胰岛细胞激素敏感性脂肪酶在糖尿病发病中的变化及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分糖尿病大鼠胰岛激素敏感性脂肪酶的变化及意义
     目的:
     激素敏感性脂肪酶(HSL)是细胞内脂质分解的关键酶,对调节细胞内甘油三脂(TG)的含量和细胞脂质分解起着重要作用,而胰岛细胞内TG和脂解中间产物的堆积被认为是2型糖尿病糖脂毒性的重要因素,因此推测胰岛中HSL可能在其中发挥着重要作用。本课题研究的目的旨在通过观察糖尿病大鼠胰岛中HSL和TG的变化,以探讨HSL在2型糖尿病胰岛脂质代谢和糖脂毒性中的作用。
     方法:
     采用雄性wistar大鼠,通过高热量饮食+腹腔注射小剂量链脲佐菌素(STZ,25mg·kg-1)建立糖尿病大鼠模型,根据口服葡萄糖耐量试验(OGTT)和胰岛素分泌试验(IRT)结果将其分为糖尿病高血糖组(DM)和糖尿病正常血糖组(DN,皮下注射胰岛素使其血糖正常化),并设立正常对照组(NC)和单纯高脂饮食组(HF)。4周后,检测血糖、血脂及胰岛素分泌;HE染色和免疫组化评价胰岛的形态及胰岛素含量;分离胰岛抽提胰岛中脂质,检测TG含量;运用逆转录聚合酶链反应(RT-PCR)和免疫印记(western blot)检测胰岛中HSL mRNA和蛋白的表达;测定胰岛细胞游离脂肪酸的释放以代表HSL的活性。
     结果:
     1.与NC组相比,HF组大鼠血糖没有明显变化,但是血浆胰岛素、TG、TC、FFA均明显升高(p <0.05或p<0.01);DM组大鼠血糖、TG、TC、FFA水平显著高于NC组(p <0.05或p<0.01),而胰岛素水平与NC组相似。DN组运用胰岛素纠正了高糖,使血糖正常化的同时,血浆胰岛素增加,血脂明显降低,其中TG和FFA较DM组有显著性差异(p<0.05)。
     2.病理染色显示HF组大鼠胰岛形态比较规则,但体积明显增大,胰岛素表达较NC组没有明显差异,DM组大鼠胰岛形态不规则,体积减少,胰岛素的表达显著降低(p<0.01),DN组大鼠胰岛形态更不规则,体积较DM组有所增加,胰岛素表达也较DM组明显增加(p<0.05)。
     3. HF组大鼠胰岛内TG含量较NC组有明显的增加(p <0.05),DM组胰岛内脂质积聚更严重,大约为NC组的2.15倍(p<0.01),DN组与DM组相比胰岛内的TG含量减少了31.7%(p <0.05),但是仍然明显高于NC组(p<0.01)。
     4.与NC组相比,HF组和DM组大鼠胰岛HSL表达明显增加(p<0.01), DN组与DM组相比,HSL的表达下降(p <0.05),但是仍高于NC组。与NC组相比,HF组和DM组HSL的活性明显增加;DN组与DM组相比,HSL的活性降低。
     结论:
     血糖血脂的升高促进了细胞内脂质沉积,为了维持细胞内脂质代谢的平衡,减轻TG的堆积,肥胖和糖尿病大鼠胰岛内HSL表达和活性发生了代偿性的升高;当纠正高糖,解除糖毒性后,TG堆积减少的同时,HSL也随之降低。
     第二部分体外干预对NIT-1细胞激素敏感性脂肪酶的影响
     目的:
     通过体外细胞培养,观察不同浓度、不同时间,葡萄糖、棕榈酸、胰岛素对小鼠的胰岛细胞(NIT-1细胞)内激素敏感性脂肪酶(HSL)的影响,探讨HSL在NIT-1细胞糖脂代谢中的作用。
     方法:
     NIT-1细胞分别在5 mmol/L、10 mmol/L、15mmol/L、20 mmol/L、25mmol/L、30mmol/L的葡萄糖;在0.125 mmol/L、0.25 mmol/L、0.5 mmol/L棕榈酸;及有或无25ng/ml胰岛素条件下培养24h、48h、72h,测定细胞内甘油三酯的含量,运用逆转录聚合酶链反应(RT-PCR)和免疫印记(western blot)检测细胞内HSL基因和蛋白的表达,并以甘油的释放量代表HSL的活性。
     结果:
     1.高糖环境下细胞内TG含量呈浓度和时间依赖性增加,72h30mmol/L组TG含量较5mmol/L葡萄糖组增加了近1.5倍(p<0.05)。高糖对HSL基因表达的影响呈现先增加后降低的抛物线型作用,蛋白的表达及酶的活性与基因表达相平行。
     2.棕榈酸(PA)干预显示,随着干预浓度和时间的增加,细胞内TG含量轻度增加,PA也促进了HSL基因和蛋白的表达(p<0.05),但是HSL的活性变化不明显(p>0.05)。
     3.高糖高棕榈酸联合干预组细胞内TG含量明显高于5mmol/L葡萄糖组和高糖、高棕榈酸单独干预组(p<0.05)。胰岛素干预进一步加重了细胞内TG的沉积(p<0.05)。高糖高棕榈酸联合干预诱导了HSL的表达和活性(p<0.05),但是较单独的高糖、高棕榈酸干预组降低(p<0.05)。胰岛素对HSL的表达和活性没有明显影响。
     结论:
     高糖高脂造成了细胞内TG的堆积,对HSL呈现先促进后抑制的双向变化。这可能是胰岛细胞为了维持细胞内脂质代谢的平衡及减少脂毒性所进行的适应性调节,是胰岛细胞自我保护机制的重要部分。
Part1 The change and significance of hormone sensitive lipase in the islets of diabetes rats
     Objective
     To explore the roles of hormone sensitive lipase(HSL)in lipids metabolism of islet in type 2 diabetes by observing the change of HSL and triglyceride(TG) in the islets of diabetes rats.
     Method
