用户名: 密码: 验证码:
α-Al_2O_3和MgAl_2O_4纳米颗粒的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al2O3和MgAl2O4纳米陶瓷具有广阔的应用前景,因此制备α-Al2O3和MgAl2O4纳米颗粒粉体具有重要的意义。我们先是采用了一种新方法—化学沉淀一隔离相辅助煅烧技术,利用廉价的原料制备出了MgAl2O4和片状α-Al2O3纳米颗粒粉体。探讨了作为隔离相的无机盐对于氧化铝前驱体的相变、形貌、尺寸和团聚状况的影响。后来又分别采用了均匀沉淀法、醇盐水解法来制备单分散的氧化铝前驱体。研究了制备条件对氧化铝前驱体颗粒的形貌、尺寸和团聚状况的影响。随后,我们对所制备的氧化铝前驱体进行热处理,研究了其相变及所得产物的形貌变化。
     研究结果表明,以无机盐MgSO4作为隔离相,煅烧MgSO4和α-Al(OH)3混合粉末时,可以在相对低的温度800℃下,制备得到MgAl2O4纳米颗粒粉体。在煅烧混合粉末的过程中,MgSO4不仅仅是隔离相,而且是反应物。MgSO4在混合粉末中的含量影响着MgAl2O4纳米颗粒的尺寸及团聚状况。当混合粉末中的Mg/Al原子比为20时,所制备的MgAl2O4纳米颗粒尺寸分布窄、团聚轻,平均颗粒尺寸为12 nm。当Mg/Al原子比为5时,所得到的MgAl2O4纳米颗粒尺寸分布宽、团聚严重,平均颗粒尺寸为22 nm。通过烧结实验发现,所制备出的MgAl2O4纳米颗粒具有很好的烧结活性。
     以无机盐K2SO4作为隔离相,煅烧K2SO4和α-Al(OH)3混合粉末时,可以在相对低的温度900℃下,制备出分散性良好的片状α-Al2O3纳米颗粒粉体。K2SO4对混合粉末中α-Al(OH)3的相变有极大的影响。这是因为,在煅烧混合粉末的过程中,过渡相γ-Al2O3和K2SO4发生了固相反应生成K3Al(SO4)3。随后,由于K3Al(SO4)3分解生成了α-Al2O3晶粒,这些α-Al2O3晶粒为未参与固相反应的γ-Al2O3提供了低能形核点,降低了α-Al2O3的相变激活能,从而降低了α-Al2O3的生成温度。K2SO4在α-Al(OH)3和K2SO4混合粉末中的含量对最终产物α-Al2O3的形貌没有影响。当混合粉末中的K/Al原子比为12时,所制备的片状α-Al2O3颗粒的直径为0.5-1.5μm,厚度为50-150 nm。片状α-Al2O3颗粒的晶体惯习面为{0001}面。在α-Al(OH)3和K2SO4混合粉末中添加α-Al2O3晶种后,所得片状α-Al2O3颗粒的直径减小到300-600 nm,厚度减小到30-60 nm。
     通过均匀沉淀法制备了单分散、球形的非晶态Al(OH)3纳米颗粒。调节溶液中Al3+的浓度,可以控制Al(OH)3纳米颗粒的尺寸。当Al3+浓度从10 mmol/L减小到0.5 mmol/L时,平均颗粒尺寸从350 nm减小到60 nm。当Al3+浓度为0.21mol/L时,所制备的Al(OH)3粉体的平均颗粒尺寸约为10 nm,但是颗粒团聚严重。均匀沉淀法所制备的Al(OH)3颗粒粉体的相变顺序为:非晶态Al(OH)3→γ-Al2O3→α-Al2O3。在1200℃的温度下煅烧Al(OH)3纳米颗粒,可以得到近单分散的α-Al2O3纳米颗粒粉体。
     以异丙醇铝为前驱体,在乙腈和水体系中利用醇盐水解法制备了单分散、球形的非晶态Al2O3纳米颗粒。调节溶液中水与异丙醇铝的比例,可以适当控制所得产物的颗粒尺寸。当水与异丙醇铝的摩尔比从10减小到5时,粉体的平均颗粒尺寸从857 nm减小到783 nm。当水与异丙醇铝的摩尔比为1时,最终的产物为无规规形貌的颗粒团聚体。所制备的非晶态Al2O3颗粒粉体的相变顺序为:非晶态Al2O3→γ-Al2O3→α-Al2O3。在1200℃煅烧2 h后,非晶态Al2O3转变为α-Al2O3。所得α-Al2O3颗粒接近单分散,但为多孔结构。
Since Al2O3 and MgAl2O4 nanoceramic have extensively potential applications, it is of great signification to prepare nanosizedα-Al2O3 and MgAl2O4 powders. At first, using the cheap raw materials, theα-Al2O3 platelets and MgAl2O4 nanoparticles were prepared by a new method, namely the chemical precipitation-isolating phase assistant calcination technique. The influence of inorganic salt serving as isolating phase on the phase transformation of the alumina precursors, particle morphology, size and agglomeration degree was investigated. Then, the monodispersed alumina precursors were prepared by the homogenious precipitation method and hydrolysis of aluminum alkoxide, respectively. The influence of preparation conditions on the morphology of alumina precursors, particle size and agglomeration degree was studied. The phase transformation and morphology change of alumina precursors during the calcination were investigated.
