多元氢键自组装热回复性超分子聚合物的合成与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以氢键联接小分子或低聚物自组装形成物理网状结构超分子弹性体聚合物概念为基础,设计与合成了新型热回复性多元氢键超分子聚合物。采用简便的一锅法反应成功制备了一系列由酰胺低聚物及其封端产物分子链间通过多元氢键联接自组装形成的氢键超分子聚合物,对其分子结构、分子量及其分布、机械性能、结晶与熔融、热稳定性、热回复与加工性能、类橡胶弹性、动态流变性能等进行了详细表征。本论文提出了多元氢键超分子聚合物的相转变模型,并对其分子链动力学、氢键热动力学和自组装机理进行了深入探讨。
     分别通过二聚脂肪酸(DFA)和乙二胺(EAH)的酰胺缩聚反应和对甲苯磺酰异氰酸酯(PTSI)的封端反应,并改变二聚脂肪酸种类(BX-1和BX-4)和异氰酸酯含量,成功制备了一系列不同配方的酰胺低聚物BX-1-EAH和PTSI封端的酰胺低聚物BX-1-EAH-PTSI和BX-4-EAH-PTSI,产物在冷却过程中,低聚物分子链之间通过多元氢键联接自组装形成物理网状结构的氢键超分子聚合物。由1H-NMR和FT-IR分析证实,在氢键超分子聚合物的制备中成功发生了酰胺化反应和异氰酸酯的封端反应,且最终形成的氢键超分子聚集体中存在大量分子链上酰胺基团、磺酰脲基团间形成的C=O……NH、S=O……NH多元氢键,表明超分子聚合物具备氢键物理网状结构。GPC和ESI-TOF-MS测试表明,酰胺低聚物的分子量较低,且具有较宽的分子量分布,推断三种低聚物的聚合度低于10。
     氢键超分子聚合物具有优良的机械性能,拉伸强度最高达13.2MPa,球压痕硬度最高为20.3N/mm2。当乙二胺与二聚酸的摩尔比为1.2:1时,氢键超分子聚合物得到最高的拉伸强度和断裂伸长率。以BX-4为原料的氢键超分子聚合物不溶凝胶含量为3.2%,产生更多的支化交联微区,拥有更高的拉伸强度、模量和硬度。氢键超分子聚合物具有氢键物理交联网络与化学交联微区并存的结构形式,DMA结果表明氢键超分子聚合物在低温下(<-30℃)处于玻璃态,呈现出硬塑料的性质;在10℃左右发生了玻璃化转变过程,产物在Tg和室温之间呈现出高弹态,在室温时体现为橡胶弹性性质。
     氢键超分子聚合物熔点低,样品熔点范围在88-100℃;结晶度小,熔融焓(ΔHm)值范围在8.5-12.5J/g;热稳定性好,热失重10%的分解温度(Td10)均在340℃以上。产物具有良好的热回复性,可采用通用熔融成型加工设备对材料进行成型加工。氢键超分子聚合物具有延迟回复性能的软橡胶性质,在玻璃化温度(Tg)和熔融温度(Tm)之间表现为类橡胶弹性。氢键超分子聚合物熔体为具有很高屈服应力值的非线性Bingham流体。氢键超分子聚集体具有动态层状有序结构相和化学交联微区不均匀分布在三维网状结构无序相中的多相结构,在Tc1≈90℃下发生类弹性固-液相变,在Tc2处发生液-液转变的微相分离。氢键超分子聚合物的松弛过程是物理作用的缔合-解缔合机理和蠕动机理共同影响的结果。平均松弛时间均随着温度的升高而不断缩短,零剪切粘度也随着温度的升高而不断降低。
     高温下酰胺低聚物分子链之间的氢键密度很低,体系表现为低粘度液体;降温过程中,氢键密度增加,分子链之间通过多元氢键作用自组装,分子链有序性增加;在90℃左右,体系粘度、储存模量突然增加,氢键超分子聚合物发生液-固转变;由90℃继续冷却,三维氢键网络中形成少量层状动态有序结构,室温时氢键超分子聚合物体现为粘弹性固体,具有一定结晶性和良好的机械性能。在升温、降温的过程中,物理交联网状结构破坏与重组,氢键自组装过程具有可逆性。
In this thesis, new thermorebersible multiple hydrogen-bonding supramolecualr polymers are designed and synthesized from the concept that multiple hydrogen-bonding supramolecular elastomers with physical network structure are assembled from small molecules or oligomers associated by hydrogen bonds. Hydrogen-bonding supramolecular polymers are successfully prepared by one-pot synthesis from a series of amide and end-capped amide oligomer assembled by multiple hydrogen bonds between chains. Molecular structure, molecular weight and distribution, as well as mechanical, crystallization and melting, thermal decomposition, thermoreversible and processing, rubber-like, dynamical rheological properties are well characterized. The mode for phase transition, chain dynamics, hydrogen-bonding thermodynamics and assembling mechanism of multiple hydrogen-bonding supramolecular polymers are proposed and discussed in this thesis.
     Amide oligomer BX-1-EAH and end-capped amide oligomers BX-1-EAH-PTSI and BX-4-EAH-PTSI are synthesized from the condensation polymerization of dimer fatty acid (DFA) and anhydrous ethylene diamine (EAH) and then end-capped reaction by adding to p-toluenesulfonyl isocyanate (PTSI) with variable kinds of dimer fatty acid (BX-1 and BX-4) and contents of isocyanate. At cooling of products, oligomer chains assemble to physical network hydrogen-bonding supramolecular polymer by multiple hydrogen-bonding connections between chains.1H-NMR and FT-IR analyses conform that amidation reaction and isocyanate end-capped reaction are successful and multiple hydrogen bonds of CO……NH, S=O……NH between amide and sulfonyl urea groups exist in the hydrogen-bonding supramolecular assembly which indicates the hydrogen-bonding physical network structure of supramolecular polymer. GPC and ESI-TOF-MS characterization show that amide oligomers have low molecular weight and wide molecular weight distribution and polymerization degree of the three oligomers is below 10.
     Highest ensile strength 13.2 MPa and ball indentation hardness 20.3 N/mm2 indicate that hydrogen-bonding supramolecular polymers have excellent mechanical properties. When molar ratio of EAH and DFA is 1.2:1, tensile strength and elongation reach the highest value. Hydrogen-bonding supramolecular polymer with BX-4 as starting materials has 3.2% indissoluble gel and more chemical crosslinking micro-region from branching, and has higher tensile strength modulus and hardness. Physical network and chemical crosslinking micro-region coexist in hydrogen- bonding supramolecular polymers. DMA results indicate that at low temperature (<-30℃) hydrogen-bonding supramolecular polymers behave like hard plastic at glass state and the glass transition is at around 10℃. Products show high-elastic properties between Tg and room temperature and rubber-like behavior at room temperature.
