大规模突发事件应急物资调度基本模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业化及全球化进程的加剧、社会结构的变迁,各种大规模突发事件如地震、洪水等自然灾害、SARS、甲型H1N1流感等公共卫生事件等正越来越频繁地侵袭着我们生存的世界,影响、威胁着我们的生活甚至生命。大规模突发事件除了具有一般突发事件的特征以外,还具有受灾面积大、影响范围广、持续时间长、受灾人群多、应急需求点多、应急物资需求量大、应急物资供应不足的特点,这些特点决定了大规模突发事件应急物资的调度的复杂性远远超出一般规模的突发事件,不仅要考虑单出救点到多需求点的调度,还要考虑多出救点到多需求点的调度;不仅要考虑不同阶段应调度不同种类的应急物资,还要考虑不同阶段应采用不同的调度方式。本文首先对应急物资的全过程调度进行了定性研究、然后对应急物资初期、中期、末期三个阶段进行了较为具体的定量研究。
     首先,目前有关应急物资调度的文献主要针对的是中小规模突发事件,对大规模突发事件研究尤其是对大规模突发事件全过程调度的研究不足,而这一研究是对大规模突发事件各阶段调度建模的前提。本文分析了大规模突发事件应急物资调度不同于中小规模突发事件应急物资调度的特征,根据这些特征以及大规模突发事件应急实例设计了大规模突发事件的全过程模型,对该模型作了阐述、剖析,并指出了使应急物资调度过程正常运行的运行保障;
     其次,针对大规模突发事件的应急初期在常规筹措方式下应急物资供不应求的状况,结合各厂家的产能、成本和到达事发地的时间,以最小化应急时间和最小化应急成本为目标分量建立了多目标数学模型,研究应急物资的缺口部分在各厂家之间的合理分配以使不足的应急物资能更快、更经济地筹集齐全并运送到灾区,提出了基于二维欧式距离客观赋权的模糊算法,并用算例验证了模型和算法的有效性和可行性。
     再次,研究了大规模突发事件在应急中期的物资调度模型。经过一段时间的应急物资筹集后,在应急中期应急物资供应基本能满足各需求点的需求,这时调度的任务是如何将应急物资从多应急供应点调度到多应急需求点。本文一方面以应急成本最小、延误时间最少为目标,先后建立了对应变量为确定型实数、不确定的区间数以及模糊三角数的单目标模型并进行求解;另一方面以应急成本和延误时间同时最少为目标建立了确定性多目标模型,利用逐步法和基于二维欧式距离客观赋权的模糊算法进行了求解,分析比较了两种方法的计算结果并得出如下结论:在应急延误时间为首要目标的情况下,应采用逐步法;而在以应急成本为首要目标的情况下,应采用二维欧式距离客观赋权的模糊算法。
     最后,研究了大规模突发事件应急后期的物资调度。在大规模突发事件应急后期,快速消费品为主要的应急物资,而该阶段应急供应点较多、应急供应量较充足。本文基于大规模突发事件应急后期应急需求点对快速消费品的持续、动态需求的特点,结合每一时间段所需要单种或多种快速消费类应急物资的数量确定在各个时间点上应从哪一个或哪几个应急物资供应点调度相应数量的应急物资以使应急成本最小,建立了0-1混合整数规划模型,给出了拟多项式算法,并用算例验证了模型的有效性。
In recent years, with the advancement of the industrialization and globalization and the vicissitude of social structures, many kinds of large-scale natural disasters and public healthy events are attacking the world where we survive more and more frequently, on the same time, affecting and threatening our lifestyle or even lifecycle Besides the characteristics of common-scale emergencies, the large-scale emergencies have remarkable characteristics such as the big disaster areas, the broad influence scope, the long duration, the surprising disaster crowds, quite a few of emergency demand points, the big demand of emergency commodities and the insufficient provision of emergency commodities. The large-scale emergencies problems show more complexity degree than common-scale emergencies. Not only the distribution frow a single rescuing point to multi-demand points, but also the distribution frow multi-rescuing points to multi-demand points are considered, both different commodities type and different ways in different stage of distribution are considered too. This dissertation firstly conducts a qualitative study on the entire process distribution of emergency commodity, and then conducts a more concrete quantitative study on the initial period, the intermediate stage, the last stage of emergency commodities. The innovatory achievements are as follows:
     Firstly, the related literatures on emergency commodities distribution focus on the small or middle scale of emergencies but the literatures on the large-scale emergencies, especially the entire process distribution are insufficiency. The premise of other researchs about various stages of distributing emergencies commodities is the foundation of thorough study. This dissertation analyzes the characteristic that the commodities distribution of large-scale emergencies is different from that of the middle or small scale emergencies, and designes the entire process model of large-scale emergencies according to these characteristics and related examples, then the elaboration of the model pointes out the movement safeguard which causes the distribution process of emergency commodities in a normal way.