     It is found that the MgAl2O4 nanoparticles can be prepared at a relatively low temperature of 800℃by calcining the mixture of MgSO4 andα-Al(OH)3. The inorganic salt MgSO4 acts not only as an isolating phase, but also a reactant in this process. The content of MgSO4 in the powder mixture has an influence on the particle size and agglomeration degree. As the Mg/Al atomic ratio is 20, the obtained MgAl2O4 nanoparticles have an average particle size of 12 nm, a narrow size distribution, and weak agglomeration. However, as the Mg/Al atomic ratio reduces to 5, the obtained MgAl2O4 nanoparticles have an average particle size of 22 nm, a broad size distribution, and severe agglomeration. Furthermore, these MgAl2O4 nanoparticles with particle size of 12 nm show excellent sinterability.
     Using the inorganic salt K2SO4 as an isolating phase, the dispersedα-Al2O3 platelets can be prepared at a relatively low temperature of 900℃by calcining the powder mixture of K2SO4 andα-Al(OH)3. The K2SO4 has a large influence on the phase transformation ofα-Al(OH)3. In calcination of K2SO4 andα-Al(OH)3 powder mixture, K3Al(SO4)3 forms in situ by solid reaction ofγ-Al2O3 and K2SO4. The decomposition of K3Al(SO4)3 can produceα-Al2O3 crystallite, which acts as a heterogeneous nucleation site and thus accelerates theγ-Al2O3 toα-Al2O3 transformation. The content of K2SO4 in the powder mixture has no influence on the particle morphology. As the K/Al atomic ratio is 12, the obtainedα-Al2O3 platelets have a diameter of 0.5-1.5μm and a thickness of 50-150 nm. The habit plane of obtainedα-Al2O3 platelets is {0001}. By addingα-Al2O3 seeds into the powder mixture, the diameter of obtainedα-Al2O3 platelets reduces to 300-600 nm, and thickness reduces to 30-60 nm.
     The monodispersed, spherical, and amorphous Al(OH)3 nanoparticles are prepared by the homogenious precipitation method. The particle size can be controlled by changing the concentration of Al3+. As the concentration of Al3+ reduces from 10 mmol/L to 0.5 mmol/L, the average particle size reduces from 350 nm to 60 nm. When the concentration of Al3+ increases to 0.21 mol/L, the average particle size reduces to 10 nm. However, the obtained Al(OH)3 nanoparticles have a severe agglomeration. The phase transformation sequence of Al(OH)3 nanoparticles obtained by homogenious precipitation is amorphous→γ-Al2O3→α-Al2O3. The near monodispersedα-Al2O3 nanoparticles can be prepared by calcining these Al(OH)3 nanoparticles at 1200℃for 2 h.
     The monodispersed, spherical, and amorphous Al2O3 particles are prepared by hydrolysis of Al(O-i-Pr)3 in acetonitrile-water system. The particle size can be controlled by changing the H2O/Al(O-i-Pr)3 molar ratio. As the H2O/Al(O-i-Pr)3 molar ratio reduces from 10 to 5, the average particle size of obtained amorphous Al2O3 particles reduces from 857 nm to 783 nm. However, as the H2O/Al(O-i-Pr)3 molar ratio reduces to 1, the obtained Al2O3 particles have no regular morphology. The phase transformation sequence of these Al2O3 particles is amorphous→γ-Al2O3→α-Al2O3. The monodispersedα-Al2O3 particles obtained by heating these amorphous Al2O3 particles at 1200℃for 2 h have porous structure.
引文
[1]J. Karch, R. Birringer, H. Gleiter. Ceramics ductile at low temperature [J]. Nature, 1987,330,556-558.
    [2]高濂,李蔚.纳米陶瓷[M].北京,化学工业出版社,2002.