     DSC and WXRD results indicate the low melt temperature (88-100℃) and degree of crystalline (△Hm= 8.5-12.5J/g); TGA show the excellent thermal stability of supramolecular polymer and the 10% decomposition temperature (Td10) is> 340℃. The materials have good thermoreversible behavior, hence the moulding process can be operated on general melting mouldling processing equipments. Force-free tensile test indicates that the hydrogen-bonding supramolecular polymers behave like soft rubber with delayed recovery and show rubber-like elasticity between Tg and Tm.
     Rotational rheological characterization indicates that the melt of hydrogen- bonding supramolecuar polymer behaves like non-linear Bingham flow with very high yield stress. Hydrogen-bonding supramolecular assembly has multi phases including dynamic lamellar ordered phase and 3D network disordered phase with heterogeneous chemical crosslinking micro-regions. Rubber-like solid-liquid transition is at Tc1≈90℃, and liquid-liquid transition of micro-phase separation is at Tc2. Associate-disassociate mechanism of physical interaction and reptation mechanism have cooperatively effect on the relaxation of hydrogen-bonding supramolecular polymer. The mean time of relaxation decreases and the zero shear viscosity with the increase of temperature.
     At high temperature, the density of hydrogen bonds between oligomer chains is very low, and the system behaves like liquid with low viscosity; at cooling, the hydrogen-bonding density increases, molecular chains assemble by multiple hydrogen-bonding and the order degree of chains increases; viscosity and storage modulus of the system suddenly increases at around 90℃, and the supramolecular polymer has liquid-solid transition; below 90℃, a few dynamic ordered lamellar structures form in the 3D hydrogen-bonding networks, and until room temperature, hydrogen-bonding supramolecular polymer behaves like viscoelastic solid with low crystalline and good mechanical properties. At the heating and cooling cycles, physical cross-linking networks are destroyed and reformed, therefore, the assembling process from hydrogen-bonding is reversible.
引文
[1]Pedersen B C. J. The Discovery of Crown Ethers (Nobel Lecture) [J]. Angewandte Chemie International Edition in English.,1988,27 (8):1021-1027
    [2]J-M Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules, Supramolecules, and Molecular Devices (Nobel Lecture) [J]. Angewandte Chemie International Edition in English,1988,27(1):89-112
    [3]Cram B D. J. The Design of Molecular Host, Guest, and Their Complexes (Nobel Lecture) [J].Angewandte Chemie International Edition in English,1988,27 (8):1009-1112
    [4]Staudinger H. Die Hochmolekuaren Organischen Verbindungen [M].1932 Springer, Berlin, Heidelberg, New York
    [5]Jiang M., Li M., Xiang M. and Zhou H. Interpolymer Complexation and Miscibility Enhancement by Hydrogen Bonding [J]. Advances in Polymer Science,1999,146-196
    [6]Binder W. H., Zirbs R. Supramolecular Polymers and Networks with Hydrogen Bonds in the Main-and Side-Chain [J]. Adv Polym Sci,2007,207:1-78
    [7]Amstrong G, Buggy M. Review Hydrogen-bonded Supramolecular Polymers:A Literature Review [J]. Journal of Materials Science,2005,40:547-559
    [8]Ajayaghosh A., George S. J. Hydrogen-Bonded Assembies of Dyes and Extended π-Conjugated Systems [J]. Top Curr Chem,2005,258:83-118
    [9]ten Cate A. T., Sijbesma R. P. Coils, Rods and Rings in Hydrogen-Bonded Supramolecular Polymers [J]. Macromolecular Rapid Communications,2002,23 (18):1094-1112
    [10]Sherrington D. C., Taskinen K.A. Self-Assembly in Synthetic Macromolecular Systems via Multiple Hydrogen Bonding Interactions [J]. Chem. Soc. Rev.,2001,30:83-93
    [11]Steed J. W.赵耀鹏,孙震译.超分子化学[M].北京:化学工业出版社,2006,1-23
    [12]Brunsveld L., Folmer B. J.B., Meijer E.W. Supramolecular Polymers [J]. MRS Bulleton, 2000,4:49-53][Brunsveld L., Folmer B. J.B., Meijer E.W., Sijbesma R. P. Supramolecular Polymers [J]. Chem. Rev.,2001,101 (12),4071-4097
    [13]Bosman A. W., Brunsveld L., Folmer B. J.B., Sijbesma R. P., Meijer E.W. Supramolecular Polymers:From Scientific Curiosity to Technologyical Reality [J]. Macromol. Symp.,2003,201:143-154
    [14]Matrtin, R. B. Comparisons of Indefinite Self-Association Models [J]. Chem. Rev.,1996, 96 (8):3043-3064
    [15]Flory P. J. Principles of Polymer Chemistry [M], Conell University Press:Ithaca, New York,1953
    [16]Gohy J. F., Lohmeijer B. G. G, Scubert U. From Supramolecular Block Copolymers to Advanced Nano-Objects [J]. Chemistry-A-European Journal,2003,9 (15):3472-3479
    [17]Lohmeijer B. G. G., Schubert U. S. Playing LEGO with Macromolecules:Design, Synthesis, and Self-Organization with Metal Complexes [J]. Journal of Polymer Science Part A:Polymer Chemistry,2003,41 (10):1413-1427
    [18]Schubert U. S., Hochwimmer G., Spindler C. E., Nuyken O. Controlled Polymerization of Methylmethacrylate and Ethylacrylate Using Tris(4,4'-dimethyl-2,2'-bipyridine) Copper(II) Hexafluorophosphate Complexes and Aluminium Isopropoxide [J]. Polymer Bulletin,1999,43:319-326
    [19]El-ghayoury A., Schenning A. P. H. J., van Hal P. A. Weidl C. H., et al. Mettallo-Supramolecular Oligo(p-phenylene vinylene)/[60] Fullerene Architecture: Toward Functional Materials [J]. Thin Solid Films,2002,403-404:97-101
    [20]Schubert U. S., Eschbaumer C. Macromolecules Containing Bipyridine and Terpyridine Metal Complexs:Towards Metallosupramolecular Polymers [J]. Angewandte Chemie International Edition,2002,41 (16):2892-2926
    [21]Schubert U. S., Heller M. Metallo-Supramolecular Initiators for the Preparation of Novel Functional Architectures [J]. Chemistry-A European Journal,2001,7 (24):5253-5259
    [22]Gohy J. F., Lohmeijer B. G. G., Schubert U. S. Metallo- Supramolecular Block Copolymer Micelles [J]. Macromolecules,2002,35:4560-4563