     Diabetes rats were induced by feeding the fat fat rich food and injecting the streptozotocin (25mg·kg-1). According to the result of blood glucose and insulin lever, the rats were divided into two groups: diabetes with high blood glucose group (DM) and diabetes with normal blood glucose group (DN),normal rats(NC) and rats fed with fat rich food(HF) were provided as controls. Body weight, blood glucose, plasma insulin, plasma lipids and TG in islet were measured. Islet Morph and insulin content used HE staining and SABC method were evaluated. The expression of HSL gene and protein was tested by RT-PCR and western blotting method. The free fatty acid released from islet was represented the activity of HSL.
     Result
     The blood glucose was no difference between HF group and NC group rats, but plasma insulin and plasma lipids in HF group rats were significant elevated compared with NC group(p <0.05或p<0.01). The blood glucose and plasma lipids in DM group rats were significantly increased(p <0.05或p<0.01). The plasma insulin in DM group rats was similar to that in NC group. In DN group, the blood glucose was retrieved, at the same time, plasma insulin was increased and plasma lipids were decreased.
     HE and SABC staining showed that the islet morph of HF group rats was regulation. Compared with NC group, expression of insulin of HF group rats was no change, but the islet volume of HF group rats was overtly increased. The islet morph of DM group rats was irregulation. The expression of insulin and the islet volume of DM group rats were markedly decreased(p<0.01). Compared with DM group,the islet morph of DN group rats was more irregulation, but the islet volume and expression of insulin of DN group rats were increased(p<0.05).
     Compared with NC group, TG in the islets of rat in HF group was significantly increased(p <0.05), TG accumulation in the islets of diabetes rats was more severity, approximately was as 2.15 times as that of NC group(p <0.01). Insulin treatment made islets TG content decreased, but it was still higher than that in NC group(p<0.01).
     At the same time, the expression of HSL in HF and DM group significantly increased(p<0.01), compared with NC group. Normalization of blood glucose made the expression of HSL fall(p <0.05),but still more than NC group. Compared with NC group, the activity of HSL in HF and DM group was markedly increased(p <0.05). Compared with DM group, the activity of HSL in DN group was decreased(p <0.05).
     Conclusion
     The raise of glucose and lipases may be upregulated HSL in islet, so the expression and activity of HSL in the islets of diabetes rats increased, which could be a compensation mechanism to alleviate the TG content in islet and farther to keep the metabolism balance of glucose and lipids.
     Par2 The effects of intervention in vitro on hormone sensitive lipase in NIT-1 cell
     Objective
     To observe the effects of glucose, palmitinic acid and insulin on hormone sensitive lipase in NIT-1 insulinoma cells in vitro, and to investigate the role of HSL in disorder of glucose and lipids metabolism ofβcell .