    [3]U. Betz, H. Hahn. Ductility of nanocrystalline zirconia based ceramics at low temperatures [J]. Nanostr. Mat.,1999,12(5-8),911-914.
    [4]H. Hahn, R. S. Averback. Low-temperature creep of nanocrystalline titanium(IV) oxide [J]. J. Am. Ceram. Soc,1991,74(11),2918-2921.
    [5]O. Vasylkiv, Y. Sakka, V. V. Skorokhod. Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics [J]. J. Am. Ceram. Soc,2003,86(2),299-304.
    [6]K. Chihara, D. Hiratsuka, J. Tatami, F. Wakai, K. Komeya. High-temperature deformation of α-SiAlON nanoceramics without additives [J]. Scripta Mater., 2007,56,871-874.
    [7]M. Cain, R. Morrell. Nanostructured ceramics:a review of their potential [J]. Appl. Organomet. Chem.,2001,15,321-330.
    [8]A. Mukhopadhyay, B. Basu. Consolidation-microstructure-property relationships in bulk nanoceramics and ceramic nanocomposites:a review [J]. Int. Mater. Rev., 2007,52(5),257-288.
    [9]张立德,牟季美.纳米材料和纳米结构[M].北京,科学出版社,2002.
    [10]R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, R. Gronsky. Synthesis, characterization, and properties of nanophase TiO2 [J]. J. Mater. Res.,1988,3(6), 1367-1372.
    [11]H. Gleiter. Nanocrystalline materials [J]. Prog. Mater. Sci.,1989,33(4),223-315.
    [12]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安交通大学出版社,2000,131-137.
    [13]M. V. Swain主编,郭景坤等译.陶瓷的结构与性能[M].北京,科学出版社,1998.
    [14]A. G. Euans. Engineering property requirements for high performance ceramics [J]. Mater. Sci. Eng.,1985,71,3-21.
    [15]H. Suzuki. Recent trends in the development of fine ceramics in Japan [J]. Mater. Sci. Eng.,1985,71,211-226.
    [16]W. H. Gitzen, Alumina as a ceramic material [M]. The American Ceramic Society, Columbus, OH,1970.
    [17]I. Levin, D. Brandon. Metastable alumina polymorphs:crystal structure and transition sequences [J]. J. Am. Ceram. Soc,1998,81(8),1995-2012.
    [18]卢红霞.纳米氧化铝粉体和氧化铝/金属复合陶瓷的制备及性能表征.郑州大学博士论文,2006.
    [19]J. R. Groza. Nanosintering [J]. Nanostr. Mater.,1999,12(5-8),987-992.
    [20]马如璋,蒋尼华,徐祖雄.功能材料科学概论[M].北京,冶金工业出版社,1999.
    [21]易争平,邹建平,杨阳.一种硅基多孔氧化铝-荧光复合发光材料[J].半导体学报,2000,21(8),770-773.
    [22]巩运兰,王为,高俊丽.氧化铝多孔膜红外吸波性能的研究[J].材料工程,1999,97(1),32-36.
    [23]A. Ikesue, Y. L. Aung. Ceramic laser materials [J]. Nature Photonics,2008,2, 721-727.
    [24]R. Birringer, H. Gleiter, H. Klein, P. Marquardt. Nanocrystalline materials:an approach-to a novel solid structure with gas-like disorder [J]. Phys. Lett. A,1984, 102(8),365-369.
    [25]X. Sun, J. Li, F. Zhang, X. Qin, Z. Xiu, H. Ru. Synthesis of nanocrystalline α-Al2O3 powders from nanometric ammonium aluminum carbonate hydroxide [J]. J. Am. Ceram. Soc,2003,86(8),1321-1325.
    [26]G. R. Karagedov, N. Z. Lyakhov. Preparation and sintering of nanosized α-Al2O3 powder [J]. Nanostr. Mater.,1999,11(5),559-572.
    [27]R. M. Laine, J. C. Marchal, H. P. Sun, X. Q. Pan. Nano-α-Al2O3 by liquid-feed flame spray pyrolysis [J]. Nature Mater.,2006,5,710-712.
    [28]B. Felde, A. Mehner, F. Hoffmann, P. Mayr. Synthesis of ultrafine alumina powder by sol-gel techniques [J]. Adv. Sci. Technol. B,1999,13,49-56.
    [29]G. R. Karagedov, N. Z. Lyakhov. Preparation and sintering of nanosized α-Al2O3 powder [J]. Nanostr. Mater.,1999,11(5),559-572.
