低温非平衡甲烷等离子体发射光谱诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,低压等离子体化学气相沉积技术的研究发展很快,在包括各种薄膜等新型功能材料的制备研究方面取得了令人瞩目的成就。然而目前对等离子体化学气相沉积(PCVD)过程中薄膜的生长机理还缺乏清楚的理解,发展沉积过程中的等离子体的原位诊断显得尤为重要。对等离子体过程诊断的方法有许多,其中发射光谱法(OES)是一种非常好的诊断手段——一种比较简单的非扰动方法。本文就是利用光学发射谱技术研究了CH_4/He、CH_4/H_2气体螺旋波(HWP)放电等离子体内一些活性粒子的光学发射特征、并对其进行了原位测量。重点研究了在CH_4/He、CH_4/H_2这两种体系下它们放电等离子体中基团的分布;分析了不同基团的相对密度随宏观放电条件(射频输入功率、放电气压)的变化规律。结果表明,在两种体系中,甲烷气体放电HWP等离子体空间中存在H(H_α(656.3nm)、H_β(486.1nm)、H_γ(434.1nm))、H_2和CH(431nm)基团等,需要特别指出的是,在CH_4放电等离子体的发射光谱中只出现了H、H_2和CH基团的特征发射谱线,但这并不意味着等离子体中只存在这些基团;在CH_4/He体系下,随射频功率的增加,H_α、H_β、H_γ以及CH相对强度变化的总体趋势都是先增加而后减小的,当工作气压增加时,H_α、H_β以及H_γ的相对强度变化也是呈现先增大而后减小的,但CH基团的相对强度是逐渐减小的;在CH_4/H_2体系下,随着射频功率的增大H_α、H_β、H_γ以及CH基团的相对强度都随着增加,而当放电气压变化时它们都呈现先增大而后减小的趋势。这些结果为等离子体沉积各种薄膜过程的理解及制备工艺参数的调整提供了重要的物理依据和基础数据。
In recent decades, great achievements have been acquired in the preparation of new function materials including various films with the development of low pressure plasma chemical vapor deposition. However, the growth mechanism of some films in the process of plasma chemical vapor deposition (PCVD) remains unclear. At present, the development of the plasma diagnosis in situ in the process of the deposition is of great importance. There are many methods used for the plasma process diagnosis, wherein optical emission spectroscopy (OES) is a powerful diagnostic tool—a simple method without disturbing the reactions. In this thesis, we studied the distributions of different radicals in the CH_4/He, CH_4/H_2 plasmas and the variations of the relative intensities of these radicals with different experimental conditions such as the input rf power and the gas pressure.
     It was showed that the emission lines of H, H_2 and CH radicals had been identified in the methane plasma in the two systems. In the CH_4/He system, the intensities of these active species are initially increased and then decreased as increasing the input rf power, and as the gas pressure increases, the intensity of the CH radical is always decreased, the intensities of H_α, H_βand H_γspecies are initially increased and then decreased; In the CH_4/H_2 system, the relative intensities of H_α, H_β, H_γand CH radicals are increased as increasing input rf power, and the relative intensities of all these radicals are initially increased and then decreased as increasing of the discharge pressure. These experimental results offer the basic data for understanding the process of hydrocarbon thin film deposition.