     Methods
     NIT-1 cells were exposed to various concentrations of glucose(5 mmol/L、10 mmol/L、15mmol/L、20 mmol/L、25mmol/L、30mmol/L), palmitinic acid(0.125 mmol/L、0.25 mmol/L、0.5 mmol/L) and insulin(with or without 25ng/ml) for 24 hours, 48 hours, 72 hours. The content of triglyceride, the expression of HSL mRNA and protein, the activity of HSL were examined. Reverse transcription- polymerase chain reaction (RT-PCR) and western blot were applied in this study.
     Result
     The content of triglyceride in NIT-1 cells was increased in dose-and time-dependent manner, when they were cultured in different concentrations of glucose. It reached approximately 1.5-fold in 30mmol/L glucose after 72 hours, compared with in 5mmol/L glucose. Long-term exposure of NIT-1 cells to high concentrations glucose caused an inverse“v”-like induction of HSL expression. HSL expression firstly increased, and then decreased. The induction was paralleled at the level of enzyme activity, protein, and mRNA expression.
     Palmitinic acid intervention showed that the content of triglyceride in NIT-1 cells was slightly elevated following the increase of palmitinic acid concentration and the extension of intervention time. At the same time, palmitinic acid also promoted the expression of HSL mRNA and protein(p<0.05), but change of HSL activity was not significant(p>0.05).
     The content of triglyceride in NIT-1 cells with high glucose(25 mmol/L) and high palmitinic acid(0.25 mmol/L) was more than that in NIT-1 cells with 5mmol/L glucose,high glucose or high palmitinic acid(p<0.05). triglyceride accumulation was further aggravated with insulin(p<0.05). High glucose and high palmitinic acid induced the expression and activity of HSL(p<0.05), but the induction of high glucose and high palmitinic acid together was lower than that of high glucose or high palmitinic acid along(p<0.05). There was no significant effect of insulin on HSL expression and activity.
     Conclusion
     The triglyceride accumulation in NIT-1 cells was aggravated in dose-and time-dependent manner within the glucose and palmitinic acid, while HSL was regulated bilaterally by high glucose and high palmitinic acid. So HSL plays a critical role in the regulation of intracellular triglyceride levels inβ-cells, and that downregulation of HSL might be part of the defense against glucose and FFA-induced islet dysfunction
引文
1. Zimmet P, Shaw J, Albertit KG. Preventing type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view. Diabete Med, 2003,20(9): 693-702.
    2.王陇德等.《2002综合报告中国居民营养与健康状况调查报告》.人民卫生出版社,2005,6.
    3. Resnick HE, Valsania P, Halter JB, et al. Relation of weight gain and weight loss on subsequent diabetes risk in overweight adults. J. Epidemiol. Community Health, 2000,54(3): 596-602.
    4. McGarry JD. Banting Lecture 2001: Dysregulation of Fatty Acid Metabolism in the Etiology of Type 2 Diabetes.Diabetes, 2002,51(1): 7-18.
    5. Kelley DE, McKolanis TM, Hegazi RAF, et al. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab, 2003,285(4): E906-E916.
    6. Shulman GI. Cellular mechanisms of insulin resistance. J. Clin. Invest, 2000,106(2): 171-176.
    7. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: Implications for human obesity. PNAS, 2000,97(4): 1784-1789.
    8. Zhou YP and Grill V.Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans.J. Clin. Endocrinol. Metab, 1995,80(5): 1584-1590.
    9. Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid-induced cell apoptosis: A link between obesity and diabetes. PNAS, 1998,95(5): 2498-2502.
    10. Harmon JS, Gleason CE, Tanaka Y, et al. Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreasedinsulin gene mRNA level in Zucker diabetic fatty rats. Diabetes, 2001,50(11): 2481–2486.
    11. Shimabukuro M, Zhou YT, Lee Y, et al. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem, 1998,273(6): 3547-3550.
    12. Listenberger LL, Han Xl, Lewis S E, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. PNAS, 2003,100(6): 3077-3082.
    13. Man ZW, Zhu M, Noma Y, et al. Impaired beta-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes, 1997,46(11): 1718-1724.
    14. Kraemer F B, Shen W J. Hormone sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholestery1 ester hydrolysis. J Lipid Res, 2002, 43(10): 1585-1594.
    15. Mulder H, Holst LS, Svensson H, et al. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active inβ-cells. Diabetes, 1999, 48(1): 228-232.
    16. Lindvall H, Nevsten P, Strom K, et al. A novel hormone-sensitive lipase isoform expressed in pancreatic beta-cells. J Biol Chem, 2004,279(5):3828-3836.