    [30]A. Douy, P. Odier. The polyacrylamide gel:a novel route to ceramic and glassy oxide powders [J]. Mater. Res. Bull.,1989,24,1119-1126.
    [31]H. Wang, L. Gao, W. li, Q. li. Preparation of nanoscale α-Al2O3 powder by the polyacrylamide gel method [J]. Nanostr. Mater.,1999,11(8),1263-1267.
    [32]Y. Pang, X. Bao. Aluminium oxide nanoparticles prepared by water-in-oil Microemulsions [J]. J. Mater. Chem.,2002,12,3699-3704.
    [33]何捷.镁铝尖晶石透明陶瓷及单晶辐照效应研究.四川大学博士论文,2002.
    [34]M. J. Weber. CRC handbook of laser science and technology, Volume IV [M]. Florida, CRC Press, Inc. Boca Raton,1982,212.
    [35]王程民,王修慧,田丁,李刚,曹冬鸽,高宏.镁铝尖晶石粉体的性能、制备与应用趋势[J].粉末冶金技术,2009,27(3),222-225.
    [36]K. J. D. Mackenzie, J. Temuujin, T. Jadambaa, M. E. Smith, P. Angerer. Mechanochemical synthesis and sintering behaviour of magnesium aluminate spinel [J]. J. Mater. Sci.,2000,35,5529-5535.
    [37]E. Stamboliadis. The production of refractory spinels from magnesia and alumina [J]. Ind. Ceram.,2002,22,13-17.
    [38]M. F. Zawrah, H. Hamaad, S. Meky. Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method [J]. Ceram. Int.,2007,33,969-978.
    [39]J. Katanic-Popovica, N. Miljevica, S. Zeca. Spinel formation from coprecipitated gel [J]. Ceram. Int.,1991,17(1),49-52.
    [40]马亚鲁.化学共沉淀法制备镁铝尖晶石粉末的研究[J].无机盐工业,1998,30(1),3-4.
    [41]B. Alinejad, H. Sarpoolaky, A. Beitollahi, A. Saberi, S. Afshar. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process [J]. Mater. Res. Bull.,2008,43,1188-1194.
    [42]P. Y. Lee, H. Suematsul, T. Yano, K. Yatsui. Synthesis and characterization of nanocrystalline MgAl2O4 spinel by polymerized complex method [J]. J. Nanopart. Res.,2006,8,911-917.
    [43]G. Li, Z. Sun, C. Chen, X. Cui, R. Ren. Synthesis of nanocrystalline MgAl2O4 spinel powders by a novel chemical method [J]. Mater. Lett.,2007,61,3585-3588.
    [44]A. Saberi, F. Golestani-Fard, M. Willert-Porada, Z. Negahdari, C. Liebscher, B. Gossler. A novel approach to synthesis of nanosize MgAl2O4 spinel powder through sol-gel citrate technique and subsequent heat treatment [J]. Ceram. Int., 2009,35,933-937.
    [45]O. Varnier, N. Hovnanian, A. Larbot, P. Bergez, L. Cot, J. Charpin. Sol-gel synthesis of magnesium aluminum spinel from a heterometallic alkoxide [J]. Mat. Res. Bull,1994,29(5),479-488.
    [46]C. Wang, L. Lin, S.Yang. Preparation of MgAl2O4 spinel powders via freeze-drying of alkoxide precursors [J]. J. Am. Ceram. Soc.,1992,75(8), 2240-2243.
    [1]I. H. Leubner. A balanced nucleation and growth model for controlled precipitations [J]. J. Disper. Sci. Technol.,2001,22(1),125-138.
    [2]I. H. Leubner. Balanced nucleation and growth model for controlled crystal size distribution [J]. J. Disper. Sci. Technol.,2002,23(4),577-590.
    [3]I. H. Leubner. Particle nucleation and growth models [J]. Curr. Opin. Colloid Interface Sci.,2000,5,151-159.
    [4]S. Wachi, A. G. Jones. Mass transfer with chemical reaction and precipitation [J]. Chem. Eng. Sci.,1991,46(4),1027-1033.
    [5]M. Lindberg, A. C. Rasmuson. Reaction crystallization in strained fluid films [J]. Chem. Eng. Sci.,2001,56(10),3257-3273.
    [6]李彩虹.一种制备单分散纳米粉体的液相沉淀法及其结晶动力学.博士学位论文,天津大学.2004.
    [7]李汉军,施尔畏,郑燕青,陈之战,殷之文.氧化物晶体的成核机理与晶粒粒度[J].无机材料学报.2000,15(5),777-785.