引文
[1] Dalai A K, Bakhshi N N. Conversion of syngas to hydrocarbons in a tube-well reactor using Co-Fe plasma-sprayed catalyst[J].Fuel Proc Tech, 1997,51:219-238
    [2] hangmuir I, Proc. Nat. Acad[J]. Sci.,1927,14:627
    [3] 中国自然科学基金委员会编.自然科学学科发展战略调研报告,等离子体物理学[M].北京:科学出版社,1994
    [4] 张月萍,许根慧,刘昌俊.甲烷等离子体化学利用及其对新世纪能源、环境和化工的影响[J],化工进展,2001,3:51-56
    [5] A. Banerjee and T. DebRoy, J. Am. Ceram. Soc. 77(1994) 1366
    [6] T. Lagarde, Y. Amal. A. Lacoste and J. Pelletier. Plasma Sources. Science and Technology 10 (2001) 181-190
    [7] 房同珍,螺旋波激发等离子体源的原理和应用,物理(1999)03
    [8] Maria Lucia Perira da Silva, IngH. Tan, 15th Intermational Symposium on Plasma Chemistry 5(2001)1769-1775
    [9] 菅井秀朗[日],等离子体电子工程学,科学出版社,2002
    [10] J.R.罗思[美],工业等离子体工程,第一卷,科学出版社,1998
    [11] S. Summers, H.S. Reehal, G.H. Shirkoohi, The effects of varying plasma parameter-son silicon thin film growth by ECR plasma CVD, 1. Phys. D:Appl. Phys, 2001,34:2782-2791
    [12] R.W. Boswell, F.F. Chen, Helicons—The early years, IEEE. Transactions on Plasma Science, 1997,25:1229-1244
    [13] F.F. Chen, R.W. Boswell, Helicons—The past decade, IEEE. Transactions on Plasma Science, 1997,25:1245-1257/
    [14] 菅井秀郎.等离子体电子工程学[M].科学出版社、OHM社.2002
    [15] F.F.陈著,林光海译.等离子体物理学导论[M].人民教育出版社.1980
    [16] 江南,王珏,凌一鸣.螺旋波等离子体的实验研究[J].真空科学与技术. 2000.20(3):207-209
    [17] 王平,杨银堂,徐新艳等.应用于超大规模集成电路工艺的高密度等离子体源研究进展[J].真空科学与技术.2002.22(4):274-281
    [18] 李效白.等离子体微细加工技术的新进展[J].真空科学与技术.2000.20(3):179-186
    [1] 刘佳宏,三级差分抽气分子束质谱装置的研制及初步诊断,博士论文,2000年,大连理工大学
    [2] 任延同,光学精密工程,1998,6(2):7-14
    [3] Tian Luo et al, J. Phys. Chem. A. 1999. 103:6151-6161
    [4] M Seger. S et al, J. Electrochem. Soc. 1991, 138 (9) :2741-2744
    [5] 陈猛等,清华大学学报,1995,35(4):16-21
    [6] 国家自然科学基金委员会编,等离子体物理学,科学出版社
    [7] I. P Vinogradov et al, Plasma Sources Sci. Technol, 6(1997):307-316
    [8] Pealat. M, et al, J. Appl. Phys. 1981, 152 (4) :2687-
    [9] 凌一鸣,徐建军,介质阻挡无声放电中电子温度和电子能量分布的探针诊断,电子学报,2001,29(2):218-221
    [10] 林揆训,余云鹏等,射频辉光放电等离子体的电探针诊断,核聚变与等离子体物理,1994,14(1):56-64
    [11] 八田吉典:气体放电,近代科学社(1997)
    [12] #12
    [13] 刘宇宏等,差分发射探针在微波等离子体中的应用,核聚变与等离子体物理,1998,18(1):48-51
    [14] Wang En Yao, Intrator T and Hershkowitz N, Rev. Sci. Instrum. 1985,56(4):519
    [15] 韩先伟,Langmuir探针的测量方法 西北工业大学硕士学位论文
    [16] 邓新绿,Langmuir探针实验,大连理工大学研究生讲义
    [17] M.J. Goeckner, J. Goree, T.E. Sheridan, Laser-induced fluorescence characteriz ation of a multidipole filament plasma, Phys. Fluids. B, 1991,3:2913-2921
    [18] 陶孟仙 等离子体特性的静电探针测量技术 佛山科学技术学院学报2000,18(3):11-15
    [19] M.J. hipp, J. T.O' Brien, Temperature and population measurements of n=2 hydro gen atoms in H_2 RF discharges from Ho(Balmer) spectral profiles obtained by intracavity laser spectroscopy, Chem. Phys, 1995,192:355-365
    [20] Kirsch. B, Hanamura. S, andWinefordner. J. D, Spectrochim. Acta, 1984,39B:955-
    [21] Grien. H.R, Plasma Spectroscopy, New York:McGraw-Hill, 1964
    [22] 陈宗柱,高树香编,气体导电(下册),南京工学院出版社
    [23] Dieke. G. H and Crosswhite. H. M, J.Quant. Spectrosc. Radial. Transfer, 1962,2:97-
    [24] Herzberg. G., Molrcular spectra and molecular structure, I. specta of diatomic molecules, (D. Van. Nostrand, New York, 1979),Chap. 5.