    [23]吕亚非.金属-超分子聚合物的合成、结构与应用[J].功能高分子学报,2004,17(2):307-316
    [24]Stoddart F. J., Welton T. Metal-Containing Dentritic Polymers [J]. Polyhedron,1999,18 (27):3575-3591
    [25]Demus D., Goodby J., Gray G. W., Spiess H. W., Vill V. Handbook of Liquid Crystals [M], Weinheim:Wiley-VCH Verlag,1998, Vol.2B
    [26]Fox J. M., Latz T. J., Elshocht S. V., Verbiest T., et al. Synthesis, Self-Assembly, and Nonlinear Optical Properties of Conjugated Helical Metal Phthalocyanine Derivatives [J]. J. Am. Chem. Soc.1999,121:3453-3459
    [27]Ajayaghosh A., Praveen V. K.π-Orgaogels of Self-Assembled p-Phenylenes:Soft Materials with Distinct Size, Shape, and Fuctions [J]. Acc.Chem. Res.2007,40: 644-656
    [28]Hoeben F. J. M., Jonkheijm P., Meijer E. W., Schenning A. P. H. J. About Supramolecular Assembly of π-Conjugated Systems [J]. Chem. Rev.,2005,105:1491-1546
    [29]Kimura M., Muto T., Takimoto H., etc. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines [J]. Langmuir,2000,16:2078-2082
    [30]Gala P. A., Navakhun K., Camiolo S., Light M. E., Hursthouse M. B. Anion- Anion Assembly:A New Class of Anionic Supramolecular Polymer Containing 3,4-Dichloro-2,5-diamido-substituted Pyrrole Anion Dimers [J]. J. Am. Chem. Soc., 2002,124:11228-11229
    [31]Liu Y., Shi J., Chen Y., Ke C. F. A Polymeric Pseudorotaxane Constructed from Cucurbituril and Aniline, and Stabilization of Its Radical Cation [J]. Angew. Chem. Int. Ed.,2008,47:7293-7296
    [32]Li G., McGown L. B. Molecular Nanotube Agrregates of β-and γ-Cyclodextrins Linked by Diphenylhexatrienes [J]. Sience,1994,264 (5156):249-251
    [33]Gottarelli G, Spada G. P., Garbest A. In Comprehensive Supramolecular Chemistry [M]. Oxford, UK:Pergamon Press,1996, Vol.9:483-506
    [34]Kato T., Matsuoka T., Nishii M., et al. Supramolecular Chirality of Thermotropic Liquid-Crystalline Folic Acid Derivatives [J]. Angewandte Chemie International Edition, 2004,43(15):1969-1972
    [35]Gottarelli G., Masiero S., Mezzina E., Pieraccini S., et al. The Self-Assembly of Lipophilic Guanosine Derivatives in Solution and on Solid Surfaces [J]. Chem. Eur. J., 2000,6 (17):3242-3248
    [36]Giorgi T., Grepioni F., Manet I., et al. Gel-Like Lyomesophases Formed in Organic Solvents by Self-Assembled Guanine Ribbons [J]. Chemistry-A European Journal,2002, 8 (9):2143-2152
    [37]Davis J. T., Spada G. P. Supramolecular Architecutures Generated by Self-assembly of Guanosine Derivatives [J]. Chem. Soc. Rev.,2007,36:296-313
    [38]Latimer W. M., Rodebush W. H. Polarity and Ionization from the Standpoint of the Lewis Theory of Valence [J]. J. Am. Chem. Soc.,1920,42:1419-1433
    [39]Pauling L. The Nature of Chemical Bond and the Structure of Molecules and Crystals-An Introduction to Modern Structure Chemistry [M].2nd Ed.,1940, New York:Cornell Univ. Press,1940
    [40]Pimentel G. C., McClellan A. L. The Hydrogen Bond [M]. San Francisco:Freeman,1960
    [41]Atkins P. W. General Chemistry [M]. New York:Scientific American Books,1989
    [42]Zeeger-Huyskens T., Huyskens P. Intermolecular Forces-An Introduction to Modern Methods and Results [M]. Berlin:Springer-Verlag,1991
    [43]Steiner T. The Hydrogen Bond in the Solid State [J]. Angewandte Chemie International Edition,2002,41 (1):48-76
    [44]Pauling L. The Nature of Chemical Bond [M].1939, Ithaca, New York:Cornell Univ. Press,1940
    [45]Jeffrey G. A. An Introduction to Hydrogen Bonding [M].1997, Oxford, New York: Oxford University Press
    [46]Desiraju G. R. Crystal Engineering. The Design of Organic Solids [M]. Materials Science Monograph 54,1989, Amsterdam:Elsevier
    [47]Jeffrey G. A., Saenger W. Hydrogen Bonding in Biological Structures [M].1991, Berlin: Springer
    [48]Jorgensen W. L., Pranata J. Importance of Secondary Interactions in Triply Hydrogen Bonded Complexes:Guanine-Cytosine vs Uracil-2,6-Diaminopyridine [J]. J. Am. Chem. Soc.,1990,112:2008-2010
    [49]Pranata J., Wierschke S. G, Jorgensen W. L., OPLS Potential Functions for Nucleotide Bases. Relative Association Constants of Hydrogen-Bonded Base Pairs in Chloroform J. Am. Chem. Soc.1991
    [50]Sontjens S. H. M., Sijbesma R. P., van Genderen M. H. P., Meijer E. W. Stability and Lifetime of Quadruply Hydrogen Bonded 2-Ureido-4[1H]-pyrimidinone Dimers [J]. J. Am. Chem. Soc.,2000,122:7487-7493
    [51]Shetty A. S., Fischer P. R., Stork K. F. Assembly of Amphiphilic Phenylacetylene Macroeyeles at the Air-Water Interface and on Solid Surfaces [J]. J. Am. Soc.,1996,118: 9409-9414
    [52]Clegg R. S., Reed S. M., Hutchison J. E. Self-Assembled Monolayers Stabilized by Three-Dimensional Networks of Hydrogen-Bonds [J]. J. Am. Soc.,1998,120: 2486-2487
    [53]Clark T. D., Buriak J. M., Kobayashi K., et al. Cylindrical β-sheet Peptide Assemblies [J]. J. Am. Chem. Soc.,1998,120:8949-8962
    [54]Mao H. Y., Shen X. Q., Li G., et al. Novel Hydrogen-Bonded and π-π Interaction Networks Generated from the Reaction of Copper (Ⅱ) Chloride Hydrates with Heterocyclic Diimines (2,2'-Bipyridine,1,10-Phenanthroline) and Bidentate Diamine (Ethylenediamine) [J]. Polyhedron,2004,23 (11):1961-1967
    [55]Munakata M., Wu L. P., Yamamoto M., Kuroda-Sowa T., Maekawa M. Construction of Three-Dimensional Supramolecular Coordination Copper (I) Compounds with Channel Structures Hosting a Variety of Anions by Changing the Hydrogen-Bonding Mode and Distances [J]. J. Am. Chem. Soc.,1996,118:3117-3124
    [56]Aakeroy C. B., Beatty A. M., Helfrich B. A. Two Fold Interpenetration of 3-D Nets Assembled via Three-co-Ordinate Silver (I) Ions and Amide-Amide Hydrogen Bonds [J]. J. Chem. Soc., Dalton Trans,1998,0:1943-1946
    [57]王宇,唐黎明.氢键识别超分子聚合物的新进展[J].化学进展,2007,19(5):769-778
    [58]Kawakami T., Kato T. Use of Intermolecular Hydrogen Bonding between Imidazolyl Moieties and Carboxylic Acids for the Supramolecular Self-Association of Liquid-Crystalline Side-Chain Polymers and Networks [J]. Macromolecules,1998,31: 4475-4479