    [8]郝保红,黄俊华.晶体生长机理的研究综述[J].北京石油化工学院学报.2006,14(2),58-63.
    [9]J. W. Mullin. Crystallization (3rd ed.) [M]. U.K., Butterworth-Heimemann,1993.
    [10]周英彦,高首山,李红霞,李莉香.关于成核速率公式的研究(Ⅰ)液相胶粒成核速率公式的简化近似表达式[J].中国粉体技术.2000,6,287-294.
    [11]闵乃本.晶体生长的物理基础[M].上海,上海科技出版社.1982.
    [12]钟志勇.固态材料形成过程中的晶体生长机理探讨[J].人工晶体学报.2004,33(5),848-856.
    [13]A. E. Nielsen. Homogeneous nucleation in barium sulphate precipitation [J]. Acta Cemica Scandinavica.1961,15,441-442.
    [14]A. E. Nielsen. Kinetics of precipitation [M]. Pergamon Press, Oxford.1964.
    [15]J. A. Dirksen, T. A. Ring. Fundamentals of crystallization:kinetic effects on particle size distributions and morphology [J]. Chem. Eng. Sci.,1991,46(10), 2389-2427.
    [16]C. Misra, E. T. White. Kinetics of crystallization of aluminum trihydroxide from seeded caustic aluminate solutions [J]. AIChE Symp. Ser.,1971,67(110),53-61.
    [17]A. Tanimoto, K. Kobayashi, S. Fujita. Overall crystallization rate of copper sulfate pentahydrate in an agitated vessel [J]. Int. Chem. Eng.,1964,4(1), 153-159.
    [18]G. M. Van Rosmalen, M. C. Van der Leeden, J. Gouman. The growth kinetics of barium dulphate crystals in suspension:scale prevention(Ⅰ) [J]. Kristall and Technik,1980,15,1213-1222.
    [19]A. S. Michaels, A. R. Colville. The effect of surface active agents on crystal growth rate and crystal habit [J]. J. Phys. Chem.,1960,64,13-19.
    [20]A. E. Nielsen. Kinetics of precipitation [M]. International Series of Monographs on Analytical Chemistry.1964.
    [21]哈姆斯基著,古涛,叶铁林译.化学工业中的结晶[M].北京,化学工业出版社,1984.
    [22]张克从,张乐惠.晶体生长科学与技术[M].北京,科学出版社,1997.
    [23]胡汉起.金属凝固原理[M].北京,机械工业出版社,2000.
    [24]M. Volmer, Zum problem des kfistallwachstums [J]. Z. Physik. Chem.,1922,10 (2),267-275.
    [25]W. K. Burton, N. Cabrera, F. C. Frank. The crystal of crystals [J]. Phil. Tram., 1951,A243,299-358.
    [26]De Yomo, T. A. Land, B. Dair. Growth morphology of vicinal hillocks on the {101} face of KH2PO4:from step-flow to layer-by-layer growth [J]. Phys. Rev. Lett.,1994,73(6),838-841.
    [27]J. C. Brice. The growth of crystals from the liquids [M]. Amsterdam: North-Holland Publishing Company,1973,88-96.
    [28]A. J. Malkin, Yu. G. Kuznetsov, T. A. Land, J. J. DeYoreo, A. McPherson. Mechanisms of growth for protein and virus crystals [J]. Nature structural. Biology.,1995,2,956-959.
    [29]F. C. Frank. The influence of dislocations on crystal growth [J]. Discuss. Faraday Soc,1949,5,48-54.
    [30]王静康.化学工程手册:结晶[M].北京,化学工业出版社,1996.
    [31]张昭,彭少方,刘栋昌.无机精细化工工艺学[M].北京,化学工业出版社,2002.
    [32]胡英顺,尹秋响,侯宝红,王静康.结晶及沉淀过程中粒子聚结与团聚的研究进展[J].化学工业与工程.2005,22(5),371-375.
    [33]M. Goodson, M. Kraft. An efficient stochastic algorithm for simulating nano-particle dynamics [J]. J. Computational Physics,2002,183(1),210-232.
    [34]J. Franke, A. Mersmann. The influence of the operational conditions on the precipitation process [J]. Chem. Eng. Sci.,1995,50(11),1737-1753.
    [35]S. Melis, M. Verduyn. Effect of fluid motion on the aggregation of small particles subject to interaction forces [J]. Aiche J.,1999,45(7),1383-1393.
    [36]P. H. Nore, A. Mersmann. Batch precipitation of barium carbonate [J]. Chem. Eng. Sci.,1993,48(17),3083-3088.