    [25] 范康年,谱学导论 高等教育出出版社设
    [26] 徐亦庄,分子光谱理论 清华大学出版社
    [27] G.赫兹堡,分子光谱与分子结构第二卷科学出版社
    [28] G.赫兹堡,分子光谱与分子结构第一卷科学出版社
    [29] J.R. Hollahan, A.T. Bell, Tellchniques and Applications of Plasma Chemistry, John Wiley&Sons, New York(1974)
    [30] O.Auciello,D.1.Flamm[美],等离子体诊断,第一卷,电子工业出版社,1994
    [31] H. Bruzzone, D. Grondona, Magnetic probe measurements of the initial phase in a plasma focus device, Plasma. Phys. Control. Fusion, 1997,39:1315-1326
    [32] H. Kokura, K. Nakamura, I.P. Ghanashev, Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas, Jpn.J. Appl .Phys, 1999,38:5262-5266
    [33] A. Bartnik, M.V. Pyakin, Y.F. Anatoly et al, High-resolution X-ray spectroscopy of multicharged argon and Krypton ion using a Laser-produced X-ray source with a gas puff target, SPIE, 1997,3157:184-193
    [34] M. Mesko, P. Cicman, Y. Ohtsu et al, Energy distribution functions of ions imping ing on substrate in Microwave plasma, J. Phys. D:Appl. Phys, 2004,37:438-444
    [35] Hata. N, Matsuuda. A, Tanaka. K,,Proc. Int. Ion. Engineering Congress, Kyoto, 1983,1475-1462
    [36] Doughty. D.K, DenHartog. E.A, Lawler. J.E, Appl. Phys. Lett, 1985,46(4):352
    [37] Liu. Xiangna, Xu. Gangyi, Solid State Communications, 2001, 119(6):397-401
    [38] Hudis. M, Appl. Phys, 1973,44(6):1489-1496
    [1] 江南,王珏,凌一鸣.螺旋波等离子体的实验研究[J].真空科学与技术.2000.20(3):207-209
    [2] 李效白.等离子体微细加工技术的新进展[J].真空科学与技术.2000.20(3):179-186
    [3] 江南,王珏,凌一鸣.螺旋波等离子体的密度与离子能量分布的诊断[J].真空科学与技术.2002.22(2):112-117
    [4] 刘万东.等离子体物理导论[M].讲义.2002.6
    [5] 菅井秀郎.等离子体电子工程学[M].科学出版社、OHM社.2002
    [6] F.F.陈著,林光海译.等离子体物理学导论[M].人民教育出版社.1980
    [7] 王平,杨银堂,徐新艳等.应用于超大规模集成电路工艺的高密度等离子体源研究进展[J].真空科学与技术.2002.22(4):274-281
    [8] J.P. Klosenberg, B. McNamara, P.C. Htonemann, J. Fluid. Mech., 21(1965),545.
    [9] R.W. Boswell, Phys. Lett. A, 33(1970),457.