    17. Roduit R, Masiello P, Wang SP, et al. A role for hormone-sensitive lipase in glucose stimulated insulin secretion. Diabetes,2001,50(9): 1970-1975.
    18. Mulder H, Yang S, Winzell MS, et al. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes,2004, 53(1):122-128.
    19. Winzell MS, Holm C, Ahren B. Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem Biophys Res Commun,2003,304(2): 273-278.
    20. Winzell MS, Svensson H, Enerback S, et al. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase. Diabetes.2003, 52(8): 2057-2065.
    1. Man ZW, Zhu M, Noma Y, et al. Impaired beta-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes, 1997,46: 1718-1724.
    2. Mulder H, Holst LS, Svensson H, et al. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active inβ-cells. Diabetes, 1999, 48(1): 228-232.
    3.陈秋,夏永鹏,邱宗荫.2型DM大鼠模型的建立与评价.天津医药,2006,34(1):33-35.
    4.郭啸华,刘志红,李恒,等.实验性2型DM大鼠模型的建立.肾脏病与透析肾移植杂志,2000,9(4)∶3 51-355.
    5. Zhou YP, Ling ZC, Grill VE. Inhibitory effects of fatty acids on glucose-regulated B-cell function: association with increased islet triglyceride stores and altered effect of fatty acid oxidation on glucose metabolism. Metabolism, 1996,45(8): 981–986.
    6. Effect of high-fat diet on lypolisis in isolated adipocytes from visceral and subcutaneous. Eur J Nutr, 1999, 38(4): 177–182.
    7. Sullivan P W, Morrato E H, Ghushchyan V, et al. Obesity, Inactivity, and thePrevalence of Diabetes and Diabetes-Related Cardiovascular Comorbidities in the U.S., 2000–2002. Diabetes Care, 2005, 28(7): 1599 - 1603.
    8. Astrup A, Buemann B, Western P, et al. Obesity as an adaptation to a high-fat diet: evidence from a cross- sectional study. Am. J. Clinical Nutrition, 1994; 59(2): 350-355.
    9. Woods SC, Seeley RJ, Rushing PA, et al. A Controlled High-Fat Diet Induces an Obese Syndrome in Rats. J. Nutr, 2003, 133(4): 1081-1087.
    10.杨年红,王重建,许明佳等.饮食对下丘脑神经肽Y基因表达及肥胖影响.中国公共卫生,2006,22(2):163-164.
    11. Lewis GF, Carpentier A, Adeli K, et al. Disordered Fat Storage and Mobilization in the Pathogenesis of Insulin Resistance and Type 2 Diabetes.Endocr. Rev, 2002, 23(2): 201-229.
    12. Coleman DL. Obese and diabetes: two mutant genes causing diabetes obesity syndromes in mice.Diabetologia, 1978, 14(3):141-148.
    13.王咏波,陈璐璐,周慜等.胰岛素治疗对2型糖尿病大鼠肝脂质含量及胰岛素抵抗的影响.中华肝脏病杂志, 2005,13(6):451-454.
    14. Higa M, Zhou YT, Ravazzola M, et al. Troglitazone prevents mitochondrial alterations, cell destruction, and diabetes in obese prediabetic rats. PNAS, 1999, 96(20): 11513-11518.
    15. Lee Y, Wang MY, Kakuma T, et al. Liporegulation in Diet-induced Obesity. THE ANTISTEATOTIC ROLE OF HYPERLEPTINEMIA. J Biol Chem, 2001, 276(8): 5629 - 5635.
    16. Shimabnkuro M,Higa M,Zhou YT,et a1.Lipoapoptosis in beta.Cells of obese prediabe tie fa/fa Pats.Role of sefine palmitoyltransferase over.expression.J Biol Chem,1998,273(49):32487-32490.
    17. Unger RH and Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J, 2001,15(2): 312-321.
    18. Di Paola M,CoceoT.Lonlsso M .Ceramide intepaction with the respiratory chain of heart mitochondfia.Biochemistry,2000,39(22): 6660-6668.
    19. Lee YJ, Chen JC, Amoscato AA, et al. Protective role of Bcl2 in metabolic oxidative stress-induced cell death. J. Cell Sci, 2001, 114(6): 677-685.
    20. Ruvolo PP, Clark W, Mumby M, et al. A Functional Role for the B56 -Subunit of Protein Phosphatase 2A in Ceramide-mediated Regulation of Bcl2 Phosphorylation Status and Function. J Biol Chem, 2002; 277(25): 22847-22852.