    [37]A. P. Collier, M. J. Hounslow. Growth and aggregation rates for calcite and calcium oxalate monohydrate [J], Aiche J.,1999,45(11),2298-2305.
    [38]沈钟,王国庭.胶体与表面化学[M].北京,化学工业出版社,1997.
    [39]V. K. LaMer, R. H. Dingar. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc.,1950,72,4827-4854.
    [40]郑忠.胶体科学导论[M].北京高教出版社,1998.
    [41]陈松.湿法制备单分散C0304粉末的形貌和粒度控制研究.博士学位论文,中南大学.2003.
    [42]T. Sugimoto. Preparation of mono-dispersed colloidal particles [J]. Adv. Colloid Interfac,1987,28,65-108.
    [43]M. Kahlweit. Ripening of precipitates [J]. Adv. Colloid Interfac,1975,5,1-35.
    [44]E. Matijevic. The world of fine particles [J]. Chem. Tech.,1991,3,176-181.
    [45]H. H. Willard, N. K. Tang. A study of the precipitation of aluminum basic sulfate by urea [J]. J. Am. Chem. Soc.,1937,59 (7),1190-1196.
    [46]陆九芳,李总成,包铁竹.分离过程化学[M].北京,清华大学出版社,1993.
    [47]T. Nomura, Y. Kousaka, M. Alonso, M. Fukunaga. Precipitation of zinc sulfide particles from homogeneous solutions [J]. J. Colloid. Inter. Sci.,2000,223, 179-184.
    [48]Y. Sarikaya, K. Ada, T. Alemdaroglu, I. Bozdogan. The effect of Al3+ concentration on the properties of alumina powders obtained by reaction between aluminium sulphate and urea in boiling aqueous solution [J]. J. Eur. Ceram. Soc, 2002,22,1905-1910.
    [49]F. Porta, S. Recchia, C. Bianchi, F. Confalonieri, G. Scari. Synthesis and full characterization of nickel (Ⅱ) colloidal particles and their transformation into NiO [J]. Colloid. Surface. A,1999,155,395-404.
    [50]E. Matijevic. Production of monodispersed colloidal particles [J]. Annu. Rev. Mater. Res.,1985,15,483-516.
    [51]A. Janekoic, E. Matijevic. Preparation of monodispersed colloidal cadmium compounds [J]. J. Colloid Interf. Sci.,1985,103(2),436-447.
    [52]E. Matijevic. Colloidal science of ceramic powders [J]. Pure Appl. Chem.,1988, 60(10),1479-1491.
    [53]S. Kratdvil, E. Matijevic. Preparation of copper compounds of different compositions and particle morphologies [J]. J. Mater Res.,1991,6(4),766-777'.
    [54]E. Matijevic. Monodispersed inorganic colloids:achievements and problems. [J]. Pure Appl. Chem.,1992,64(1),1703-1707.
    [55]李玲.表面活性剂与纳米技术[M].北京,化学工业出版社,2004.
    [56]G. W. Scherer. Drying gels:Ⅰ. general theory [J]. J. Non-Cryst. Solids,1986, 87(1-2),199-225.
    [57]A. Maskara, D. M. Smith. Agglomeration during the drying of fine silica powders, part Ⅱ:the role of particle solubility [J]. J. Am Ceram. Soc,1997,80, 1715-1722.
    [58]M. S. Kaliszewski, A. H. Heuer. Alcohol interaction with zirconia powders [J]. J. Am. Ceram. Soc,1990,93,1504-1509.
    [59]冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制[J].微纳电子技术,2003,7,536-539.
    [60]梁治齐,宗惠娟,李金华.功能性表面活性剂[M].北京,中国轻工业出版社,2002,4,2-12.
    [61]刘志强,李小斌.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化学通报,1999,7,54-57.
    [62]W. Luan, L. Gao, J. Guo. Study on drying stage of nanoscale powder preparation [J].Nanostr. Mater.,1998,10(7),1119-1125.
    [1]李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.
    [2]B. L. Averbach, M. Cohen. X-ray determination of retained austenite by integrated intensity [J]. Trans. AIME,1948,176,401-404.
    [3]H. P. Klug, L. E. Alexander. X-ray diffraction procedure for polycrystalline and amorphous materials,2nd edn [M]. Wiley, New York,1974, pp 634.
    [4]魏全金.材料电子纤维分析[M].北京,冶金工业出版社,1990.
    [5]M. I. Mendelson. Average grain size in polycrystalline ceramics [J]. J. Am. Ceram. Soc,1969,52,T39-T42.
    [6]蔡正千.热分析[M].北京,高等教育出版社,1993.