    [10] 菅井秀朗【日】,等离子体电子工程学科学出版社,2002
    [11] F.F. Chen, Experiments of helicon plasma sources, J. Vac. Sci. Technol. A,1992,10:1389-1401
    [13] F.F. Chen, Experiments of helicon plasma sources, J. Vac. Sci. Technol. A, 1992,10:1389-1401
    [14] M.A. Lieberman, A. J. Lichtenberg, Principles of plasma discharges and material processing, (John Wiley &Sons. Inc, New York, 1994)
    [15] 王加扣,低压氢等离子体光谱诊断,四川大学学位论文,2005.6
    [1] Dai B,Zhang X L,Gong W M,et al.[J].Energy fuels,2000,14(4):910-914
    [2] 代斌,孙传庆,李文娟,宫为民,等离子体与几种载体共同作用下CH_4/H_2的反应石河子大学学报第22卷第1期2004年第2月
    [3] Steven L Suib, Richard P Zerger, A direct continuous Low-Power Catalytic conversion of methane to High eHydrocarbons Via Microwave Plasma J. Catal, 1993,139:383-391
    [4] Kopytko N, Baronner F, Valorisation Chimique du methane per plasma micromade Can. J. Chem, 1998,76(12):1875-1885
    [5] Huang Jian, Steven L Suib, Dimerization of methane Through microwave plasma J. Phys. Chem, 1993,97(37):9403-9407
    [6] 夏满银,崔锦华,许根慧,天然气制C_2烃新工艺,2003,32(7):559-561
    [7] 王保伟,许根慧,孙洪伟,电场增强催化甲烷合成碳二烃电场能量研究,化学工程,2003,31(2):28-54
    [8] 邹吉军,李阳,张月萍,刘昌俊,甲烷二氧化碳介质阻挡放电转化产物分布研究物理化学学报2002,18(8):759-763
    [9] Thanyachotpaiboon K Chewadejs, Calawell T A, Lobbun L I, Mallinson R G, Conversion of Methane to Higher Hydrocarbons in AC Nonequibrium plasma AlchE J,1998,44(10):2252-2257
    [10] 代斌,张秀玲,宫为民,何仁,等离子体催化转化甲烷的研究进展,石油化工,2002,31(2):141-144
    [11] 张永平,顾有松,高鸿钧,张秀芳,微波等离子体化学气相沉积法制备C_3N_4薄膜的结构研究河北科技大学学报1999,20(4):63-66
    [12] 王志伟,信息超市中国建材2002年第11期
    [13] Muhammad A M, Salman A M,Jiang X Z, et al. [J]. Natural Gas Chem, 1999,18(2):166-178
    [14] Liu C G. [J]. Chem lett, 1996,297:749-750
    [15] 张劲松,Wan J K S,曹丽华,等.[J].催化学报,1999,20(1):45-50
    [16] 朱爱民,张秀玲,宫为民,等.[J].高等学校化学学报,2000,21(1):120-123
    [17] Zhang X L, Liu Z F, Li X H, Dai B, Gong W M, Zhang J L, Deng X L, A Study of the Reaction Mechanisms of Methane in Cold Plasma Using Optical Emission Spectroscopy, Chinese Journal of Scattering, 2004, 16 (2):165-171
    [18] 朱正和著.原子分子反应静力学.北京:科学出版社,1996
    [19] Fujii T, Syouji K I, Mass spectrometric detection of netural radicals in a CH_4 microwave discharge by use of Li~+ ion attachment techniques[J]. J. Appl. Phys, 1993,74(5):3009-3012
    [20] 王加扣.螺旋波激发氢等离子体光谱诊断四川大学硕士学位论文
    [21] 赫兹堡著.分子结构和分子光谱第一卷双原子分子光谱,北京:科学出版社,1983:412
    [22] 胡淼 在直流放电等离子体中甲烷转化为碳二烃的研究,西北大学硕士学位论文
    [23] Behringer K, Fantz U. New Jourmal of Physics 2000,2:23. 1-23. 19
    [24] 杨冰,蒲以康,孙殿照.真空科学与技术,2002,22
    [25] Sakuma Y et al.Thin Solid FiIms,2001,261
    [26] 于威,王保柱,杨彦斌等.物理学报,2005,54:2394
    [27] 陈卓,何威,蒲以康.物理学报,2005,54(5):2153
    [28] 孙萍,张仲秋,王华英等.大学物理2003,22
    [29] 杜伟 碳氟等离子体中基团分布及其对a-C F薄膜结构的影响,兰州大学硕士学位论文
    [30] 赵庆勋,董丽芳,傅广生,尚勇,杨子发,辉光等离子体辅助化学气相沉积低温合成金刚石薄膜的研究,光学学报,2002,22(7):798-802
    [31] 朱晓东,温晓辉,詹如娟,周海洋,EACVD沉积金刚石过程中气相化学研究,核技术,2000,23(9):66-69
    [32] 王加扣,吴卫东,孙卫国,等.螺旋波激发氢等离子体光谱诊断,强激光与粒子束,2005,17(10):1513-1517

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700