考虑制动温升的长下坡段驾驶员视觉控速设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以国家自然科学基金——基于视觉光流率和边缘率的车速控制理论与方法研究(50778142)为依托。我国山地丘陵占总面积比重大,地貌条件复杂,生态环境制约大,山区公路往往存在坡度大、坡道长的连续长大下坡路段,而长大下坡路段车辆制动失效致使车速失控造成的事故数及伤亡人数常年处于高位,交通安全形势严峻。人们所掌握的外部世界信息有80%以上通过视觉获得,视觉信息是驾驶员重要的速度感知源,通过合理的视觉诱导能让驾驶员产生车速高估、车距低估效用,可引诱和强制驾驶员减速。若能从驾驶员视知觉出发,结合长大下坡车辆速度及制动温升特征,进行考虑制动器温升约束下的控速标线设计研究,有助于实现事前驾驶员自主控速,符合并适应我国长下坡事故率高、事故强度大、超载车多、车速过快及可控经济资源有限的具体国情。
     本文首先简述边缘率原始速度定义,从时间与空间频率角度简析边缘率在行车状态下对驾驶员主观车速感知的具体影响,总结边缘率在交通领域的创新应用表现形式,并选取边缘线单元个体间距作为边缘率控制参数。随后,总结国内外长大坡段描述,以我国近年下坡段事故统计数据为基础,从人因、车辆、车速、道路环境等角度分析下坡段事故致因,综合比对国内外研究现状及事故数据、路况、车辆性能差异性,选取制动器温升控制安全值及下坡段较为合理的速度控制阈值。结合相关分析及结论,提出下坡段边缘率控速设计思路,从具体国情出发,确定出控速设计具体研究车型,有机结合能量守恒、汽车动力学、物体运动学等,给出下坡段车辆驱动基本方程,并推导出减速制动下坡功率与制动热能转换的关系式,从能量变化构成的角度对其简化应用进行分析及描述。接下来,在现有基本理论基础上,总结分析现有研究对舒适减速度的取定及其适用范围,在文献实测数据基础上结合下坡特性确定纵坡行驶方向舒适减速度的取值范围,对恒定边缘率控速模型进行局部调整,在实路试验数据基础上总结得出货车敏感ER取值范围。然后,合理考虑应用控速模型减速时的制动功率与制动鼓温升关系变化,确定温升变化约束下的控速标线设计使用方法。最后,给出具体车型参数及预设相关参数下的视觉控速设计实例,在其基础上分析讨论具体车型车重、车速与制动鼓温度变化间的关系。
Constrained by the complex landforms and ecological environment, There are often continuous long steep downgrades when the driver driving on the mountain road. And annual number of accidents and casualties remain high, which are caused by the brake failure resulted the fast speed that out of control. Traffic safety situation of the long steep downgrade is grim. People grasp the 80% outside world information through the vision, and the visual information is driver's important speed sensation source. The reasonable visual induction can let the driver have the vehicle speed over-estimated feeling and under-estimated the effectiveness of distance between vehicles, distance between vehicles, then may guide and force the driver to decelerate. Embark on visual perception of the driver, combined with speed and braking temperature characteristics to analyze the driver visual speed controlling design method for the long steep downgrade, it helps to realize the driver can control speed consciously, and the driver visual speed controlling method is a effective measurement that adapt to the China situation with the high accident rate, the heavy accident intensity, more overloading of vehicles, the excessively quickly vehicle speed and the limited controllable economic resource.
     This paper briefly defined the edge rate, from the perspective of time and spatial frequency, analyzed the edge rate's influence for the driver subjective perception of speed under driving condition, summarized the innovative applications of edge rate in transportation domain, and then selected the individual edge line unit spacing as the edge rate controlled variable. Subsequently, summarized the domestic and foreign description of the long steep downgrade, with the basis of downhill section accident statistics data of our country in recent years, analyzed the cause of the downhill accident from various aspects such as human's reason, vehicles, speed and road conditions. Then synthesis compared to domestic and foreign research of accident data, and the difference of road conditions, vehicles performance, selected brake rising temperature security value and reasonable speed control threshold value for the long steep downgrade. According to related analysis and conclusions, proposed the driver visual speed controlling design conception for the long steep downgrade, from the specific national conditions, determine the vehicle type for the speed control design, combined with conservation of energy, automobile dynamics, object kinematics and so on, the basic drive equations was given, then deduced the mathematical formula about downhill deceleration power and braking energy conversion, and decrypted its simplified application from the sight of energy changes. Next, on the basis of the existing basic theory, summarized and analyzed existing research on the comfort retardation rate, based on the measured data in the literature and combined with downhill characteristics, determined value scope of the comfort retardation rate for the steep downgrade, then made a adjustment to the design model for speed control by using constant edge rate, obtained the sensitive value scope of the edge rate on the basis of real road test data. Considering the relationship of downhill deceleration power and braking energy conversion, determined the logical relation about using the new design model that combined with speed and braking temperature characteristics. Finally, the design example was given, then on the basis the example, analyzed the relationships about vehicle's weight, speed and brake temperature.