    [7]张立德,牟季美.纳米材料学[M].北京,科学出版社,2001.
    [8]Y. Yoshikawa, K. Tsuzuki. Fabrication of transparent lead lanthanum zirconate titanate ceramics from fine powders by two stage sintering [J]. J. Am. Ceram. Soc, 1992,75,2520-2528.
    [9]段世铎,谭逸玲.界面化学[M].北京,高等教育出版社,1990.
    [1]M. V. Swain主编,郭景坤等译,陶瓷的结构与性能[M].北京,科学出版社,1998.
    [2]黄存新,彭载学,王雁鹏.多晶铝酸镁的透明机理研究[J].人工晶体学报,1995,24,198-202.
    [3]D. W. Roy, J. L. Hastert. Polycrystalline MgAl2O4 (spinel) for use as windows and domes from 0.3 to 6.0 micrometers [J]. SPIE proceedings,1983,400,356-368.
    [4]陈淑芬,胡少勤.高质量镁铝尖晶石单晶生长的研究[J].压电与声光,1995,17,19-23.
    [5]何捷,林理彬,王鹏.MgAl204透明陶瓷电子辐照及退火效应[J].微电子学,2001,31,279-281.
    [6]J-G Li, T. Ikegami, J-H Lee, T. Mori, Y. Yajima. A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder [J]. Ceram. Int.,2001,27, 481-489.
    [7]T. Shiono, K. Shiono, K. Miyamoto, G. Pezzotti. Synthesis and characterization of (MgAl2O4) spinel precursor from a heterogeneous alkoxide solution containing fine MgO powder [J]. J. Am. Ceram. Soc,2000,83,235-237.
    [8]G. Ye, G. Oprea, T. Troczynski. Synthesis of MgAl2O4 spinel powder by combination of sol-gel and precipitation processes [J]. J. Am. Ceram. Soc,2005, 88,3241-3244.
    [9]G. Li, Z. Sun, C. Chen, X. Cui, R. Ren. Synthesis of nanocrystalline MgAl2O4 spinel powders by a novel chemical method [J]. Mater. Lett.,2007,61, 3585-3588.
    [10]P. Y. Lee, H. Suematsu, T. Yano, K. Yatsui. Synthesis and characterization of nanocrystalline MgAl2O4 spinel by polymerized complex method [J]. J. Nanopart. Res.,2006,8,911-917.
    [11]B. Alinejad, H. Sarpoolaky, A. Beitollahi, A. Saberi, S. Afshar. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process [J]. Mater. Res. Bull.,2008,43,1188-1194.
    [12]A. Saberi, F. Golestani-Fard, M. Willert-Porada, Z. Negahdari, C. Liebscher, B. Gossler. A novel approach to synthesis of nanosize MgAl2O4 spinel powder through sol-gel citrate technique and subsequent heat treatment [J]. Ceram. Int., 2009,35,933-937.
    [13]H. Zhang, X. Jia, Z. Liu, Z. Li. The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol-gel process [J]. Mater. Lett.,2004, 58,1625-1628.
    [14]D. Domanski, G. Urretavizcaya, F. J. Castro, F. C. Gennari. Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature [J]. J. Am. Ceram. Soc,2004,87,2020-2024.
    [15]B. Plesingerova, N. Stevulova, M. Luxova, E. Boldizarova. Mechanochemical synthesis of magnesium aluminate spinel in oxide-hydroxide systems [J]. J. Mater. Synth. Process.,2000,8,287-293.
    [16]W. Kim, F. Saito. Effect of grinding on synthesis of MgAl2O4 spinel from a powder mixture of Mg(OH)2 and Al(OH)3 [J]. Powder Technol.,2000,113, 109-113.
    [17]K. J. D. MacKenzie, J. Temuujin, T. Jadambaa, M. E. Smith, P. Angerer. Mechanochemical synthesis and sintering behavior of magnesium aluminate spinel [J]. J. Mater. Sci.,2000,35,5529-5535.
    [18]L. B. Kong, J. Ma, H. Huang. MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process [J]. Mater. Lett.,2002,56, 238-243.
    [19]I. Levin, D. Brandon. Metastable alumina polymorphs:crystal structures and transition sequences [J]. J. Am. Ceram. Soc,1998,81,1995-2012.
    [20]D. L. Perry, S. L. Phillips. Handbook of inorganic compounds:Version 2.0 [M]. CRC press, Florida,1995, pp 245.
    [21]H. P. Klug, L. E. Alexander. X-ray diffraction procedure for poly crystalline and amorphous materials,2nd edn [M]. Wiley, New York,1974, pp 634.
