基于细胞自动机方法的城市交通流模拟及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通运输在国民经济和社会发展中起着举足轻重的作用,是国民经济的命脉。良好的交通运输系统是保障人们日常生活及加快经济发展的必须条件。先进的道路运输系统以及现代化的交通管理方法,是检验城市建设是否现代化的重要标准。随着我国经济建设的不断进步,人们对公路交通的需求逐渐增加。自从我国改革开放以来,落后的道路交通规划及管理带来的严重负面影响,在城市中产生诸如堵车、事故、噪声及废气等污染以及大量消耗能源一系列问题。这也是各个国家在发展中所必须面对的顽疾。因此,有效利用现有道路资源来缓解交通拥堵并在未来城市建设中进行合理的道路建设和交通规划,是非常值得研究的课题。本文基于细胞自动机模型,对交通流进行数值模拟,并对车辆行驶状态采用离散方程进行描述。建立了包含四个路口的二维典型城市路网的交通流模型,研究了不同道路模型中车辆间的相互影响、超车、以及信号灯控制策略等一系列影响交通流运行效率的因素。本文的主要研究内容和成果如下:
     1、将细胞自动机方法与跟车模型结合,研究了在单向道路上行驶的两辆不同性能车辆间的运动状态和相互关系,以及性能参数对行驶状态的影响。讨论了在设置路口和信号灯的情况下,不同信号灯控制策略(信号灯的时间周期及绿信比)对车辆运动状态的影响。研究结果表明,当信号灯恒为绿灯时,车辆相对位置关系仅与车辆的性能有关。而当信号灯周期性变化时,绿信比及信号灯时间周期等信号灯控制参数均会对车辆行驶造成不同程度的影响,特别是在考虑了车辆的加速及减速情况下的交通流模型中,增加车辆停止等待的次数会导致车辆运行效率的降低。
     2、在上述单车道模型的基础上,研究了双车道交通流问题,并建立了允许超车的交通流模型。分别讨论了信号灯时间周期,车辆密度等参数对车流平均速度和平均超车次数的影响。在此基础上,分析了慢车及道路障碍对交通流的影响。研究发现,道路中交通流存在保持通行效率的最优密度值,道路中车辆密度小于最优密度时,车辆数目的变化不影响交通流的平均速度。当车辆密度超过最优密度时,交通流的运动状态受密度的影响显著。当道路中车辆密度恒定时,可通过调整信号灯时间周期的方法,确保交通流的通行效率最大化。道路障碍对交通流的影响与车辆密度有关,车辆密度越大,道路障碍的影响越显著。
     3、研究了含有四个十字路口的二维城市典型路网的交通流问题,并通过离散方程对所建立的城市交通流模型进行描述。定义了路口容许密度,即在路口中容许占有的最大车辆数目。分别讨论了车辆密度、信号灯时间周期及路口容许密度等参数对交通流运动状态的影响。研究结果表明,对不同的交通流密度,均存在路口合理容许密度,以保证交通流获得最大运行效率。所以,适当的限制路口中的车辆密度(路口容许密度)对避免路口拥堵及死锁现象具有明显的效果,并可使交通流获得最佳的运行状态。
     4、研究了在二维城市典型路网的交通流模型中,信号灯控制策略与通行效率的关系。以所有车辆到达各自目的地所需消耗的平均时间最短为评价目标,研究了信号灯控制策略(同步定时控制、感应控制)及信号灯的控制参数对不同密度交通流的状态影响,并分析了不同信号灯控制策略的适用条件,以及在不同的信号灯控制策略下,道路中路口间距对交通流的影响。研究结果表明,信号灯控制方式及路口间距对交通流的影响与道路中车流密度有关,以及在低密度条件下,感应控制参数存在最优取值范围。
Transportation plays an important role in the national economy and social development. Whether the transport system is modern, or traffic management is advanced, is an important symbol of modernization. With the development of economy, the number of vehicles increases rapidly with the demand of transportation. Since the 1980s, the growing traffic flow has produced several problems such as the traffic congestions, traffic accidents, energy shortages and environmental pollution. Thus, the study of traffic flow has become an interesting issue in the economic and social development. At present, governments and research institutions have paid significant attention to the effective use of the transport resources, as well as the application of scientific theories to guide the construction of transportation. Based on the cellular automata (CA) theory, the urban traffic is simulated, and the traffic dynamics is described by proposed discrete equations. A 2-D typical urban traffic model with four crossroads is established in this paper. Moreover, a set of factors affecting on the efficiency of traffic running, i.e., the interaction of vehicles, overtaking and signals control strategy, are investigated. The main contents and achievements in this paper are listed as follows:
     1) Combined the CA method with the car following model, this paper has proposed a vehicular movement model in one-way one-lane road, in which the time-position relation of vehicular movement states has been obtained. The interactions of two vehicles with different performances (acceleration ability and maximum allowable velocity), as well as the influence of the performance parameters on the movement states are studied. The traffic signals are also considered in this model, and the effect of signals control strategies (by changing the cycle time of traffic signal and the ratio of green time to cycle time) is discussed. The results show that when the signals are always green, the relative position of vehicles is only related to the performance of vehicles. When the signals change cyclically, the parameters such as signal's cycle time, the ratio of green time to cycle time, et al. could affect the movement of vehicles. Especially, in the model with considering the influences of vehicular acceleration and deceleration, increasing the waiting times of vehicles will reduce the efficiency of traffic flow.