    [59]Lee J. J., Stanger K. J., Noll B. C., et al. Rapid Fixation of Methylene Chloride by a Macrocyclic Amine [J]. J. Am. Chem. Soc.,2005,127:4184-4185
    [60]Morita Y., Murata T., Kukui K., et al. Hydrogen-Bonded Networks in Organic Conductors:Crystal Structures and Electronic Properties of Charge-Transfer Salts of Tetracyanoquinodimethane with 4,4'-Biimidazolium Having Multiprotonated Stated [J]. J. Org. Chem.,2005,70:2739-2744
    [61]Kato T., Nakano M., Moteki T., Uryu T., Ujiie S. Supramolecular Liquid-Crystalline Side-Chain Polymers Built through a Molecular Recognition Process by Double Hydrogen Bonds [J]. Macromolecules,1995,28:8875-8876
    [62]Jin S., Ma Y., Zimmerman S. C., Cheng S. Z. D. An ABC Stacking Supramolecular Discotic Columnar Structure Constructed via Hydrogen-Bonded Hexamers [J]. Chem. Mater.2004,16 (16):2975-2977
    [63]Yagai S., Iwashima T., Kishikawa K., et al. [Photoresponsive Self-Assembly and Self-Organization of Hydrogen-Bonded Supramolecular Tapes [J]. Chem. Eur. J.,2006, 12:3984-3994
    [64]Sijbesma R. P., Beijer F. H., Brunsveld L., Folmer B. J., et al. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding [J]. Science,1997,278:1601-1604
    [65]Beijer F. H., Sijbesma R. P., Kooijman H., et al. Strong Dimerization of Ureidopyrimidones via Quadruple Hydrogen Bonding [J]. J. Am. Chem. Soc.,1998,120: 6761-6769
    [66]Folmer B. J. B., Sijbesma R. P., Versteegen R. M., et al. Supramolecular Polymer Materials:Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon [J]. Adv. Mater.,2000,12:874-878
    [67]Keizer H. M., Sijbesma R. P., Meijer E. W. The Convenient Synthesis of Hydrogen-Bonded Ureidopyrimidinones [J]. European Journal of Organic Chemistry, 2004,12:2553-2555
    [68]Keizer H. M., van Kesssel R. Sijbesma R. P., Meijer E. W. Scale-Up of the Synthesis of Ureidopyrimidinone Functionalized Telechelic Poly(ethylene butylene) [J]. Polymer, 2003,44:5505-5511
    [69]Farnik D., Kluger C., Kunz M. J., et al. Synthesis and Self Assembly of Hydrogen-Bonded Supramolecular [J]. Macromol. Symp.,2004,217:247-266
    [70]Lafittte V. G., Aliev A. E., Hails H. C., et al. Ureidopyrimidinones Incorpoerating a Functionalizable p-Aminophenyl Electron-Donating Group at C-6 [J]. J. Org. Chem., 2005,70:2701-2707
    [71]Lafittte V. G., Aliev A. E., Horton P. N. Quadruply Hydrogen Bonded Cytosine Modules for Supramolecular Applications [J]. J. Am. Chem. Soc.,2006,128:6544-6546
    [72]Celiz A. D., Scherman O. A. Controlled Ring-Opening Polymerization Initiated via Self-Complementary Hydrogen-Bonding Units [J]. Macromolecules,2008,41: 4115-4119
    [73]Celiz A. D., Scherman O. A. A Facile Route to Ureidopyrimidinone-Functionalized Polymers via RAFT [J]. Journal of Polymer Science Paet A:Polymer Chemistry,2012, 48 (24):5833-5841
    [74]Feldman K. E., Kade M. J., Meijer E. W., et al. Phase Behavior of Complementary Multiply Hydrogen Bonded End-Functional Polymer Blends [J]. Macromolecules,2010, 43:5121-5127
    [75]Wilson A. J. Non-Covalent Polymer Assembly Using Arrays of Hydrogen-Bonds [J]. Sof Matter,2007,3:409-425
    [76]Binder W. H., Zirbs R. Supramolecular Polymers and Networks with Hydrogen Bonds in the Main-and Side-Chain [J]. Adv. Polym. Sci.,2007,207:1-78
    [77]Sontjens S. H. M., Sijbesma R. P., van Genderen M. H. P., Meijer E. W. Stability and Lifetime of Qudruply Hydrogen Bonded 2Ureido-4[1H]-Pyrimidinone Dimers [J]. J. Am. Chem. Soc.,2000,122:7487-7493
    [78]Gong B., Yan Y., Zeng H. et al. A New Approach for the Design of Supramolecular Recognition Units:Hydrogen-Bonded Molecular Duplexes [J]. J. Am. Chem. Soc.,1999, 121:5607-5608
    [79]Han J. T., Lee D. H., Ryu C. Y, Cho. K. Fabrication of Superhydrophobic Surface from a Suprammolecular Organosilane with Quadruple Hydrogen Bonding [J]. J. Am. Chem. Soc.,2004,126:4796-4797
    [80]Miiller M., Dardin A., Seidel U., et al. Junction Dynamics in Telechelic Hydrogen Bonded Polyisobutylene Networks [J]. Macromolecules,1996,29:2577-2583
    [81]Muller M., Stadler R., Kremer K., Williams G. On the Motional Coupling between Chain and Junction Dynamics in Thermoreversible Networks [J]. Macromolecules,1995,28: 6942-6949
    [82]Bica C. I. D., Burchard W., Stadler R. Dilute Solution Properties of Polybutadiene Modified by 4-Phenyl-1,2,4-Triazoline-3,5-dione [J]. Macromol. Chem. Phys.,197: 3407-3246
    [83]Muller M., Seidel U., Stadler R. Influence of Hydrogen Bonding on the Viscoelastic Properties of Thermoreversible Networks:Analysis of the Local Complex Dynamics [J]. Polymer,1995,36:3143-3150
    [84]Chino K., Ashiura M. Thermoreversible Cross-lingking Rubber Using Supramolecular Hydrogen-bonding Networks [J]. Macromoleules,2001,34:9201-9204
    [85]Rakotondradany F., Whitehead M. A., Lebuis A. M., Sleiman H. F. Photoresponsive Supramolecular Systems:Self-Assembly of Azodibenzoic Acid Linear Tapes and Cyclic Tetramers [J]. Chemistry-A European Journal,2003,9 (19):4771-4780
    [86]Duweltz D., Laupretre F., Abed S., Bouteiller L., et al. Supramolecular Association of Acid-terminated Polydimethylsiloxanes. IV. NMR Investigation of Hydrogen Bonding Interactions and Apparent Molecular Weight in the Bulk State [J]. Polymer,2003,44: 2295-2302
    [87]Abed S., Boileau S., Bouteiller L. Supramolecular Association of Acid-Termination of Acid-Terminated Poly (dimethylsiloxane)s.2. Molecular Weight Distributions [J]. Macromolecules,2000,33:8479-8487
    [88]Abed S., Boileau S., Bouteiller L. Supramolecular Association of Acid-Termination of Acid-Terminated Poly (dimethylsiloxane)s.3. Viscosimetric Study, Polymer,2001,42: 8613-8619