     Secondly, this dissertation establishes a multi-objective mathematics model according to the situation that the supply of emergency commodities can't meet their demand in initial emergency period. The model takes the least emergency time and cost as objectives and takes the producing capability of every factory, cost and time arriving to the disaster areas from these factories as variables. The dissertation studies how to rationally distribute scare emergency commodities between every factory when there are no enough emergency commodities, then the related factories have to be mobilized to produce emergency commodities and transport them to disaster areas economically and quickly. A mathematical model is established by considering producing capability of every factory, costs and time spenting from every factory to disaster areas and by taking the minimum emergency time and the minimum emergency cost as objective functions. An improved fuzzy mathematics algorithm is proposed, and an example is given to confirm the validity and feasibility of the model.
     Thirdly, the dissertation estalishs the commodities distribution model in intermediate stage of large-scale emergencies. After a period of commodity collection, the supply of emergency commodities can meet basically the demand of various demand points in the emergency intermediate stage and the duty is how to distribute the emergency commodity from multi-supply centres to multi-demand centres. This dissertation takes the minimal emergency cost and the minimal delay time respectively, as well as integration both of them. The dissertation establishes some single-objective models and a multi-objective model when an emergency demand is a deterministic real number, an indefinite sector number or a fuzzy trigonometrical number. A fuzzy algorithm which is weighted in objectivity based on western-style distance of two demensional is presented and the example is given to confirm the validity and feasibility of the model.
     Finally, the commodities distribution in the later stage of large-scale emergency is studied. In the later period of large-scale emergency, there are more candidated emergency supply points and the supply of emergency commodities is sufficient. At the same time, the fast consumption goods are main emergency commodities. Based on this characteristic of the continuous dynamical demand of emergency demand point to the fast consumption goods, the dissertation discusses how to determine supply points of emergency commodities and corresponding quantities of emergency commodities at every time point according to the demand of a kind or a few kinds of emergency commodities in each time section under the premise that there are many candidated emergency supply points. It establishes a 0-1 mixed integer-programming model in order to make the emergency cost smallest and gives the appropriate algorithm to confirm the validity of the model with the example.
引文
[1]Adenso-diaz B,Rodriguez F.1997.A simple search heuristic for the MCLP:Application to the location of the ambulance bases in a rural region[J].OMEGE,25:181-187.
    [2]Ahmed S Z,Hsing C.1997.A Simulation Model for the Analysis and Management of an Emergency Service System[J].SocioEeon.Plann.Sci.,31(3):173-189.
    [3]Akena M R,Rajan B,Eric M D,et al 2005.Base station location and channel allocation in a cellular network with emergency coverage requirements[J].European Journal of Operational Research,164(2):189-226.
    [4]Al-khedhairi S A.2005.Enhancements to Two Exact Algorithms for Solving the Vertex p-center Problem[J].Journal of Mathematical Modelling and Algorithms,4:129-147.
    [5]Allison E J,Gainor D.2002.Recommendations for ITS technologies in emergency medical services[J].ITS America,24:1106-1123.
    [6]Alsnih R,Stopher P R.2004.Review of procedures associated with devising emergency evacuation plans[J].Transportation Research Record,4:89-97.