     2) Based on the model proposed above, two-lane traffic flow with the consideration of overtaking is investigated. Influences of signal cycle time and vehicular density on the mean velocity and mean overtaking times of traffic flow are discussed. The effects of slow vehicles and road barricades on the traffic flow are also studied. Simulation results show that the vehicular density and the signal cycle time have significant influences on the traffic flow. The mean velocity of the traffic flow could keep a comparatively large value when vehicular density is less than the optimal density. When the vehicular density exceeds the optimal density, the state of traffic flow is affected by the density significantly. For a certain value of density, the mean velocity displays a serrated fluctuation with cycle time. Therefore, there may exist a certain combination of density and cycle time which optimizes the traffic flow efficiency. The effect of barricades on traffic flow is highly related to vehicular density. The higher the vehicular density value is, the more conspicuous the effect of barricades will be.
     3) The 2-D typical urban traffic with consideration of four crossroads are investigated. A parameter pcross is defined which means the allowed-density of vehicles at crossing. Influences of signal cycle time, vehicular density and allowed-density of vehicles at crossing on the mean run-time, mean velocity and mean overtaking times of the traffic flow are discussed. Simulation results show that there exist certain range ofρcross which optimizes the traffic flow efficiency, and avoids traffic jam and deadlock at crossing. The model proposed here and the simulation results which took into account the effects of signal cycle time, vehicular density, density of vehicles at crossing on the traffic flow with overtaking allowed, can reflect the situation of the traffic flow in a more realistic way.
     4) According to the above 2-D typical urban traffic model, the effect of two signals control strategies, i.e., the fixed-time control and the actuated control are discussed. With the fixed-time control, traffic lights turn green and red synchronously, while with the actuated control, the traffic lights change according to the number of waiting vehicles on the crossroad. Based on numerical simulation, the different effects of two signals control strategies on the traffic flow and the optimal parameters of actuated signal control are discussed. Meanwhile, the effect of the intersection spacing on traffic flow with signals control is studied. Simulation results show that the effect of signals control strategies and the intersection spacing are related to the global density of traffic flow, and there exists certain optimal parameters of actuated signal control in which the efficiency of traffic flow can be optimized.