    21.王保平.高脂致糖尿病大鼠β细胞功能障碍的机制及胰岛素治疗作用的研究。博士论文,2006,华中科技大学同济医学院图书馆.
    22. Coort SL, Hasselbaink DM, Koonen DP, et al. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes, 2004,53(7): 1655-1663.
    23. Noushmehr H, D'Amico E, Farilla L, et al. Fatty acid translocase (FAT/CD36) islocalized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes, 2005,54(2): 472-481.
    24. Zhou YP, Ling ZC, Grill VE: Inhibitory effects of fatty acids on glucose-regulated B-cell function: association with increased islet triglyceride stores andaltered effect of fatty acid oxidation on glucose metabolism. Metabolism, 1996, 45(8): 981–986.
    25. Lee YHH, Zhou YT, Esser V, et al. Increased lipogenic capacity of the islets of obese rats. A role in the pathogenesis of NIDDM. Diabetes, 1997, 46(3): 408–413.
    26. Berger J J. and Barnard RJ. Effect of diet on fat cell size and hormone-sensitive lipase activity. J Appl Physiol, 1999, 87(1): 227-232.
    27. Vaughan M, Berger JE, Steinberg D. Hormone sensitive lipase and monoglyceride lipase activities in adipose tissue. J.Biol.Chem, 1964, 239(2): 401-409.
    28.ésterlund T. Structure-function relationships of hormone- sensitive lipase. Eur. J. Biochem, 2001, 268(7), 1899-1907.
    29. Lindvall H, Nevsten P, Strom K, et al. A novel hormone-sensitive lipase isoformexpressed in pancreatic beta-cells. J Biol Chem, 2004, 279(5): 3828-3836.
    30. Roduit R, Masiello P, Wang S P, et all. A role for hormone-sensitive lipase in glucose stimulated insulin secretion: A Study in Hormone-Sensitive Lipase-Deficient Mice. Diabetes 2001,50(9): 1970-1975.
    31. Winzell MS, Svensson H, Enerback S, et al. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase. Diabetes, 2003, 52(8): 2057-2065.
    32. Winzell MS, Svensson H, Arner P, et al. The expression of hormone-sensitive lipase in clonalβ-cells and rat islet is induced by long-term exposure to high glucose. Diabetes, 2001,50(10): 2225-2230.
    33. Berger JJ and Barnard RJ.Effect of diet on fat cell size and hormone-sensitive lipase activity. J Appl Physiol, 1999; 87(1): 227-232.
    34. Prentki M, Joly E, El-Assaad W,et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes, 2002, 51(Suppl 3): S405-S413.
    35. Gremlich S, Nolan C, Roduit R, et al. Pancreatic Islet Adaptation to Fasting Is Dependent on Peroxisome Proliferator-Activated Receptor Transcriptional Up-Regulation of Fatty Acid Oxidation. Endocrinology, 2005, 146(1): 375– 382.
    36. Winzell MS, Holm C, and B Ahren. Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem Biophys Res Commun, 2003,304(2): 273-278.
    37. Kraemer F B, Shen W J. Hormone sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholestery1 ester hydrolysis. J Lipid Res, 2002, 43(10): 1585-1594.
    1 Harmon JS, Gleason CE, Tanaka Y, et al. Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes, 2001, 50(11): 2481–2486.
    2王咏波,陈璐璐,周慜等.糖尿病大鼠胰岛中激素敏感性脂酶的变化.中华内分泌代谢杂志, 2007, 22(1):35-36.
    3 Sztalryd C, Kraemer FB: Regulation of hormone-sensitive lipase in streptozotocin- induced diabetic rats. Metabolism, 1995, 44(11): 1391–1396.
    4 Raclot T, Dauzats M, Langin D: Regulation of hormone-sensitive lipase expression by glucose in 3T3–F442A adipocytes. Biochem Biophys Res Commun, 1998(2), 245:510–513.
    5 Smith F, Rouet P, Lucas S, et al. Transcriptional regulation of adipocyte hormone- sensitive lipase by glucose. Diabetes, 2002, 51(2): 293-300.
    6 Winzell MS, Svensson H, Arner P, et al. The expression of hormone-sensitive lipase in clonalβ-cells and rat islet is induced by long-term exposure to high glucose. Diabetes, 2001, 50(10): 2225-2230.
    7 Laybutt DR, Sharma A, Sgroi DC, et al. Genetic Regulation of Metabolic Pathways in -Cells Disrupted by Hyperglycemia. J. Biol. Chem., 2002, 277(13): 10912-10921.