引文
[1]Haworth N., Rechnitzer G. Description of fatal crashes involving various casual variables (Report No CR 119) [J]. Canberra:Federal Office of Road Safety,1993.
    [2]Laurent Carnis. The automated speed enforcement system in Great Britain:between a technical revolution and administrative continuity [J]. International Review of Administrative Sciences 2007.73:597.
    [3]Gains, Adrian, Nordstrom, Michael, Heydaker, Benjamin, Hrewsbury, John. The National Safety Camera Programme, Four-year Evaluation Report[R]. University College London, 2005, December.
    [4]Blackburn, R., Gilbert, D.T.. Photographic Enforcement of Traffic Laws:A Synthesis of Highway Practice [J]. NCHRP Synthesis, Transportation Research Board. Washington, DC: National Academies Press,1995.
    [5]Mountain, Linda, Hirst, William, Maher, Mike. A Detailed Evaluation of the Impact of Speed Cameras on Safety[J]. Traffic Engineering and Control,2004,45 (8):280.
    [6]Regan, M.A., Young, K.L., Haworth, N.. A review of literature and trials on intelligent speed adaptation devices for light and heavy vehicles[R]. Report No. R-237/03. Austroads, Sydney, Australia,2003.
    [7]Regan, M. A., Oxley, J. A., Godley, S. T., Tingvall, C.. Intelligent transport systems:Safety and human factors issues[R]. Report No.01/0. Melbourne, Australia:Royal Automobile Club of Victoria (RACV),2001.
    [8]Michael A. Regan & Kristie L. Young Use Of Manual Speed Alerting And Cruise Control Devices By Drivers In New South WALES [J].2004.
    [9]Taylor, M., Lynam, D. and Baruya, A.. The effects of drivers speed on the frequency of road accidents [J]. Transport Research Laboratory TRL Report 421, Crowthorne,2000.
    [10]Silcock, D., Smith, K., Knox, D. and Beuret, K.. What limits speed? Factors that affect how fast we drive. A Foundation for Road Safety Research, Basingstoke[J]. Interim report June 1999.
    [11]Manu Kumar, Taemie Kim. Dynamic Speedometer:Dashboard Redesign to Discourage Drivers from Speeding[C].Conference on Human Factors in Computing Systems,2005.
    [12]MassSAFE. Report on Passive Speed Control Devices[R]. GHSB, August 2004.
    [13]Stuart T. Godley, Thomas J. Triggs, Brian N. Fildes. Speed Reduction Mechanisms of Transverse Lines[J]. Transportation Human Factors,2 (4),297~312.
    [14]MassSAFE. Report on Passive Speed Control Devices Task 20:Speed and Traffic Operations Evaluation[R]. August 2004.
    [15]C.D.威肯斯,J.G.霍兰兹.工程心理学与人的作业[M].上海:华东师范大学出版社,2003:193~196.
    [16]Denton, G.G. The influence of visual pattern on perceived speed [J]. Perception,1980(9): 393~402.
    [17]Drakopoulos A. and Vergou G. Evaluation of the Converging Chevron Pavement Marking Pattern at one Wisconsin Location[J]. A Foundation for Traffic Safety. Washington D.C., July, 2003.
    [18]Drakopoulos A. and Vergou G. An Evaluation of the Converging Chevron Pavement Marking Pattern Installation on Interstate 94 at the Mitchell Interchange South-to-West ramp in Milwaukee County[J]. Wisconsin. Marquette University. Milwaukee, Wisconsin. December 2001.
    [19]Richard, McGee and Farmer. Influence of Experimental Pavement Markings on Urban Freeway Exit-Ramp Traffic Speeds[J]. Transportation Resear Record 1705,2000,3272.