引文
[1]世界卫生组织和世界银行.世界预防道路交通伤害报告.北京:人民卫生出版社,2004.10
    [2]中华人民共和国公安部.2007年全国机动车和驾驶人统计和全国道路交通事故情况.http://www.mps.gov.cn/n16/n1252/n1837/n2557/141431.html
    [3]张起森,张亚平.道路通行能力分析.北京:人民交通出版社,2002
    [4]吴清松,蒋锐,李晓白等.微宏观方法相结合推进交通流理论新发展.交通运输系统工程与信息,2005,5(3):108~126
    [5]蒋璜,任福田,肖秋生等.交通流理论.北京:人民交通出版社,1983
    [6]毛保华,曾会欣,袁振洲.交通规划模型及其应用.北京:中国铁道出版社,1999
    [7]邹杰.基于元胞自动机的交通流模型研究[博士学位论文].青岛:山东科技大学,2007
    [8]付传技.交通流模型的研究[博士学位论文].合肥:中国科学技术大学,2007
    [9]Lighthill M.J, Whitham G.B. On kinematic waves:II. A theory of traffic flow on long crowed roads. Proceedings of the Royal Society, London,1955, Ser. A 229: 317-345
    [10]Richards P. I. Shock waves on the highway. Oper. Res.1956,4:42-51
    [11]Payne H.J, Models of freeway traffic and control. In:Bekey, G.A.(Ed.), Mathematical Models of Public Systems, Simulation Council, La Jolla,1971,1: 51-61
    [12]Daganzo C.F. Requiem for second-order fluid approximation of traffic flow. Transpn. Res. B.1995,29:277-286,
    [13]Jiang R, Wu Q.S, Zhu Z.J. A new continuum model for traffic flow and numerical tests. Transpn. Res. B.2002,36:405-419
    [14]Jiang R, Wu Q.S, Zhu Z.J. A new dynamics model for traffic flow. Chinese Sci. Bull.2001,46:345-349
    [15]Prigogine I, Herman R, Kinetic theory of vehicular traffic. American Elsevier. New York,1971
    [16]Paveri-Fontana S.L. On Boltzmann-like treatments for traffic flow:A critical review of the basic model and an alternative proposal for dilute traffic analysis. Transpn. Res.1975,9:225-235
    [17]Helbing D. Derivation and empirical validation of a refined traffic flow model. Physica A,1996,233:253-282
    [18]Treiber M, Hennecke A, Helbing D. Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model. Phys.Rev.E,1999,59:239-253
    [19]Pipes L.A. An operational analysis of traffic dynamics. J.Appl.Phys,1953,24: 274-287
    [20]Newell G.F. Nonlinear effects in the dynamics of car following. Oper. Res,1961, 9:209-229
    [21]Edie L.C. Car following and steady state theory for non-congested traffic. Oper. Res,1962,9:66-76
    [22]Bando M. Dynamical model of traffic congestion and simulation. Phys.Rev.E, 1995,51:1035-1042
    [23]Helbing D, Tilch B. Generalized force model of traffic dynamics. Phys.Rev.E, 1998,58:133-138
    [24]Neumann J.Von. Theory of Self-Reproducing Automata. Edited by A.W. Burks. Urbana:University of Illinois,1966
    [25]Gardner M. Mathematical games:The fantastic combinations of John Conway's new solitary game of "life". Sci.Amer, Oct,1970:120-123
    [26]Wolfram S. Statistical mechanics of cellular automata. Rev. Mod. Phys,1983, 55:601-644
    [27]Wolfram S. Theory and Applications of Cellular Automata. World Scientific, Singapore,1986
    [28]Wolfram S. Cellular automaton fluids I:basic theory, J. Stat. Phys,1986,45: 71-526
    [29]Wolfram S. Cellular automata and complexity. Reading Mass:Addison-Wesley Pub. Co,1994
    [30]Stauffer D. Computer-simulations of cellular automata. J.Phys. A,1991,24: 909-927
    [31]Cremer M, Ludwig J. A fast simulation model for traffic flow on the basis of Boolean operations, J.Math. Comp. Simul,1986,28:297-303
    [32]Traffic and Granular flow'99, Edited by Helbing D, Herrmann M, Schreckenberg M, et al. Springer, Berlin,2000
    [33]Hennecke A. Macroscopic simulation of open systems and macro-micro link. In [32]:383-388