    8 Briaud I, Harmon JS, Kelpe C L, et al. Lipotoxicity of the pancreaticβ-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes, 2001,50(2): 315-321.
    9 Lindvall H, Nevsten P, Strom K, et al. A novel hormone-sensitive lipase isoform expressed in pancreatic beta-cells. J Biol Chem, 2004,279(5): 3828-3836.
    10 Roche E, Farfari S, Witters LA, et al. Long-term exposure of beta-INS cells to high glucose concentrations increases anaplerosis, lipogenesis, and lipogenic gene expression. Diabetes, 1998, 47(7): 1086–1094,
    11 Haber EP , Ximenes HM, Procópio J , et al . Pleiotropic effects of fatty acids on pancreaticβcells. J Cell Physiol, 2002, 194:1212.
    12 De Fronze RA, Gunnarsson R, Bfokman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in no insulin dependent (typeⅡ) diabetes mellitus. J Clin Invest, 1985, 76(1): 149-155.
    13 Ayvaz G, Balos Toruner F,Karakoc A, et al . Acute and chronic effects of different concentrations of free fatty acids on the insulin secreting function of islets. Diabetes Metab, 2002, 28 (6 Pt2): 3S7-12; discussion 3S108-112.
    14 Carpentier A, Mittelman S, Lamarche B, et al. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol Endocrinol Metab, 1999,276(6): E1055–E1066.
    15 Zhou Y-P, Grill V: Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest, 1994, 93(2): 870–876.
    16 Sako Y, Grill V: A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and ?-cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology, 1990, 127:1580–1589.
    17 Elks M: Chronic perifusion of rat islets with palmitate suppresses glucose stimulated insulin release. Endocrinology, 1993,133(1): 208–214.
    18 Bollheimer C, Skelly R, Chester M, et al. Chronic exposure to free fatty acid reduces pancreatic _-cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest, 1998,101(5): 1094–1101.
    19 Kathrin M, Jose O, Pascal B, et al. Monounsaturated fatty acids prevent the deleteriouseffects of palmitate and high glucose on human pancreatic B-cell turnover and function. Diabetes, 2003, 52(3): 726-7331.
    20 Winzell MS, Holm C, and B Ahren. Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem Biophys Res Commun, 2003, 304(2): 273-278.
    21 Berraondo B, Martínez JA. Free Fatty Acids Are Involved in the Inverse Relationship between Hormone-Sensitive Lipase (HSL) Activity and Expression in Adipose Tissue after High-Fat Feeding orβ3-Adrenergic Stimulatio. Obes Res, 2000, 8(3): 255-261.
    22 Frayn KN, Williams CM, Arner P. Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases? Clin Sci Colch, 1996, 90(3): 243–253.
    23 Hu L, Deeney JT, Nolan CJ, et al. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes. Am J Physiol Endocrinol Metab, 2005, 289(6): E1085 - E1092.
    24 Winzell MS, Svensson H, Enerback S, et al. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase. Diabetes, 2003, 52(8): 2057-2065.
    25 Roduit R, Nolan C, Alarcon C, et al. A role for the malonyl-CoA/ long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes, 2004, 53(4): 1007–1019.
    26 Zhou Y-P, Ling Z-C, Grill VE: Inhibitory effects of fatty acids on glucose-regulated B-cell function: association with increased islet triglyceride stores and altered effect of fatty acid oxidation on glucose metabolism. Metabolism, 1996,45(8): 981-986.
    27 Kraemer F B, Shen W J. Hormone sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholestery1 ester hydrolysis. J. Lipid Res,2002, 43(10): 1585-1594.
    28 Clifford GM, McCormick DKT, Vernon RG, Yeaman SJ: Translocation of perilipin and hormone-sensitive lipase in response to lipolytic hormones. Biochem Soc Trans,1997,25(4): S672.
    29 Jocken JW, Langin D, SmitE et al. Adipose TriGlyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) protein expression is decreased in the obese insulin resistant state. Journal of Clinical Endocrinology & Metabolism, 2007, 10.1210/jc. 2006-1318.
    30 Large V, Arner P: Regulation of lipolysis in humans: pathophysiological modulation in obesity, diabetes and hyperlipidaemia. Diabetes Metab, 1998, 24(5): 409–418.
    31 LM Botion and A Green.Long-term regulation of lipolysis and hormone-sensitive lipase by insulin and glucose. Diabetes, 1999, 48(9): 1691-1697.