    [89]Ojelund K., Loontjens T., Steeman P. Palmans A., Maurer F. Synthesis, Structure and Properties of Melamine-Based pTHF-Urethane Supramolecular Compounds [J]. Macromolecular Chemistry and Physics,2003,204 (1):52-60
    [90]Scmuck C, Wienand W. Self-Complementary Quadruple Hydrogen-Bonding Motifs as a Functional Principle From Dimeric Supramolecules to Supramolecular Polymers [J]. Angewandte Chemie International Edition,2001,40 (23):4363-4369
    [91]Hirschberg J. H. K. K., Brunsveld L., Ramzi A., et al. Helical Self-Assembled Polymers from Cooperative Stacking of Hydrogen-Bonded Pairs [J]. Nature,2000,407:167-170
    [92]Lange R. F. M., Gurp M., Meijer E. W. Hydrogen-Bonded Supramolecular Polymer Networks [J]. Journal of Polymer Science Part A:Plymer Chemistry,1999,37 (19): 3657-3670
    [93]de Jong J. J. D., Lucas L. N., Kellogg R. M., et al. Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality [J]. Science,2004,304 (5668): 278-281
    [94]Yamauchi K., Lizotte J. R., Long T. E. Thermoreversible Poly (Alkyl Acrylates) Consisting of Self-Complementary Multiple Hydrogen Bonding [J]. Macromolecules, 2003,36:1083-1088
    [95]Ky Hirschberg J. H. K., Beijer F. H., van Aert H. A., et al. Supramolecular Polymers from Linear Telechelic Siloxanes with Quadruple-Hydrogen-Bonded Units [J]. Macromolecules,1999,32:2696-2705
    [96]Yamauchi K., Kanomata A., Thermoreversible Polyesters Consisting of Multiple Hydrogen Bonding (MHB) [J]. Macromolecules,2004,37 (10):3519-3522
    [97]Feldman K., Kade M. J. de Greef T. F. A. Polymers with Multiple Hydrogen-Bonded End Groups and Their Blends [J]. Macromolecules,2008,41:4694-4700
    [98]Rieth L. R., Eaton R. F., Coates G. W. Polymerization of Ureidopyrimidinone-Functionalized Olefins by Using Late-Transition Metal Ziegler-Natta Catalysts:Synthesis of Thermoplastic Elastomeric Polyolefins [J]. Angewwandte Chemie,2001,113 (11):2211-2214
    [99]Ikkala O., ten Brinke G. Functional Materials Based on Self-Assembly of Polymeric Supramolecules [J]. Science,2002,295 (5564):2407-2409
    [100]ten Brinke G, Ikkala O. Hierarchical Self-Assembly in Polymeric Complexes:Towards Functional Materials [J]. Chem. Commun.,2004:2131-2137
    [101]ten Brinke G., Ikkala O. Smart Materials Based on Self-Assembled Hydrogen-Bonded Comb-Shaped Supramolecules [J]. The Chemical Record,2004,4 (4):219-230
    [102]Kato T., Mizoshita N., Kanie K. Hydrogen-Bonded Liquid Crystalline Materials: Supramolecular Polymeric Assembly and the Induction of Dynamic Function [J]. Molecular Rapid Communications,2001,22 (11):797-814
    [103]Kato T., Mizoshita N., Kishimoto K. Hydrogen-Bonded Liquid Crystalline Materials: Supramolecular Polymeric Assembly and the Induction of Dynamic Function [J]. Angew. Chem. Int. Ed.2006,45 (1):38-58
    [104]Shibata M., Kimura Y., Yaginuma D. Thermal Properties of Novel Supramolecular Polymer Networks Based on Poly(4-Vinylpyridine) and Disulfonic Acids [J]. Polymer, 2004,45:7571-7577
    [105]Ruokolainen J., Tanner J., Ikkala O., ten Brinke G., Thomas E. L. Direct Imaging of Self-Organized Comb Copolymer-Like Systems Obtained by Hydrogen Bonding:Poly (4-Vinylpyridine)-4-Nonadecylphenol [J]. Macromolecules,1998,31:3532-3536
    [106]Ruokolainen J., Makinen R., Torkkeli M., et al. Switching Supramolecular Polymeric Materials with Multiple Length Scales [J]. Science,280 (5363):557-560
    [107]Ruokolainen J., ten Brinke G., Ikkala O. Supramolecular Polymeric Materials with Hierarchical Structure-Within-Structure Morphologies [J]. Advanced Materials,1999, 11 (9):777-780
    [108]Kosonen H., Ruokolainen J., Nyholm P., Ikkala O. Self-Organized Thermosets:Blends of Hexamethyltetramine Cured Novolac with Poly (2-Vinylpyridine)-Block-Poly (isoprene) [J]. Macromolecules,2001,34:3046-3049
    [109]Stadler R., Freitas L. de L. Thermoplastic Elastomers by Hydrogen Bonding.1. Rheological Properties of Modified Polybutadiene. Colloid Polymer Science,1986,264: 773-778
    [110]Stadler R. Thermalplastic Elastomers via Supramolecular Self-Assembling in Random Copolymers. Kautschuk Gummi Kunstoffe,1993,46:619-628
    [111]Sijbesma R. P., et al. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science,1997,278:1601-160
    [112]Freitas L. de L., Stadler R. Thermoplastic Elastomers by Hydrogen Bonding.3. Interrelations between Molecular Parameters and Rheological Properties. Macromolecules,1987,20 (10):2487-2485
    [113]Freitas L. de L., Stadler R. Thermoplastic Elastomers by Hydrogen Bonding.3. Interrelations between Molecular Parameters and Rheological Properties. Macromolecules,1987,20 (10):2487-2485
    [114]Rubinstein M. Dynamics of Entangled Solutions of Associating Polymers. Macromolecules,2001,34 (4):1058-1068
    [115]Hilger C., Draeger M., Stadler R.. Molecular Origin of Supramolecular Self-Assembling in Statistical Copolymers,1992,25 (9):2498-2501
    [116]Mueller M., Stadler R., Kremer F., Williams G. On the Motional Coupling between Chain and Junction Dynamics in Thermoreversible Networks. Macromolecules,1995, 28 (20):6942-6969
    [117]Kautz H., van Beek D. J. M., Sijbsma R. P., Meijer E. W.. Cooperative End-to-End and Lateral Hydrogen-Bonding Motifs in Supramolecular Thermoplastic Elastomers. Macromolecules,2006,39 (13):4265-4267
    [118]van Beek D. J. M., Siering A. J. H., Gerrit W. M., et al. Undirectional Dimerization and Stacking of Ureidopyrimidinone End Groups in Polycaprolactone Supramolecular Polymers. Macromolecules,2007,40 (23):8464-8475
    [119]Botterhuis N. E., van Beek D. J. M., et al. Self-Assembly and Morphology of Polydimethylsiloxane Supramolecular Thermoplastic Elastomers,2008,46 (12): 3877-3885
    [120]Elkins C. L., Viswanathan K., Long T. E., Synthesis and Characterization of Star-Shaped Poly(Ethylene-co-Propylene) Polymers Bearing Terminal Self-Complementary Multiple Hydrogen-Bonding Sites, Macromolecules,2006,39 (9): 3132-3139