    [34]段兴华,温慧敏.高速公路交通拥挤与智能交通系统.公路与汽运,2004,(2):18~20
    [35]李庆瑞,张洋,袁飞.智能交通系统在高速公路领域中的应用探讨.交通与安全,2006,(7):32~36
    [36]任明,朱伟,朱寿建.视频智能交通系统的设计与实现.交通运输系统工程与信息,2002,2(3):79~81
    [37]赵亚男,达庆东,杨群等.智能交通安全系统的研究.中国安全科学学报,2001,11(3):27~33
    [38]郑应平,张冬梅.智能交通系统(ITS)建模与控制问题.公路交通科技,1999,16(2):46~48
    [39]丁伟东,刘凯,杨维国等.智能交通与中国的交通安全.中国安全科学学报,2002,12(6):6-9
    [40]杨晓光.中国交通信息化与发展智能交通运输系统问题研究.交通运输系统工程与信息,2001,1(3):195~202
    [41]肖为周,李旭宏,徐乃强.公路网规划信息系统中时空技术研究与应用.公路交通科技,2000,17(3):43~46
    [42]王福建,俞传正,王海航.灰色关联分析在道路交通事故中的应用.中国安全科学学报,2006,16(2):17~21
    [43]黄铮,邹群,邹国平.基于Multi-Agent的高速公路基成交通控制系统.交通运输工程学报,2005,5(1):116~119
    [44]王云鹏,赵韩涛,王俊喜等.基于共用信息平台的高速公路系统基成框架研究.公路交通科技,2006,23(2):128~132
    [45]王晖,贾元华.交通量与经济量弹性关系的系统分析.交通运输系统工程与信息,2004,4(1):54~61
    [46]任江涛,欧晓凌,张毅等.交通状态模式识别研究.公路交通科技,2003,20(2):63~67
    [47]Chopard B, Droz M. Cellular Automata Modeling of Physical Systems.祝玉学,赵学龙(译).物理系统的元胞自动机模拟.北京:清华大学出版社,2003
    [48]贾斌.交通流瓶颈处车流复杂动态特性的元胞自动机模拟[博士学位论文].合肥:中国科学技术大学,2002
    [49]周成虎,孙战利,谢一春.地理元胞自动机研究.北京:科学出版社,2000
    [50]贾斌,高自友,李克平等.基于元胞自动机的交通系统建模与模拟.北京:科学出版社,2007
    [51]花福安,杨院生,郭大勇等.基于曲率驱动机制的晶粒生长元胞自动机模型.金属学报,2004,(11):1210~1214
    [52]Seong-Moon Seo et al. Grain Structure prediction of Ni-base superalloy castings using the cellular automation-finite element method. Materials Science and Engineering A,2006, doi:10.1016/j.msea.2006.02.400
    [53]Raghavana S, Sahay S.S. Modeling the grain growth kinetics by cellular automaton. Materials science and Engineering:A,2007,445-446(15):203-209
    [54]Biham O, et al. Self-organization and a dynamical transition in traffic flow models. Pys. Rev.A,1992
    [55]Schadschneider A. Cellular automata models of highway traffic. Physica A,2006, 372:142-150
    [56]Nagatani T. Traffic dispersion induced by noise in off-lattice model. Physica A, 2007,374:409-418
    [57]Nagatani T. Clustering and maximal flow in vehicular traffic through a sequence of traffic lights. Physica A,2007,377:651-660
    [58]Nagatani T. Traffic states and fundamental diagram in cellular automaton model of vehicular traffic controlled by signals. Physica A,2009,388:1673-1681
    [59]Chen C, Chen J.Q, Guo X.W. Influences of Overtaking on Two-lane Traffic with Signals. Physica A,2010,389:141-148
    [60]陈晨,陈建桥,郭细伟.基于细胞自动机方法的车行运动模型及信号灯控制策略研究.武汉理工大学学报(交通科学与工程版),2010,34(2):258~261
    [61]Toyoki H, et al. A two-dimensional CA model for traffic flow with car origin and destination. Physica A,2007,378:485-497
    [62]孙腾达,王劲峰.一种基于路网网格化的微观交通仿真模型.系统仿真学报,Jun 2007,19(12):2735~2739
    [63]Tang T.Q, Huang H.J, Mei C.Q, et al. A dynamic model for traffic flow. Physica A,2008,387:2603-2610
    [64]Li X.G, Gao Z.Y, Jia B, et al. Deceleration in advance in the Nagel-Schreckenberg traffic flow model. Physica A,2009,388:2051-2060
    [65]Brockfeld E, Barlovic R, Schadschneider A, et al. Optimizing traffic lights in a cellular automaton model for city traffic. Phys. Rev. E,2001,64:056132
    [66]Torok J, Kertesz J. The green wave model of two-dimensional traffic:Transitions in the flow properties and in the geometry of the traffic jam. Physica A,1996,231: 515-533
    [67]Toyoki H, et al. A two-dimensional CA model for traffic flow with car origin and destination. Physica A,2007,378:485-497
    [68]Freund J, Poschel T. A statistical approach to vehicular traffic. Physica A,1995, 219:95-113