    [7]Andreatta G,Mason F M.1994.A note on a perfect forward procedure for a single facility dynamic location/relocation problem[J].Operations Research Letters,15:81-83.
    [8]Balinski M L.1965.Integer programming methods and uses of computation[J].Management Science,12:253-313.
    [9]Ballou R.1968.Dynamic warehouse location analysis[J].Journal of Marketing Research,5:271-276.
    [10]Barbarosoglu Y.2004.A Two-stage Stochastic Programming Framework for Transportation Planning in Disaster Response[J].Journal of the Operational Research Society,55:43-53.
    [11]Barbarosoglu Y.2004.A Two-stage Stochastic Programming Framework for Transportation Planning in Disaster Response[J].Journal of the Operational Research Society,55:43-53.
    [12] Bastian M, Volkmer M. 1992. A perfect forward procedure for a single facility dynamic location/relocation problem [J]. Operations Research Letters, 12: 11-16.
    [13] Berman O al. 1990. Conditional location problems on networks [J]. Transportation Science, 24: 77-78.
    [14] Bianchia G, Richard L C. 1988. A hybrid fleet model for emergency medical service system design [J]. Social Science & Medicine, 26(1): 163-171.
    [15] Brimberg J, ReVelle C. 1998. A bi-objective plant location problem [J]. Cost vs. Demand Served. Location Science, 6:121-135.
    [16] Chardaire P, Slitter A, Costa M. 1996. Solving the dynamic facility location problem [J]. Networks, 28: 117-124.
    [17] Chilling D, Elzinga J, Cohon R, et al 1979. The Team/fleet models for simultaneous facility and equipment [J]. Transportation Science, 13(2): 163-175.
    [18] Craig C. 2004. A World of Emergencies: Fear, Intervention, and the Limited of Cosmopolitan Order [J]. The Canadian Review of Sociology and Anthropology Toronto, 41(4): 373-396.
    [19] Dae-Ho B. 2000. The AHP approach for selecting an automobile purchase model [J]. Information Management, 38: 289-297.
    [20] Dantzig G B, Ramser J H. 1959. The truck dispatching problem [J]. Management Science, 6(1): 80-91.
    [21] Daskin M S. 1995. Network and Discrete Locations: Models, Algorithms, and Applications [M]. Wiley, New York.
    [22] Daskin M S. 1983. A maximal expected set covering location model: Formulation, properties, and heuristic solution. Transportation Science, 17: 48-69.
    [23] Davies H, Walters M. 1998. Do all crisis have to become disasters? Risk and risk mitigation [J]. Disaster Prevention and Management, 7: 78-105.
    [24] Desrochers M J K, Lenstra M. 1990. A Classification Scheme for Vehicle Routing and Scheduling Problems [J]. European Journal of Operational Research, 46: 322-332.
    [25] Drezner Z. 1995. Dynamic facility location: the progressive p-median problem [J]. Location Science, 3:1-7.
    [26] Drezner Z, Wesowlosky G O. 1991. Facility location when demand is time dependent [J]. Naval Research Logistics, 38: 763-777.
    [27] Drezner Z. 1995. On the conditional p-median problem [J]. Computers and Operational Research, 1995,22: 84-91.
    [28] Dror M, Trudeau P. 1990. Split Delivery Routing [J]. Naval Research Logistics, 37: 383-402.
    [29] Equi L, Gallo G, Marziale S A. 1996. Weintraub. A Combined Transportation and Scheduling Problem [R]. Pisa University, Pisa, Italy, 8: 523-538.
    [30] Fiedrich F, Gehbauer F, Rickers U. 2000. Optimized resource allocation for emergency response after earthquake disaster [J]. Safety Science, 25:41-57.
    [31] Fiorucci P, Gaetanti F, Minciardi R, et al 2004. Real time optimal resource allocation in national hazard management [C]. Proceeding of IEMSS 2004- complexity and integrated resource management Osnabreuck (Germany).