    [20]Katz, Duke and Rakha. Design and Evaluation of Peripheral Transverse Bars to Reduce Vehicle Speeds[C]. TRB 2006 Annual Meeting CD-ROM.
    [21]Agent. Transverse Pavement Markings for speed Control and Acciend Reduction. Transportation Research Record 773[J]. National Research Council, Washington D.C.,1980, 11-14.
    [22]Larih and Flash. Sources of optical information useful for perception of speed of rectilinear self-motion[J]. Journal of Experimental Psychology:Human Perception and Performance, 1990(16):295~302.
    [23]Ballard, Roach, and Dyre. Use of global optical flow rate and discontinuity rate depend on their validity as determinants of ego speed[J]. Proceedings of the 42nd Annual Meeting of the Human Factors and Ergonomics Society,1998,1440~1444.
    [24]H.Shen,Y.Shimodaira,G.Ohashi. Effects of Temporal Frequency on Speed Discrimination and Perceived Speed [Z]. IEEE,2003.
    [25]Haoming Shen, Yoshifumi Shimodaira, Gosuke Ohashi. Speed-Tuned Mechanism and Speed Perception in Human Vision [J]. Systems and Computers in Japan,2005,36 (13): 1-12.
    [26]Liu Bing, Zhu Shunying, Wang Hong, Xia Jing, Sun Qinmei. Design Theory for speed control by using constant edge rate[C]. International Conference of Chinese Transportation Professionals 2009, ASCE,419~424.
    [27]Zhu Shun-Ying, Sun Qin-Mei, Wang Hong. Design theory for speed control by using increasing edge rate[C]. International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009,794~799.
    [28]Corben B., Lenne M., Regan M. and Triggs T. Technology to Enhance Speed Limit Conpliance[J]. Accident Research Centre, Monash University.
    [29]Goudens, R.. Variable message signs and their use on main roads[C]. Technology Transfer Forum. Brisbane:Department of Main Roads, Queensland,1996.
    [30]Bruce N. Janson. Evaluation of Downhill Truck Speed Warning System on 1-70 West of Eisenhower Tunnel [R]. Final Report to the Colorado Department of Transportation Office of Transportation Development,1999, December 15.
    [31]Christopher M. Monsere, Casey Nolan, Robert L. Bertini,Edward L. Anderson, Tarek Abou El-Seoud. Measuring the Impacts of Speed Reduction Technologies:Evaluation of Dynamic Advanced Curve Warning System[J]. Journal of the Transportation Research Board, No. 1918, Transportation Research Board of the National Academies, Washington, D.C.,2005: 98~107.
    [32]Almqvist, S., Nygard, M.. Dynamic speed adaptation demonstration trial with speed regulation in built-up area[Z]. Bulletin 154. Lund University, Sweden,1997.
    [33]Comte, S.L.. Response to automatic speed control in urban areas:a simulator study[J]. Institute for Transport Studies, University of Leeds.1996, ITS Working Paper No.477.
    [34]Andras Varhelyi, Tapani Makinen. The effects of in-car speed limiters:field studies[J]. Transportation Research Part C9,2001:191~211.
    [35]周荣贵,孙家凤,吴万阳.纵坡坡度与坡长限制[J].公路,2003.56(6):70~71.
    [36]杨曼娟,刘兴旺,宋楠.连续下坡路段避险车道使用效果调查分析[J].公路交通科技应用技术版,2008(12):23~26.
    [37]Block.H. Theoretical studies of temperature rise at surfaces of actual contact underoilness lubricating conditions [M]. Proceedings of General Discussion of Lubrication and Lubricants, The Institute of Mechanical Engineers,1937 (2):225~235.
    [38]Brian L. Bowman. Grade Severity Rating System (GSRS)-Users Manual[R]. Federal Highway Administration Office of Safety & Traffic Operations Research and Development, 1989.
    [39]惠鹏.车辆长大下坡联合制动特性研究[D].西安:长安大学,2008.
    [40]顾永田.车辆长大下坡持续制动制动鼓温升试验研究[D].西安:长安大学,2008.
    [41]袁伟.鼓式制动器温升计算模型及其应用研究[D].西安:长安大学,2003.
    [42]苏波,方守恩,王俊骅.基于大货车制动性能的山区高速公路坡度坡长限制研究[M].重庆交通大学学报(自然科学版),2009,28(2):287~297.
    [43]Walter W. Johnson. The Selective Use of Functional Optical Variables in the Control of Forward Speed[R]. Cynthia A. Awe, September 1994. NASA Ames Research Center. Moffett Field, California 94035-1000.