    [121]Mather B. D., Elkins C., et al. Morphological Analysis of Telechelic Uredopyrimidone Functional Hydrogen Bonding Linear and Star-Shaped Poly(Ethylene-co-Propylene)s. Macromolecular Rapid Communications,2007,28 (16):1601-1606
    [122]Bouteiller L. Assembly via Hydrogen Bonds of Low Molar Mass Compounds into Supramolecular Polymers. Advances in Polymer Science,2007,207:79-112
    [123]Folmer B. J. B., Sijbesma R. P., Versteegen R. M., et al. Supramolecular Polymer Materials:Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon [J]. Advanced Materials,2000,12 (12):874-878
    [124]Peng C. C., Abetz V. A Simple Pathway toward Quantitative Modification of Polybutadiene:A New Approach to Thermoreversible Cross-linking Rubber Comprising Supramolecular Hydrogen-Bonding Networks [J]. Macromolecules,2005, 38 (13):5575-5580
    [125]Sijbesma R. P., Beijer F. H., Brunsveld L., et al. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding [J]. Science, 1997,278 (5343):1601-1604
    [126]Lange R. F. M., Gurp M. V., Meijer E. W. Hydrogen-Bonded Supramolecular Polymer Networks [J]. Journal of Polymer Science:Part A:Polymer Chemistry,1999,37 (19): 3657-3670
    [127]Kuo M. C., Jeng E. J., Su W. Q., et al. Iterative Synthesis of Extender of Uniform Chain Lengths for Making Thermo-Reversible Polyurethane Supramolecular [J]. Macromolecules,2008,41 (3):682-690
    [128]Lehn J. M. Cryptates Inclusion Complexes of Macropolycyclic Receptor Molecules [J]. Pure & Appl. Chem.,1978,50:871-892
    [129]Kato T., Hirota N., Fujishima, et al. Supramolecular Hydrogen-bonded Liquid-Crystalline Polymer Complexes. Design of Side-Chain Polymers and a Host-Guest System by Noncovalent Interaction [J].1996,34 (1):57-62
    [130]Elkins C. L., Viswanathan K., Long T. E. Synthesis and Characterization of Star-Shaped Poly(ethylene-co-propylene) Polymers Bearing Terminal Self- Complementary Multiple Hydrogen-Bonding Sites [J]. Maxromolecules,2006,39 (9):3132-3139
    [131]Feldman K. E., Kade M. J., de Greef T. F. A. et al. Polymers with Multiple Hydrogen-bonded end Groups and Their Blends [J]. Macromolecules,2008,41 (13): 4694-4700
    [132]Colombani O., Barioz C., Bouteiller L., et al. Attempt toward 1D Cross-Linked Thermoplastic Elastomers:□ Structure and Mechanical Properties of a New System [J]. Macromolecules,2005,38 (5):1752-1759
    [133]Peng C. C., Abetz V. A Simple Pathway toward Quantitative Modification of Polybutadiene:□ A New Approach to Thermoreversible Cross-Linking Rubber Comprising Supramolecular Hydrogen-Bonding Networks [J]. Macromolecules,2005, 38 (13):5575-5580
    [134]Knoben W., Besseling N. A. M., Boutiller L., Stuart M. A. C. Dynamics of Reversible Supramolecular Polymers:Independent Determination of Dependece of Linear Viscosity on Concentration and Chain Length by Using Chain Stoppers [J]. Phys. Chem. Chem. Phys.,2005,7:2390-2398
    [135]Flory P. J. Principles of Polymer Chemistry [M].,1964, Cornell University Press, Ithaca, New York
    [136]Cheng X., Gao Q., Smith R. Characterization of Hydrogen-Bonded Aggregates in Chloroform by Electrospray [J]. J. Org. Chem.,1996,61 (6):2204-2206
    [137]Cheng X., Gao Q., Smith R. Detection of Hydrogen-Bonded Supramolecular Complexes Using Electrospray Ionization from Chloroform [J]. Rapid Communications in Mass Spectrometry,1996,9:312-316
    [138]Przybylski M., Glocker M. O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions- New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes [J]. Angew. Chem. Int. Ed. Emgl.,1996,35:806-826
    [139]Marco V. B. D., Bombi G. G. Electrospray Mass Spectrometry (ESI-MS) in the Study of Metal-Ligand Solution Equilibria [J].2006,25:347-379
    [140]Termonia Y. Molecular Modeling of Spider Silk Elasticity [J]. Macromolecules,1994, 27 (25):7378-7381
    [141]Rieth L. R., Eaton R., Goates G. W. Polymerization of Ureidopyrimidinone-Functionalized Olefins by Using Late-Transition Metal Ziegler-Natta Catalysts:Synthesis of Thermoplastic Elastomeric Polyolefins [J]. Angew. Chem.,2001, 113 (11):2211-2214
    [142]Keizer H. M., van Kessel R., Sijbesma R. P., Meijer E. W. Scale-up of the synthesis of ureidopyrimidinone functionalized telechelic poly(ethylenebutylene) [J]. Polymer,2003, 44:5505-5511
    [143]Cordier P., Tournilhac F., Soulie-Ziakovic C., et al. Self-healing and thermoreversible rubber from supramolecular assembly [J]. Nature,2008,451:977-980
    [144]Montarnal D., Cordier P., Soulie-Ziakovic C., et al. Synthesis of a self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2008,46 (24):2925-7936
    [145]Montarnal D., Tournilhac F., Hidalgo M. Versatile One Pot Synthesis of Supramolecular Plastic and Self-Healing Rubbers [J]. J. Am. Chem. Soc.,2009,131:7966-7967
    [146]Chen, Y.; Wu, W.; Wang J.; Jiang H. Synthesis and properties of thermoreversible crosslinking supramolecular polymer with weak multiple-hydrogen bonds and small chemical network sites from dimer acid, dimmer, diamine and sulfonyl isocyanate [J]. Journal of Polymer Research,2011,18 (6),2325-2333
    [147]吴唯,陈玉洁,王佳玮,刘明昌.多重氢键网络结构超分子聚合物的合成与性能[J].功能高分子学报,2011,24(4):411-415
    [148]Dimopoulos A., Wietor J. L., Wubbenhorst M., et al. Enhanced Mechanical Relaxation below the Glass Transition Temperature in Partially Supramolecular Networks [J]. Macromolecules,2010,43:8664-8669
    [149]Treloar L. R. G. The Physics of Rubber Elasticity,2nd. London:Oxford University Press (Clarendon),1985
    [150]van den Berg O., Sengers W. G. F., Jager W. F., et al. Dielectric and Fluorescent Probes to Investigate Glass Transition, Melt, and Crystallization in Polyolefins [J]. Macromolecules,2004,37 (7):2460-2470
    [151]Ojelund K., Loontjens T., Steeman P., Palmans A., Maurer F. Synthesis, Structure and Properties of Melamine-Based pTHF-Urethane Supramolecular Compounds [J]. Macromol. Chem. Phys.,2003,24 (1):52-60