    [32] Fisher M, Tang B. 1995. A Network Flow Based Heuristic for Bulk Pick Up and Delivery Routing [J]. Transportation Science, 29: 45-55.
    [33] Frantzeskakis M, Watson G. 1989. The use of state space relaxation for the dynamic facility location problem [J]. Annals of Operations Research, 18: 189-212.
    [34] Galvao R D, Santibanez G. 1992. A Lagrangean heuristic for the pk-median dynamic location problem [J]. European Journal of Operational Research, 58: 250-262.
    [35] Gendreau M, Guertin F, Potvin J Y. 1999. Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching [J]. Transportation Science, 33: 381-390.
    [36] Gendreau M, Laporte G, Semet F. 2001. A dynamic model and parallel tabu search heuristic for real-time ambulance relocation [J]. Parallel computing, 27:1641-1653.
    [37] Geogre F. 1998. List. Routing and Emergency-Respond-Team Sitting for high-level radio active waste shipments. IEEE Transaction on Engineering Management, 4 5(2): 1104-1110.
    [38] George F L. 1998. Routing and Emergency-Response-Team Sitting for high-level radioactive waste shipment [C]. IEEE Transactions on Engineering Management, 45(2): 141-152.
    [39] Haghani A, Hu H J, Tian Q. 2003. An optimization model for real—time emergency vehicle dispatching and routing [C]. 82st Annum Meeting of the Transportation Research Board.
    [40] Hakimi. S L. 1964. Optimum Location of Switching Centers and the Absolute Centers and Medians of a Graph [J]. OR, 12: 450-459.
    [41] Helene D. 1995. Scientist and disaster management [J]. Disaster Prevention and Management. Bradford, 4 (2): 14-23.
    [42] Henry P C. 1998. Decision-making during a mine fire escape. IEEE Transaction on Engineering Management, 45(2): 153-162.
    [43] Jean L W. 1998. FMIS: a decision support system for forest fire prevention and fighting [J]. IEEE Transaction on Engineering Management, 45(2): 127-131.
    [44] John E E, Donna A P, Darlena A S. 2004. Home Study Program: Emergency preparedness -Is your OR ready? Association of Operation Room Nurses [J]. AORN Journal. Denver, 79 (6): 1276-1282.
    [45] Keller A. I. 1997. Meniconi, MAL-shammari, I Cassidy k, analysis of fatality, injury, evacuation and cost data using the Bradford Disaster Scale, Disaster Prevention and Management Bradford, 6: 33-53.
    [46] Kolesar P, WalkerW E. 1974. An algorithm for the dynamic relocation of fire companies [J]. Opns Res, 22: 249-274.
    [47] Laporte G. 1992. The Vehicle Routing Problem: An Overview of Exact and Approximate Algorithms [J]. European Journal of Operational Research, 59: 345-358.
    [48] Leorch A G, Boland N, Johnson E I, et al 1996. Finding an optimal stationing policy for the US army in Eruope after the force drawdown [J]. Military Operations Research, 2: 39-51.
    [49] Liang G S. 1999. Fuzzy MCDM based on ideal and anti-ideal concepts. European Journal of Operational Research, 112: 682-691.
    [50] Linet O. 2004. Emergency Logistics Planning in Natural Disasters [J]. Annal of Operation Research, 129: 218 -219.
    [51] Lodish L M. 1970. Computational limitations of dynamic programming for warehouse location [J]. Journal of Marketing Research, 7: 262-263.
    [52] Logue J. 1996. Disasters: the environment and public health: Improving our response [J]. American Journal of Public Health, 86(9): 1207-1219.
    [53] Luis G, Acosta E, Roberto D G. 2003. Dual-based heuristics for a hierarchical covering location problem [J]. Computers and Operations Research, 30:138-156.
    [54] Maggie C Y, Tarn V M, Tummala R. 2001. An application of the AHP in vendor selection of a telecommunications system [J]. Omaga, 29:171-182.
    [55] Masood A B, Amr K M, Colonel A Alsaye. 1998. A multi-obiective model for locating fire stations [J]. European Journal of Operational Research, 110:243-260.