    [44]肖润谋,运伟国,徐田兵.高原长平直线公路汽车行驶安全[J].长安大学学报(自然科学版),2007,27(3):76~79.
    [45]Bryan J. Katz. Dana E. Duke. Hesham A. Rakha. Design and Evaluation of Peripheral Transverse Bars to Reduce Vehicle Speeds[C]. TRB 2006 Annual Meeting CD-ROM. Submission Date:August 1,2005.
    [46]交通部公路司,中国工程建设标准化协会公路工程委员会JTG B01-2003公路工程技术标准[S].北京:人民交通出版社,2003.
    [47]张小东、高建平.高速公路连续长下坡路段行车安全分析[J].山东交通科技,2005,(1):17~19.
    [48]门莹.公路长大下坡路段线形指标对驾驶员心理生理影响的研究[D].西安:长安大学,2006.
    [49]中华人民共和国公安部.2008年全国道路交通事故白皮书[J].北京:公安部,2009.
    [50]王佐,孙忠宁,张江洪.欧洲高速公路长大纵坡设计技术[J].公路,2008,(9):58~61.
    [51]周荣贵.公路连续下坡路段的纵断面控制指标研究[J].公路,2004,(6):46~51.
    [52]刘浩学.连续长大下坡路段安全保障技术研究[R].西安:长安大学,2007.
    [53]Thomas T. Myers. Feasibility of a Grade Severity Rating System[R]. Federal Highway Administration Office of Research Environmental Division,1980.
    [54]吴京梅,何勇.公路连续长大下坡安全处置技术[M].北京:人民交通出版社.2008.11~27.
    [55]潘兵宏,杨少伟,赵一飞.山区高速公路长大下坡路段界定标准研究[J].中外公路,2009.29(6):6-10.
    [56]冯红运.连续下坡路段交通安全与道路纵断面参数的关系研究[D].西安:长安大学,2007.
    [57]Manfred Mitschke, Henning Wallentowitz汽车动力学[M].北京:清华大学出版社,2009.42~157.
    [58]交通部公路科学研究院.中国道路交通安全蓝皮书(2008)[J].北京:人民交通出版社,2009.42.
    [59]洪永福.东风汽车车型手册[M].北京:中国物资出版社,1999.247-273.
    [60]L.鲁道夫.汽车制动系统的分析与设计[M].北京:机械工业出版社,1985.
    [61]郭鸿瑞,鼓式制动器温降试验与仿真模拟研究[D].西安:长安大学,2008.
    [62]Slibar, A., Desoyer, K. Bewegungsgleichungen und Ersatzmodelle des Kraftfahrzeuges in ihrer Beziehung zu den MeBergebnissen des Rolltrommelversuchs[J], ATZ 68 (1966) Heft 1,S.13~20.
    [63]Liihrmann, L., Hupertz, B., Dietz, S. Einsatz der Stromungssimulation in der Aerodynamikentwicklung des Audi A 2[J]. VDI-FVT Jahrbuch 2001, Diisseldorf: VDI-Verlag 2001.
    [64]毛智东,王学林,胡于进.鼓式制动器接触分析[J].华中科技大学学报(自然科学版),2002.30(7):71~74.
    [65]杨世铭,陶文拴.传热学(第三版)[M].北京:高等教育出版社,1998.
    [66]孙琴梅,基于视觉边缘率的驾驶员控速设计研究[D].武汉:武汉理工大学,2008.
    [67]刘兵,基于驾驶员视知觉的车速控制和车道保持机理研究[D].武汉:武汉理工大学,2008.
    [68]Hackenberg,U., HeiBing, B. Die fahrdynamischen Leistungen des Fahrer-Fahrzeugsystems im StraBenverkehr[J], ATZ 84 (1982) Heft 7/8, S.341-345.
    [69]AASHTO.2001 American Association of State Highway and Transportation Officials (AASHTO)[J]. A Policy on Geometric Design of Highways and Streets,2001.
    [70]Christopher R. Bennett, Roger C.M. Dunn. Driver Deceleration Behaviour on a Motorway in New Zealand[J]. Transportation Research Board,1994.
    [71]Christopher R. Bennett. Modelling Driver Acceleration and Deceleration Behaviour in New Zealand. [2010-10].http://www.lpcb.org/lpcb-downloads/papers/1994_model_accel_decel.pd f.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700