    32 McTernan PG, Harte AL, Anderson LA, et al. Insulin and Rosiglitazone Regulation of Lipolysis and Lipogenesis in Human Adipose Tissue In Vitro. Diabetes, 2002,51(5): 1493-1498.
    33 Kulkarni RN, Bruning JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell, 1999, 96(3): 329-339.
    34赵家伟,李秀钧.胰岛细胞胰岛素抵抗:2型糖尿病发病机制的主角?中华内分泌代谢杂志,2004,19(3):1-3.
    35赵家伟.慢性高软脂酸、高胰岛素、高糖对HIT-T15细胞PKB苏氨酸磷酸化及胰岛素基因表达的影响:脂、糖毒性致β细胞胰岛素抵抗初探.博士论文,2004,四川大学.
    1. Kraemer F B, Shen W J. Hormone sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholestery1 ester hydrolysis. J. Lipid Res, 2002, 43(10): 1585-1594.
    2. Shen WJ, Liang Y, Hong R, et al. Characterization of the functional interaction of adipocyte lipid-binding protein with hormone-sensitive lipase. J Biol Chem, 2001,276(52): 49443-49448.
    3. Anthonsen MW, R?nnstrand L, Wernstedt C , et al. Indentification of Novel Phosphorylation Sites in Hormone-sensitive Lipase That Are Phosphorylated in Response to Isoproterenol and Govern Activation Properties in Vitr. J Biol Chem, 1998, 273(1): 215-221.
    4. Greenberg AS, Shen WJ, Muliro K, et al. Stimulation of lipolysis and hormone sensitive lipase via the extracellular signal regulated kinase pathway. J Biol Chem, 2001,276(48): 45456-45461.
    5. Smith F, Rouet P, Lucas S, et al. Transcriptional regulation of adipocyte hormone- sensitive lipase by glucose. Diabetes, 2002, 51(2): 293-300.
    6. Berraondo B, Martínez JA. Free Fatty Acids Are Involved in the Inverse Relationship between Hormone-Sensitive Lipase (HSL) Activity and Expression in Adipose Tissue after High-Fat Feeding orβ3-Adrenergic Stimulatio. Obes Res, 2000, 8(3): 255-261.
    7. Osuga, J-i, Ishibashi S, Oka T, et al. From the Cover: Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl. Acad. Sci, 2000, 97(2): 787–792.
    8. Haemmerle G, Zimmermann R, Hayn M, et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem, 2002, 277(7): 4806–4815.
    9. Harada Kj, Shen WJ, Patel Sj, et al. Resistance to high-fat diet-induced obesity andaltered expression of adipose-specific genes in HSL-deficient mice. Am J Physiol Endocrinol Metab, 2003,285(6): E1182-1195.
    10. Mulder H, Holst LS, Svensson H, et al. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active inβ-cells. Diabetes,1999, 48(1): 228-232.
    11. Lindvall H, Nevsten P, Strom K, et al. A novel hormone-sensitive lipase isoform expressed in pancreatic beta-cells. J Biol Chem, 2004,279(5):3828-3836.
    12. Yaney GC, Civelek VN, Richard AM, et al. Glucagon-like peptide 1 Stimulates lipolysis in clonal pancreaticβ-cells (HIT). Diabetes, 2001,50(1): 56-62.
    13. Winzell MS, Svensson H, Arner P,et al. The expression of hormone-sensitive lipase in clonalβ-cells and rat islet is induced by long-term exposure to high glucose. Diabetes,2001,50(10): 2225-2230.
    14. Winzell MS, Holm C, Ahren B. Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem Biophys Res Commun, 2003, 304(2): 273-278.
    15. Roduit R, Masiello P, Wang SP, et al. A role for hormone-sensitive lipase in glucose stimulated insulin secretion. Diabetes, 2001, 50(9): 1970-1975.
    16. Mulder H, Yang S, Winzell MS, et al. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes, 2004, 53(1): 122-128.
    17. Khan AS, Narangoda B, Ahren C, et al. Long-term leptin treatment of ob/ob mice improves glucose-induced insulin secretion. Int J Obs Relat Metab Disord, 2001, 25(6): 816-821.
    18. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes, 2000, 49(11): 1751-1760.
    19. Corkey BE, Deeney JT, Yaney GC, et al. The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J Nutr, 2000,130(2): 299S-304S.
    20. Yaney GC, Korchak HM, Corkey BE. Long-chain acyl CoA regulation of proteinkinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonalβ-Cells. Endocrinology, 2000,141(6): 1989-1998.