    [56] Mesa J A. 1991. Multiperiod medians on networks [J]. Operations Research, 25: 87-95.
    [57] Miller H E, Mahmassani H S. 1998. Least possible time paths in stochastic, time-varying networks [J]. Computer Operations. Res., 25(12): 1110-1128.
    [58] Minieka E. 1970. The m-center problem [J]. SIAM Rev., 12: 138-139.
    [59] Morlacchi P. 1999. Vendor evaluation and selection: the design process and a fuzzy-hierarchical model [C]. Proceedings of 8th IPSERA Conference, Dublin.
    [60] Narasimhan R. 1983. An analytical approach to supplier selection [J]. Journal of purchasing and Materials Management, 3: 27-32.
    [61] Patricia D M, Stefan N, Pierre H. 2005. Heuristic procedures for solving the discrete ordered median problem [J]. Annals of Operations Research, 136:145-173.
    [62] Rathi A K, Church R L and Solanki R S. 1993. Allocating Resources to Support a Multicommodity Flow with Time Windows [J]. Logistics and Transportation Review, 8:167-188.
    [63] Revelle C S, Eiselt H A. 2005. Location and analysis: A synthesis and survey [J]. European Journal of Operational Research, 165(1): 1-19.
    [64] Ribeiro C, Soumis F. 1994. A Column Generation Approach to the Multi-Depot Vehicle Scheduling Problem [J]. Operations Research, 42:41-52.
    [65] Robert J M, Myles R. 1981. Revision the rural hospital disaster plan: A role for the EMS system in managing the multiple casualty incident [J]. Annals of Emergency Medicine, 10(1): 39-44.
    [66] Robert T. 2000. Stafford Disaster Relief and Emergency Assistance Act [J]. As amended by Public Law, 2: 106-390.
    [67] Rodriguez P. et al 1998. Using Global Search Heuristics for the Capacity Vehicle Routing Problem [J]. Computers and Operations Research, 25: 407-417.
    [68] Rosenblatt M J. 1986. The dynamics of plant layout [J]. Management Science, 32: 76-86.
    [69] Ruth B, Nathan P, Melanie W. 1999. An exploratory study of bed management [J]. Journal of Management in Medicine, 13(4): 234-250.
    [70] Saldanha F G, Captivo M E. 1998. A heuristic approach for the discrete dynamic location problem [J]. Location Science, 6:211-223.
    [71] Salhi S, Gamal M D H. 2003. A Genetic Algorithm Based Approach for the Uncapacitated Continuous Location-Allocation Problem [J], Annals of Operations Research, 123:203-222.
    [72] Scott A J. 1971. Dynamic location-allocation systems: some basic planning strategies [J]. Environment and Planning, 3: 73-82.
    [73] Sherali H D, Subramanian S. 1999. Opportunity cost—based models for traffic incident response problem [J]. Journal of Transportation Engineering, 125 (3): 176-185.
    [74] Stefan C, Dorota K. 1985. Multiobjective programming in optimization. Fuzzy Sets and System, 16(2): 123-138.
    [75] Stefan C, Dorota K. 1996. Multiobjective programming in optimization of interval objective functions-a generalized approach. European Journal of Operation Research, 94: 594-598.
    [76] Stefan C, Dorota K. 1996. Multiobjective programming in optimization of interval objective functions- a generalized approach. European Journal of Operation Research, 94: 594-598.
    [77] Szidarovszky F, Gershon M E, Duckstein L. 1986. Techniques for Multiobjective Decision Making in Systems Management [J]. Amsterdam: Elsevier.
    [78] Tagaras G, Lee H L. 1996. Economic models for vendor evaluation with quality cost analysis [J]. Managemant Science, 42(11): 1531-1543.
    [79] Takeo Y. 1996. A network flow approach to a city emergency evacuation planning [J]. Internation Journal of Systems Science, 27(10): 931-936.