    [69]Bjorklund G.M, Aberg L. Driver behaviour in intersections:Formal and informal traffic rules. Transportation Research Part F,2005,8:239-253
    [70]Nagatani T. Green-light paths in city traffic controlled by signals. Physics Letters A,2009,373:536-539
    [71]Ngoduy D, Hoogendoorn S.P, Liu R. Continuum modeling of cooperation traffic flow dynamics. Physica A,2009,388:2705-2716
    [72]Nagatani T. Vehicular motion on a selected path in a 2d traffic network controlled by signals. Physica A,2009,388:2911-2921
    [73]Fukui M, Nishinari K, Yokoya Y, et al. Effect of real-time information upon traffic flows on crossing roads. Physica A,2009,388:1207-1212
    [74]Wastavino L.A, Toledo B.A, Rogan J, et al. Modeling traffic on crossroads. Physica A,2007,381:411-419
    [75]Spyropoulou I. Modelling a signal controlled traffic stream using cellular automata. Transportation Research Part C,2007,15:175-190
    [76]Shi X.Q, Wu Y.Q, Li H, et al. Second-order phase transition in two-dimensional cellular automaton model of traffic flow containing road sections. Physica A, 2007,385:659-666
    [77]Matsui A, Mashiko T, Nagatani T. Traffic flow of mobile objects through obstacles: Turning and translational objects. Physica A,2009,388:157-173
    [78]陈若航.CA交通流模型的交叉口控制效应.广西师范大学学报(自然科学版),Sep.1996,14(3):1-5
    [79]陈若航,刘慕仁,孔令江.带有转向的二维CA交通流模型.广西物理,1996,17(3):4-7
    [80]何云,陈若航,吕晓阳.一维DCA交通流模型分析.广西师范大学学报(自 然科学版),1997,15(1):49~53
    [81]陈若航,何云,刘慕仁等.CA交通流模型中的刹车对交通流的影响.西北大学学报(自然科学版),1998,28(1):27~29
    [82]靳文舟,张杰,郑英力.基于细胞自动机理论的交通流模拟模型.华南理工大学学报(自然科学版),2001,29(8):93~96
    [83]靳文舟,张杰,梅冬芳.基于细胞自动机模型的交通流模拟程序.华南理工大学学报(自然科学版),2003,31(5):34~38
    [84]张全,靳文舟,张杰.平面交叉口细胞自动机交通流模型的研究.交通与计算机,2004,22(3):7-11
    [85]吴忠,汪明艳.基于细胞自动机的交通流模拟控制.计算机工程与应用,2004,40(5):214~216
    [86]马道远,沈成武.开放边界的交通流元胞自动机模型与交通容量分析.武汉理工大学学报(交通科学与工程版),2002,26(2):165~168
    [87]吴正.关于交通流中扰动传播和发展的数值模拟.力学学报,2006,38(6):785~791
    [88]Dasgupta S, Oliveira J.C, Vasseur J.P. Dynamic traffic engineering for mixed traffic on international networks Simulation and analysis on real network and traffic scenarios. Computer Networks,2008,52:2237-2258
    [89]Sheu J.B. A quantum mechanics-based approach to model incident-induced dynamic driver behavior. Physica D,2008,237:1800-1814
    [90]Leclercq L, Moutari S. Hybridization of a class of "second order" models of traffic flow. Simulation Modeling Practice and Theory,2007,15:918-934
    [91]Woensel T, Cruz FRB. A stochastic approach to traffic congestion costs. Computers and operations Research,2008, doi:10.1016/j.cor.2008.04.008
    [92]Ngoduy D, Hoogendoorn S.P, Liu R. Continuum modeling of cooperation traffic flow dynamics. Physica A,2009,388:2705-2716
    [93]Komada K, Masukura S, Nagatani T. Effect of gravitational force upon traffic flow with gradients. Physica A,2009,388:2880-2894
    [94]McKee A, McCartney M. Stability and instability in a class of car following model on a closed loop. Physica A,2009,388:2476-2482
    [95]Wei Z.Q, Hong Y.G, Wang D.H. The phase diagram and the pathway of phase transitions for traffic flow in a circular one-lane roadway. Physica A,2009,388: 1665-1672
    [96]Zhu H.B, Lei L, Dai S.Q. Two-lane traffic simulation with a blockage induced by an accident car. Physica A,2009,388:2903-2910
    [97]Blandin S, Bretti G, Cutolo A, et al. Numerical simulations of traffic data via fluid dynamic approach. Applied Mathematics and Computation,2009,210:441-454