    [152]Folmer B. J. B, Sijbesma R. P., Meijer E. W. Complex Dynamics of Hydrogen Bonded Self-assembling Polymers [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2001,8 (3):365-372
    [153]Lillya C. P., Baker R. J., Hutte S., et al. Linear Chain Extension through Associative Termini [J]. Macromolecules,1992,25:2076-2080
    [154]Wyss H. M., Miyazaki K., Mattsson J., et al. Strain-Rate Frequency Superposition:A Rheological Probe of Structural Relaxation in Soft Materials [J]. Physical Review Letters,2007,98 (23):238303 (4)
    [155]Loontjens T. Put J., Coussens B., Palmen J.et al. Novel Supramolecular Polymer Networks Based on Melamine- and Imide- Containing Oligomers [J]. Macromol. Symp.,2001,174:357-371
    [156]Yagai S., Higashi M., Karatsu T., Kitamura A. Dye-Assisted Structural Modulation of Hydrogen-Bonded Binary Supramolecular Polymers [J]. Chem. Mater.,2005,17: 4392-4398
    [157]Sivakova S., Bohnsack D. A., Mackay M. E., Suwanmala P., Rowan S. J. Utilization of a Comibination of Weak Hydrogen-Bonding Interactions and Phase Segregation [J]. J. Am. Chem. Soc.,2005,127:18202-18211
    [158]Folmer B. J. B., Sijbesma R. P., Versteegen R. M., Rijt J. A. J., Meijer E. W. Supramolecular Polymer Materials:Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon [J]. Adv. Mater.2000,12:874-878
    [159]Ky Hirschberg J. H. K., Beijer F. H., van Aert H. A., et al. Supramolecular Polymers from Linear Telechelic Siloxanes with Quadruple-Hydrogen-Bonded Units [J]. Macromolecules,1999,32:2696-2705
    [160]Magnin A. Experimental Validation of Steady Shear and Dynamic Viscosity Relation for Yield Stress Fluid [J]. Rheol. Acta.,1997,36:49-55
    [161]Doraiswamy D., Mujumdar A. N., Tsao I., et al. The Cox-Merz Rule Extended:A Rheological Model for Concentrated Suspensions and other Materials with a Yield Stress [J]. J. Rheol,1991,35(4):647-685
    [162]Pan B., Yue Q., Ren J., Wang h., et al. A Study on Attapulgite Reinforced PA 6 Composite [J]. Polymer Testing,2006,25:384-391
    [163]Chavarria F., Paul D. R. Comparison of Nanocomposites Based on Nylon 6 and Nylon 66 [J]. Polymer,2004,45:8501-8515
    [164]Al-Rawajfeh A. E., Al-Salah H. A., AlShamaileh E., Donchev D. Polyamide-Based Composite Membranes:Part2. Interaction, Crystalization and Morphology [J]. Desalination,2008,227:120-131
    [165]Ruokolainen J., Torkkeli M., Serimaa R., Komanschek E., ten Brinke G., Ikkala O. Order-Disorder Transition in Comblike Block Copolymers Obtained by Hydrogen Bonding between Homopolymers and End-Functionalized Oligomers:Poly(4-vinylpyridine)-Pentadecylphenol
    [166]Al-Rawajfeh A. E., Al-Salah H. A., AlShamaileh E., Donchev D. Polyamide-Based Composite Membranes:Part2. Interaction, Crystalization and Morphology [J]. Desalination,2008,227:120-131
    [167]Knoben W., Besseling N. A. M., Bouteiller L., Cohen- Stuart M. A. J. Rheology of a Reversible Supramolecular Polymer Studied by Comparison of the Effects of Temperature and Chain Stoppers [J]. Chem. Phys.,2007,126:024907-9
    [168]Courtois J., Baroudi I., Nouvel N., Bouteiller L., et al. Supramolecular Soft Adhesive Materials [J]. Adv. Func. Mater.,2010,20:1803-1811
    [169]Pensec S., Nouvel N., Guilleman A., Bouteiller L. Self-Assembly in Solution of a Reversible Comb-Shaped Supramolecular Polymer [J]. Macromolecules,2010,43: 2529-2534
    [170]Loveless D. M., Abu-Lail N. I., Kaholek M., Craig S. L. Reversibly Cross-Linked Surface-Grafted Polymer Brushes [J]. Angew. Chem. Int. Ed.,2006,45:7812-7814
    [171]Serpe M. J., Craig S. L. Physical Organic Chemistry of Supramolecular Polymers [J]. Langmuir,2007,23:1626-1634
    [172]Sivakova S., Bohnsack D. A., Mackay M. E., Suwanmala P., Rowan S. J. Utilization of a Combination of Weak Hydrogen-Bonding Interactions and Phase Segregation to Yield Highly Thermosensitive Supramolecular Polymers [J]. J. Am. Chem. Soc.,2005,127 (51):18202-18211
    [173]Gong H., Krische M. J. Duplex Molecular Strands Based on the 3,6- Diaminopyridazine Hydrogen Bonding Motif:Amplifying Small-Molecule Self-Asembly Preferences through Preorganization and Iterative Arrangement of Binding Residues [J]. J. Am. Chem. Soc.,2005,127:1719-1725
    [174]Fox T. G., Flory P. J. Further Studies on the Melt Viscosity of Polyisobutylene [J]. J. Phys. Chem.,1951,55:221-234
    [175]Baek D. M., Han C. D., Kim J. K. Phase Equilibria in Mixture of Block Copolymer and Homopolymer [J]. Polymer,1992,33(22):4821-4831
    [176]Ferry J. D. Viscoelastic Properties of Polymers [M],3rd edition. New York:Wiley,1980
    [177]Onogi S., Masuda T., Kitagawa K. Rhological Properties of Anionic Polystyrenes.1. Dyanmic Viscosity of Narrow-Distribution Polystyrenes [J]. Macromolecules,1970,3: 109-116
    [178]Olsen B. D., Teclemariam N. P., Muller S. J., Segalman R. A. Rheological Properties and the Mechanical Signature of Phase Transition in Weakly-Segregated Rod-Coil Block Copolymers [J]. Soft Matter,2009,5:2453-2462
    [179]Nesarikar A. R. Rheology of Polymer Blend Liquid-Liquid Phase Sepration [J]. Macromolecules,1995,28 (21):7202-7207
    [180]Graessley W. W. The Entangled Concept in Polymer Rheology [J]. Adv. Polym. Sci., 1974,16:25
    [181]Dealy J. M., Larson R. G. Structure and Rheology of Molten Polymers:From Structure to Flow Behavior and Back Again [M],2006, Munich, Carl Hanser Verlag, pp118-119
    [182]Cates M. E. Reptation of Living Polymers:Dynamics of Entangled Polymers in the Presence of Reversible Chain-Scission Reactions [J]. Macromolecules,1987,20 (9): 2289-2296
    [183]Cates M. E. Nonlinear Viscosity of Wormlike Micelles (and other Reversibly Breakable Polymers [J]. J. Phys. Chem.,1990,94:371-375
    [184]Wolff F.; Resch J. A.; Kaschata J.; Munstedt H. Comparison of Viscous and Elastic Properties of Polyolefin Melts in Shear and Elongation [J]. Rheologica Acta,2010, 49:95-103.