    [80] Tassio A. C. 2002. Warren B. P. A Multiplier Adjustment Method for Dynamic Resource Allocation Problems [J]. Transportation Science, 34, (2): 150-164.
    [81]Tavakoli A.2004.Implementing a mathematical model for locating EMS vehicles in Fayetteville NC[J].Computers and Operations Research,31:1549-1563.
    [82]Tavakoli A,Constance L.2004.Implementing a mathematical model for locating EMS vehicles in Fayetteville[J].Computers & Operations Research,31(9):1549-1563.
    [83]Teargny T,Renayoun R,Montgolgier J,Larichev O.1971.Linear programming with multiobjective functions step method(STEM)[J]Math.Programming,1(2):366-375.
    [84]Torgaes C,Re Velle C.1972.Optimal Location under time or distance Constraints [C].Papers of Regional Science Association,28:133-143.
    [85]Toth P,Vigo D.2002.SLAM Monographs on Discrete Mathematics and Application[J].The Vehicle Routing Problem,4:56-78.
    [86]Trevor H,Christopher R M.2005.Improving Supply Chain disaster Preparedness A Decision Process for secure site location[J].International Journal of Physical Distribution and Logistics Management,5:120-154.
    [87]Uriel R.2001.Coping with Crises:the manegement of disasters[J].Riots and Terrorisms,10:123-156.
    [88]Vladimir M,Charles R.1994.The queuing probabilistic location set covering and some extension[J].Socio-Economic Planning Science,5:12-28.
    [89]Wad M E.2002.Some Development in Transportation Network Anlysis and Design with Application to Emergency Management Problems[D].Dissertation.North Carolina State University,93-123.
    [90]Walter W H.1998.Reduction of earthquake risk in the United States:bridging the gap between research and Practice.IEEE Transaction on Engineering Management,45(2):176-180.
    [91]Wang Q,Batta R,Bhadury J,et al 2003.Budget constrained location problem with opening and closing of facilities[J].Computers and Operations Research,30:2047-2069.
    [92]Warszawski O.1973.Multi-dimensional location problems[J].Operations Research Quarterly,24:165-179.
    [93]Wesolowsky G O,Truscott W G.1975.The multiperiod facility location allocation problem with relocation of facilities[J].Management Science,22:57-69.
    [94]Wesolowsky G O.1973.Dynamic facility location[J].Management Science,19:1241-1248.
    [95]Wlodzimierz O.1999.On the distribution approach to location problems[J].Computers and Industrial Engineering,37:595-612.
    [96]Yang Sai-ni,Hamedi M,Haghani A.2005.An on-line emergency vehicle dispatching and routing model with area coverage constraints[C].84th Annual Meeting of the Transportation Research Board.
    [97]Yi W,Ozdamar L.2007.A dynamic logistics coordination model for evacuation and support in disaster response activities[J].European Journal of Operational Research,3:1177-1193.
    [98]车颍涛.2007.时间约束下的应急资源调度模型及算法研究[D].洛阳:河南大学硕士学位论文.
    [99]陈华友.2002.多目标决策问题的广义折衷解研究[J].运筹与管理,11(6):35-40.
    [100]陈娜.2003.基于国民经济动员状态下的物资调运优化分析[D].合肥:安徽大学硕士学位论文.
    [101]陈志宗,尤建新.2006.重大突发事件应急救援设施选址的多目标决策模型[J].管理科学,19(4):10-14.
    [102]池宏,计雷,谌爱群.2003.由突发事件引发的“动态博弈网络技术”的探讨[J].项目管理技术,1:16-20.
    [103]戴更新,达庆利.2000.多资源组合应急调度问题的研究[J].系统工程理论与实践,9:52-55.
    [104]方磊,何建敏.2003.应急系统优化选址的模型及其算法[J].系统工程学报,1:49-54.
    [105]方磊.2008.基于偏好DEA模型的应急资源优化配置[J].系统工程理论与实践,5:98-104.
    [106]高淑萍,刘三阳.2003.基于联系数的多资源应急系统调度问题系统[J].工程 理论与实践,6:113-115.