    21. Deeney JT, Gromada J, H?y M, et al. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRIβ-Cells). J Biol Chem, 2000(13), 275: 9363-9368.
    22. Winzell MS, Svensson H, Enerback S, et al. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase. Diabetes, 2003,52(8): 2057-2065.
    23. Chan C B, De Leo D, Joseph JW, et al. Increased uncoupling protein-2 levels inβ-cells are associated with impaired glucose-stimulated insulin secretion: Mechanism of action. Diabetes, 2001, 50(6): 1302-1310.
    24. Mulder H, Winzell MS, Contreras JA, et al. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact. J Biol Chem, 2003, 278(38): 36380-36388.
    25. Chung S, Wang S P, Pan L, et al. Infertility and Testicular Defects in Hormone-Sensitive Lipase-Deficient Mice. J Lipid Res, 2004,45(6): 1040-1050.
    26. Kabbaj O, Holm C, Vitale ML, et al. Expression, activity, and subcellular localization of testicular hormone-sensitive lipase during postnatal development in the guinea pig. Biol Reprod, 2001, 65(2): 601–612.
    27. Langfort J, Ploug T, Ihlemann J, et al. Stimulation of hormone-sensitive lipase activity by contractionsin rat skeletal muscle. Biochem J, 2000, 351(Pt 1): 207–214.
    28. Watt M J, Stellingwerff T, Heigenhauser G J F, et al. Effects of plasma adrenaline on hormone-sensitive lipase at rest and during moderate exercise in human skeletal muscle. J Physiol, 2003, 550(1): 325-332
    29. Watt MJ, Krustrup P, Secher N H, et al. Glucose ingestion blunts hormone-sensitive lipase activity in contracting human skeletal muscle. Am J Physiol Endocrinol Metab, 2004, 286(1): E144-E150.
    30. Mulder H, Winzell MS, Contreras JA, et al. Hormone-sensitive lipase null mice exhibitsigns of impaired insulin sensitivity whereas insulin secretion is intact. J Biol Chem, 2003, 278(38): 36380-36388.
    31. Kraemer FB, Shen WJ, Natu V, et al. Adrenal neutral cholesteryl hydrolase: identifycation, subcellular distribution and sex differences. Endocrinology, 2002, 143(3): 801–806.
    32. Li H, Brochu M, Wang S P, et al. Hormone-Sensitive Lipase Deficiency in Mice Causes Lipid Storage in the Adrenal Cortex and Impaired Corticosterone Response to Cortico- -tropin Stimulation. Endocrinology, 2002, 143(9): 3333-3340.
    33. Reynisdottir S, Angelin B, Langin D, et al. Adipose tissue lipoprotein lipase and hormone-sensitive lipase: contrasting findings in familial combined hyperlipidemia and insulin resistance syndrome. Arterioscler Thromb Vasc Biol, 1997, 17(10): 2287– 2292.
    34. Pihlajamaki J, Valve R, Karjalainen L, et al. The hormone sensitive lipase genein familial combined hyperlipidemia and insulin resistance. Eur J Clin Invest, 2001, 31(4): 302–308.
    35. Stumvoll M, Wahl HG, Jacob S, et al. Two novel prevalent polymorphisms in the hormone-sensitive lipase gene have no effect on insulin sensitivity of lipolysis and glucose disposal. J Lipid Res, 2001, 42(11): 1782–1788.
    36. Talmud P, Palmen J, Luan J, et al. Variation in the promoter of the human hormone sensitive lipase gene shows gender specific effects on insulin and lipid levels: results from the Ely study. Biochim Biophys Acta, 2001, 1537(3): 239–244.
    37. Large V, Reynisdottir S, Langin D, et al. Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J Lipid Res, 1999, 40(11): 2059–2065.
    38. Imbeault P, Vidal H, Tremblay A, et al. Age-related differences in messenger ribonucleic acid expression of key proteins involved in adipose cell differentiation and metabolism. J Clin Endocrinol Metab, 2001,86(2): 828–833.
    39. Magre J, Laurell H, Fizames C, et al. Human hormone-sensitive lipase: genetic mapping, identification of a new dinucleotide repeat, and association with obesity and NIDDM. Diabetes,1998,47: 284-286.
    40. Hoffstedt J, Arner P, Schalling M, et al. A Common Hormone-Sensitive Lipase i6 Gene Polymorphism Is Associated With Decreased Human Adipocyte Lipolytic Function. Diabetes, 2001, 50(10): 2410–2413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700