    [98]Sakakibara T, Honda Y, Horiguchi T. Effect of obstacles on formation of traffc jam in a two-dimensional traffc network. Physica A,2000,276:316-337
    [99]Jiang R, Wu Q.S. The traffic flow controlled by the traffic lights in the speed gradient continuum model. Physica A,2005,355:551-564
    [100]Guan W, He S.Y. Statistical features of traffic flow on urban freeways. Physica A, 2008,387:944-954
    [101]Jiang B. Flow dimension and capacity for structuring urban street networks. Physica A,2008,387:4440-4452
    [102]Blandin S, Bretti G, Cutolo A, et al. Numerical simulations of traffic data via fluid dynamic approach. Applied Mathematics and Computation,2009,210:441-454
    [103]史丹丹,朱正旺,刘好德.考虑车-车通信的双车道元胞自动机交通流模型.公路交通科技,2009,26(S1):142~146
    [104]卢凯.不同交通流状况下的交叉口信号控制策略.公路交通科技,2006,23(4):128~131
    [105]Rickert M, Nagel K, Schreckenberg M, et al. Two lane traffic simulations using cellular automata. Physica A,1996,231:534-550
    [106]Chowdhury D, Wolf D.E, Schreckenberg M. Particle hopping models for two-lane traffic with two kinds of vehicles:effects of lane changing rules. Physica A,1997, 235:417-439
    [107]Meng J.P, Dai S.Q, Dong L.Y, et al. Cellular automaton model for mixed traffic flow with motorcycles. Physica A,2007,380:470-480
    [108]Jia B, Jiang R, Wu Q. S, et al. Honk effect in the two-lane cellular automaton model for traffic flow. Physica A,2005,348:544-552
    [109]Knospe W, Santen L, Schadschneider A, et al. Disorder effects in cellular automata for two-lane traffic. Physica A,1999,265:614-633
    [110]Knospe W, Santen L, Schadschneider A, et al. A realistic two-lane traffic model for highway traffic. J.Phys.A,2002,35:3369-3388
    [111]Nagel K, Wolf D.E, Wagner P, et al. Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E,1998,58:1425-1437
    [112]Knospe W, Santen L, Schadschneider A, et al. An empirical test for cellular automaton models of traffic flow. Phys. Rev. E,2004,70:016115
    [113]Li K.P, Gao Z.Y. Controlling the states of traffic flow at the intersections. Int. J. Mod.Phy.C,2004,15:553-562
    [114]Brockfeld E, Barlovic R, Schadschneider A, et al. Optimizing traffic lights in a cellular automaton model for city traffic. Phys. Rev. E,2001,64:056132
    [115]Gershenson C. Self-organizing traffic lights, Complex Systems,2005,16(1): 29-53
    [116]Huang D.W, Huang W. N. Optimization of traffic lights at crossroads. In. J. Mod. Phys. C,2003,14:539-548
    [117]Fouladvand M.E, Sadjadi Z, Shaebani M. R. Optimized traffic flow at a single intersection:traffic redponsivr signalization. J. Phy. A:Math. Grn,2004,37: 516-576
    [118]Fouladvand M.E, Shaebani M.R, Sadjadi Z. Intelligent controlling simulation of traffic flow in a small city network. J. Phys. Soc. Jpn,2004,73:3209-3214
    [119]高自友,李克平.城市平面交叉路口辅助信号灯控制系统.中国,中文,专利授权号:200410006109.2,授权日期:2005.11.23
    [120]Gao Z.Y, Li K.P, Li X.G, et al. Scaling laws of the network traffic flow. Physica A,2007,380:577-584
    [121]Chowdhury D, Schadschneider A. Self-organization of traffic jams in cities:Effects of stochastic dynamics and signal periods. Physical Review E (Rapid Communications),1999,59:R1311-R1314
    [122]Huang D.W, Huang W.N. Traffic signal synchronization. Phys. Rev. E,2003, 67:056124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700