    [107]高淑萍,刘三阳.2003.应急系统调度问题的最优决策[J].系统工程与电子技术,10:1222-1224.
    [108]郭瑞鹏.2006.物资调运时间为区间数的最短路问题研究[J].北京理工大学学报(社会科学版),6:29-30.
    [109]郭瑞鹏.2006.应急物资动员决策的方法与模型研究[D].北京理工大学博士学位论文,103-104.
    [110]韩强.2007.多目标应急设施选址问题的模拟退火算法[J].计算机工程与应用,43(30):182-183.
    [111]何建敏,刘春林.2007.限制期条件下应急调度问题的模糊优化方法[J].控制与决策,3:318-321.
    [112]何建敏,刘春林,曹杰.2005.应急管理与应急系统--选址、调度与算法[M].科学出版社,98-136.
    [113]何建敏,刘春林,尤海燕.2002.应急系统多出救点的选择问题[J].系统工程理论与实践,11:89-93.
    [114]黄轩.2007.一种基于遗传算法的应急设施点选址方法.漳州职业技术学院学报,9(2):1-3.
    [115]计雷,池宏,陈安等.2006.突发事件应急管理[M].高教出版社,8-21.
    [116]贾传亮,池宏,计雷.2005.基于多阶段灭火过程的消防资源布局模型.系统工程,9:12-15.
    [117]姜金贵,梁静国.2009.基于粒子群优化算法的应急资源调度研究[J].运筹学学报,2:53-54.
    [118]李帮义,姚恩瑜.2001.关于最短路问题的一个双目标优化问题[J].运筹学学报,5(4):67-71.
    [119]刘北林,马婷.2007.应急救灾物资紧急调度问题[J].哈尔滨商业大学学报(社会科学版),3:3-5.
    [120]刘诚.2006.供应链网络优化-建模与算法设计[D].中南大学博士论文.
    [121]刘春林,何建敏,盛昭瀚.2001.多出救点应急系统最优方案的选取[J].管理工程学报,1:13-15.
    [122]刘春林,何建敏,盛昭瀚.1999.应急系统调度问题的模糊规划方法[J].系统工程学报,4:351-356.
    [123]刘春林,何建敏,盛昭瀚.1999.给定限制期条件下最小风险路径的选取算法[J].系统工程学报,3:221-226.
    [124]刘春林,何建敏,盛昭瀚.2000.应急模糊网络系统最大满意度路径的选取[J].自动化学报,5:609-615.
    [125]刘春林,何建敏,盛昭瀚.1999.应急系统多出救点选择问题的模糊规划方法[J].管理工程学报,13(3):21-24.
    [126]刘春林,何建敏,施建军.2002.供应链的协作供应问题研究.管理科学学报,4:29-33.
    [127]刘春林,何建敏,施建军.2001.一类应急物资调度的优化模型研究[J].中国管理科学,9(3):29-36.
    [128]刘春林,沈厚才.2003.一类离散应急供应系统的两目标优化模型[J].中国管理科学,4:27-31.
    [129]刘春林,盛昭瀚,何建敏.1999.基于连续消耗应急系统的多出救点选择问题[J].管理工程学报,13(3):13-16.
    [130]刘春林,施建军,李春雨.2002.模糊应急系统组合优化方案选择问题的研究[J].管理工程学报,2002(2):25-28.
    [131]刘家学,郑昌义,刘耀武.带有运输的约束问题及其推广应用.系统工程理论与实践,2:27-130.
    [132]刘建林.2005.基于随机机会约束规划的应急管理中的运输模型[c]//可持续发展的中国交通-2005年全国博士生学术论坛(交通运输工程学科)论文集.北京:中国铁道出版社,84-89.
    [133]罗伯特·希斯.2001.危机管理[M].王成,宋炳辉,金瑛译.北京:中信出版社.
    [134]缪成,许维胜,吴启迪.2007.大规模突发事件应急物资运输问题的研究现状与 发展方向[J].新疆职业大学学报,15(1):35-38.
