochem Eng Aspects 268:85-89.
    [1]王佃亮.重组人溶菌酶研究进展[J].中国生物工程杂志.2003.23(9):59-62
    [2]张国文,陈秀霞,郭金报.荧光法研究橙皮苷、淫羊藿苷与溶菌酶的作用[J].光谱学与光谱分析,2009,29(1),184-187
    [3]张国文,王安萍.荧光法研究中药功能因子山奈酚与溶菌酶的相互作用[J].南昌大学学报,2009,33(1),46-49
    [4]Jeffrey S N, John J R, Bruce S Z. Carboxyl Terminal Tyrosine Metabolism of Alpha Tubulin and Changes in cell shape:Chinese Hamster Ovary cells[J]. Biochem Bioph Res Co,1981,100:1642-1650.
    [5]张宗岩.溶菌酶及其应用.食品科学.1995,16(9):59-61
    [6]朱奇,陈彦.溶菌酶及其应用.生物学通报,1998,33(10).9-10..
    [7]谭平,张友玉,文艳清.荧光猝灭法研究溶菌酶与白藜芦醇苷的相互作用[J].湖南师范大学自然科学学报.2009(01).93-96
    [8]崔凤灵.同步荧光法测定生物样品中蛋白含量的研究[J].光谱学与光谱分析.200929(09):2531-2534).
    [9]韩英强,罗登柏,詹国庆.血清蛋白与4,5-二溴荧光素相互作用及其分析应用的研究[J].氨基酸与生物资源.2003,25(1):35-36
    [10]黄鹤勇.荧光光谱法研究咖啡因与肌红蛋白的相互作用[J].光谱学与光谱分析.200929(10):2798-2802
    [11]Chen Guozhen, Huang Xianzhi, Zheng Zhuzi, et al.The Methods of Fluorescence Analysis, Second ed [M]. Beijing:Science Press,1990.112.
    [12]Lakowicz J R. Principles of Fluorescence Spectroscopy (Second ed.) [M]. New York Plenum Press,1999.237.
    [13]M.R. Ertink, C. A. Ghiron, Fuorescence quenching studies with proteins[J]. Anal. biochem.1981.114,199-157
    [14]D. C. Carter, B. Chang, J. X. Ho, K. Keeling, Z. Krishnassmi, Preliminary crystallographic studies of four crystal forms of serum albumin[J]. Eur.J. Biochem. 1994; 226,1049-1052.
    [15]Kang J, Liu Y, Xie M X, et al. Interactions of human serum albumin with chlorogenic acid and ferulic acid[J]. Biochimicaet Biophysical Acta,2004,1674: 2052214.
    [1].殷峻,胡仁明,唐金凤,等.小檗碱的体外降糖作用[J].上海第二医科大学学报,2001,21(5):425-427
    [2].Tang L Q, Wei W, Chen L M, et al. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats[J]. Journal of Ethnopharmacol,2006,108:109-115.
    [3].高从容,张家庆,黄庆玲.黄连素增加胰岛素抵抗小鼠模型胰岛素敏感性的实验研究[J].中国中西医结合杂志,1997,17:162-164.
    [4].石利天,张瑞增.黄连素治疗68例2型糖尿病的临床评价[J].山西临床医药,2000,9(3):181-182
    [5]Hyun Ah Jung, Na Young Yoon, Hyun Ju Bae, Byung-Sun Min1, and Jae Sue Choi, Arch. Pharm. Res.,2008 (31),1452
    [6]Arakawa K, IshiharaT, Auto M, et al. Action of Novel Antidiabetic Thiazolidinedione, T2174, in Animals of Non2insu2 Iin2dependent (NIDDM) and in Cultured Muscle Cells. Br J Pharmacol, 1998,125:429-36
    [7].D.L.斯佩克特,R.D.戈德曼,L.A.莱因万德主编,黄陪堂等译.细胞试验指南[M].北京:科学出版社,2001
    [8]殷峻,胡仁明,唐金凤,李凤英,陈名道,陈家伦.小檗碱的体外降糖作用[J].上海第二医科大学学报,2001,5(425)
    [9]郭丽民,张汝学,贾正平,李茂星,王娟,尹强.地黄寡糖对HepG2细胞增殖及胰岛素抵抗的作用.中国中药杂志,2007,32(13):1328-1332.
    [10]Qiu Chen, Yongpeng Xia, Zongyin Qiu Effect of ecdysterone on glucose metabolism in vitro.Life Sciences 2006,781108-1113
    [11].陈其明,谢明智.黄连及小檗碱降血糖作用的研究[J].药学学报,1986,21(6):401
    [12].陈其明,谢明智.小檗碱对正常小鼠血糖调节的影响[J].药学学报,1987(3):161
    [13]].陈德元.黄连素治疗2型糖尿病50例观察[J].现代中西医结合杂志,2001,10(2):138-139
    [14].周新,涂植光主编.临床生物化学和生物化学检验.第三版.北京.人民卫生出版社,2004,84-85
    1.李寿祺.毒理学原理与方法[M].成都:四川大学出版社,2003:77-83.
    2.陈光亮,张秀荣,王钦茂,等.黄连解毒汤药理研究进展[J].安徽中医学院学报,2001,20(5),67-69.
    3.高晓山,陈馥馨,杨守业等.黄连致溶血性黄疸毒性及其防治研究综合报告[J].中国中药杂志,2002,27(1):70-74.
    4曾美怡,李敏民. 国外有关小檗碱毒性反应的报道[J]. 中国新药与临床药理,1995,6(3):47-48.闫心丽,李佐静,孙也之,等.利用SAS 9.0对卤代苯酚类化合物小鼠口服LD50定量构效关系的研究[J].辽宁大学学报(自然科学版),2007,34(4):361-365.
    5金一和,黄德生,刘延令.利用线性回归诊断分析芳香族化合物结构参数和小鼠LD50构效关系[J].数理医药学杂志,2004,14(2):126-129.
    6吴堃,童曾寿,戴昌世,等.香豆素同系物的合成及其活性与相对亲脂水性的关系[J].药学学报,1993,28(4):266-27.
    7. Y. Yang, X. L. Ye, X. G. Li, J. Zheng, B. S. Zhang, and L. J. Yuan, Planta Med. (2007)73, 602.-604

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700