    [185]Chen X., Dam M. A. Ono K., Mal A. M, Shen H., et al. A Thermally Re-mendable Cross-Linked Polymeric Material [J]. Science,2002,295 (5560):1698-1702
    [186]White S. R., Scottos N. R., Geubelle P. H., Moore J. S., Kessler M. R., et al. Autonomic Healing of Polymer Composites [J]. Nature,2001,409:794-797
    [187]Muller M., Dardin A., Seidel U., Balsamo V., et al. Junction Dynamics in Telechelic Hydrogen Boned Polyisobutylene Networks [J]. Macromolecules,1996,29 (7):2577-2583
    [188]Hilger C., Stadler R., Liane L. Freitas de L. Multiphase Thermoplastic Elastomers by Combination of Covalent and Association Chain Structures:2. Small-Strain Dynamic Mechanical Properties [J]. Polymer,1990,31 (5):818-823
    [189]Hilger C., Draeger M. Stadler R. Molecular Origin of Supramolecular Self-Assembling in Statistical Copolymers [J]. Macromolecules,1992,25 (9):2498-2501
    [190]Duweltz D. Laupretre F., Abed S. Bouteiller L., Boileau S. Supramolecular Associative of Acid-Terminated Polydimethylsiloxane. Ⅳ. NMR Ivestigation of Hydrogen Bonding Interactions and Apparent Molecular Weight in the Bulk State [J]. Polymer,2003,44: 2295-2302
    [191]Lillya C. P., Baker R. J., Hutte S. Winter H. H., et al. Linear Chain Extension through Associative Termini [J]. Macromoelcules,1992,25:2076-2080
    [192]Binder B. W. H., Petraru L., Roth T., Groh P. W., et al. Magnetic and Temperature-Sensitive Release Gels from Supramolecular Polymers [J]. Adv. Funct. Mater.,2007,17: 1317-1326
    [193]Yan D., Li Y., Zhu X. Brill Transition in Nylon 1012 Investigated by Variable Temperature XRD and Real Time FTIR [J]. Macromol. Rapid Commun.,2000,21 (15): 1040-1043
    [194]Lu Y., Zhang G, Feng M., Zhang Y, et al. Hydrogen Bonding in Polyamide 66/Clay Nanocomposite [J]. Journal of Polymer Science:Part B:Polymer Physics,2003,41: 2313-2321
    [195]Tang X. C., Pikal M. J., Taylor L. S. The Effect of Temperature on Hydrogen Bonding in Crystalline Amorphous Phases in Dihydropyrine Calcium Channel Blockers [J]. Pharmaceutical Research,2002,19 (4):484-490
    [196]Pang D., Wang H. Smectic A Liquid Crystals from Dihydrazide Derivatives with Lateral Intermolecular Hydrogen Bonding [J]. Tetragedron,2005:61:6108-6114
    [197]Pimentel G. C., McClellan A. L. The Hydrogen Bond [M]. San Francisco:Freeman, 1960
    [198]Peng C. C., Abetz V. A simple Pathway toward Quantitative Modification of Polybutadiene:A New Approach to Thermoreversible Cross-Linking Rubber Comprising Supramolecular Hydrogen-Bonding Networks [J]. Macromoelcules,2005, 38:5575-5580
    [199]Jeffrey G. A., Maluszynska H. A Survey of Hydrogen Bond Geometries in the Crystal Structures of Amino Acids [J]. Int. J. Biol. Macromol.,1982,4:173-185
    [200]王正熙.聚合物红外光谱分析和鉴定[M].1989,成都:四川大学出版社
    [201]肖丹,崔晓文,李卫华,颜德岳.尼龙-618的晶型转变研究[J].高等学校化学学报,2006,27(2):389-383
    [202]Lipatov U. C. Polymer Physics Chemistry Handbook [M],1995, Beijing:Chinese Petrochem. Press
    [203]Sheth J. P., Klinedinst D. B., Wilkes G. L. Yilgor I., Yilgor E. Role of Chain Symmetry and Hydrogen Bonding in Segmented Copolymers with Monodisperse Hard Segment [J]. Polymer,2005,46:7317-7322
    [204]Yilgor E., Yilgor I. Hydrogen-bonding:a critical parameter in designing silicone copolymers [J]. Polymer,2001,42:7953-7959
    [205]Yilgor E. Burgaz E., Yurtsever E., Yilgor I. Comparison of Hydrogen bonding in polydimethylsiloxane and Polyether based Urethane and Urea Copolymer [J]. Polymer, 2000,41:849-857
    [206]Jeffrey G. A. An Introduction to Hydrogen Bonding [M].1997, New York:Oxford University Press
    [207]Taylor B. R., Kennard O., Versichel W. The Geometry of the N-H---O=C Hydrogen Bond.3. Hydrogen-Bond Distances and Angles [J]. Acta Cryst.1984, B40:280-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700