    [135]缪成,许维胜,吴启迪.2006.应急救援物资运输模型的构建与求解[J].系统工程,24(11):6-12.
    [136]潘郁,余佳,达庆利.2007.群算法的连续性消耗应急资源调度[J].系统工程学报,22(5):556-560.
    [137]戚建刚.2006.突发事件管理中的“分类”、“分级”与“分期”原则-《中华人民共和国突发事件应对法(草案)》的管理学基础[J].江海学刊,6:133-137.
    [138]祁明亮,池宏,赵红,孙颖.2006.突发公共事件应急管理研究现状与展望.管理评论,4:45-45.
    [139]钱颂迪.2002.运筹学[M].北京.清华大学出版社,444-460.
    [140]饶从军,肖新平.2006.多目标决策问题的模糊数学解法[J].武汉理工大学学报,4:700-703.
    [141]于瑛英,池宏,祁明亮等.2008.应急管理中资源布局评估与调整的模型和算法[J].系统工程,26(1):75-81.
    [142]于瑛英,池宏,祁明亮.2008.针对存在传染效应突发事件的资源布局问题研究[J].中国管理科学,5:77-83.
    [143]袁兵,江丽,朱宏辉.2005.一种模糊隶属函数的自动生成算法[J].武汉理工大学学报:交通科学与工程版,29(4):631-633.
    [144]宋明安.2005.紧急救灾物流配送系统模式构建[M].中国台湾:国立交通大学交通运输研究所.
    [145]宋业新,陈绵云,吴晓平.2001.具有模糊信息的多目标运输问题求解[J].模糊系统与数学,15(3):86-89.
    [146]孙崇勇,秦启文.2005.突发事件的两个基本理论问题探讨[J].西南师范大学学报(人文社会科学版),31(2).118-120.
    [147]孙颖,池宏,贾传亮.2006.路政应急管理中资源布局的混合整数规划模型[J].运筹与管理,5:108-111.
    [148]童辉杰,杨雪龙.2003.关于严重突发事件危机干预的研究评述[J].心理科学 进展,11(4):382-386.
    [149]王苏生,王岩.2008.基于公平优先原则的多受灾点应急资源配置算法[J].运筹与管理,17(3):16-21.
    [150]吴国斌.2006.突发公共事件扩散机理研究--以三峡坝区为例[D].武汉:武汉理工大学博士论文.
    [151]谢凡荣.2000.运输网络中求最小费用最大流的一个算法[J].运筹与管理,9(4):33-38.
    [152]徐东,黄定政.2008.从抗震救灾看应急物流建设.www.edit56.com,6..
    [153]徐玖平,李军.2005.多目标决策的理论与方法[J].清华大学出版社,96-110.
    [154]许建国,池宏,祁明亮等.2008.应急资源需求周期性变化的选址与资源配置模型[J].运筹与管理,17(1):11-17.
    [155]薛澜,张强,钟开斌.2003.危机管理:转型期中国面临的挑战[M].清华大学出版社.
    [156]叶兴艺,周朗生.2008.构建应急物流系统与突发公共危机管理[J].商场现代化,4:133-134.
    [157]赵韩涛,王云鹏,王俊喜等.2006.高速公路应急车辆指挥调度优化模型[J].吉林大学学报(工学版),3:336-339.
    [158]赵举海.1990.突发事件及其对策[J].河北法学,2:1-3.
    [159]郑保章,程佳琳.2003.突发事件中政府与传媒的作用探析-由危机看政府与传媒的互动[J].现代传播,125(6):104-106.
    [160]周晓猛,姜丽珍,张云龙.2007.突发事故下应急资源优化配置定量模型研究[J].安全与环境学报,6:113-115.
    [161]朱建明,韩继业,刘得刚.2007.突发事件应急医疗物资调度中的车辆路径问题[J].中国管理科学,15(Special Issue):711-715.
    [162]曾昊,马力,齐善鸿.2004.面向突发事件和危机的企业管理新路径[J].科学学与科学技术管理,25(12):127-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700