    [22]J. G. Li, X. D. Sun. Synthesis and sintering behavior of a nanocrystalline a-alumina powder [J]. Acta. Mater.,2000,48,3103-3112.
    [23]X. Du, X. Su, Y. Wang, J. Li. Thermal decomposition of grinding activated bayerite [J]. Mater. Res. Bull.,2009,44,660-665.
    [24]E. Ryskhewitch. Oxide ceramics [M]. Academic Press, New York,1960, pp 271.
    [1]M. V. Swain主编,郭景坤等译.陶瓷的结构与性能[M].北京,科学出版社,1998.
    [2]V. Massardier, E. Maire, P. Merle. Experimental study of the effect of the anisotropy of orientation of the reinforcing particles on the tensile properties of aluminium matrix composites reinforced with α-alumina platelets [J],1995,203, 105-116.
    [3]K. H. Heussner, N. Claussen. Yttria- and ceria-stabilized tetragonal zirconia poly crystals (Y-TZP, Ce-TZP) reinforced with Al2O3 platelets [J]. J. Eur. Ceram. Soc,1989,5,193-200.
    [4]Y. Zhou, J. Vlengels, T. Laoui, O. Van Der Biest. Toughening of X-sialon with Al2O3 platelets [J]. J. Eur. Ceram. Soc,1995,15,297-305.
    [5]A. G. Evans. Perspective on the development of high-toughness ceramics [J]. J. Am. Ceram. Soc,1990,73,187-206.
    [6]W. J. Clegg, K. Kendall, N. M. Alford, D. Birchall, T. W. Button. A simple way to make tough ceramics [J]. Nature (London),1990,347,455-457.
    [7]I. K. Cherian, W. M. Kriven. Suspension processing, microstructure and mechanical properties of alumina-platelet-reinforced 3Y-TZP, Part I [J]. Am. Ceram. Soc. Bull.,2001,80,60-67.
    [8]S. Gautier, E. Champion, D. B. Assollant. Toughening characterization in alumina platelet-hydroxyapatite matrix composites [J]. J. Mater. Sci. Mater. Med.,1999,10, 533-540.
    [9]R. F. Hill, P. H. Supancic. Thermal conductivity of platelet-filled polymer composites [J]. J. Am. Ceram. Soc,2002,85,851-857.
    [10]S. Hashimoto, A. Yamaguchi. Synthesis of α-Al2O3 platelets using sodium sulfate flux [J]. J. Mater. Res.,1999,14,4667-4671.
    [11]L-H Zhu, Q-W Huang, W. Liu. Synthesis of plate-like α-Al2O3 single-crystal particles in NaCl-KCl flux using Al(OH)3 powders as starting materials [J]. Ceram. Int.,2008,34,1729-1733.
    [12]C. A. Shaklee, G. L. Messing. Growth of α-alumina platelets in the HF-γ-Al2O3 system [J]. J. Am. Ceram. Soc,1994,77,2977-2984.
    [13]N. S. Bell, S. B. Cho, J. H. Adair. Size control of α-alumina particles synthesized in 1,4-butanediol solution by α-alumina and α-hematite seeding [J]. J. Am. Ceram. Soc,1998,81,1411-1420.
    [14]M. Wei, D. Zhi, K-L. Choy. Novel synthesis of α-alumina hexagonal nanoplatelets using electrostatic spray assisted chemical vapour deposition [J]. Nanotechnology,2006,17,181-184.
    [15]I. Levin, D. Brandon. Metastable alumina polymorphs:crystal structure and transition sequences [J]. J. Am. Ceram. Soc,1998,81,1995-2012.
    [16]K. J. D. MacKenzie, J. Temuujin, K. Okada. Thermal decomposition of mechanically activated gibbsite [J]. Thermochim. Acta.,1999,327,103-108.
    [17]I. Brain. Thermochemical data of pure substances, part Ⅰ, Ag-Kr [M],2nd edn. Edited by G. Schulz, P. Ryan-Bugler. VHC, Weinheim, Germany,1993, pp.923.
    [18]S. Hashimoto, A. Yamaguchi. Formation of porous aggregations composed of Al2O3 platelets using potassium sulfate flux [J]. J. Eur. Ceram. Soc,1999,19, 335-339.
    [19]D. L. Perry, S. L. Phillips. Handbook of inorganic compounds:Version 2.0 [M]. CRC press, Florida,1995, pp 245.
    [20]M. Kumagai, G. L. Messing. Enhanced densification of boehmite sol-gels by a-alumina seeding [J]. J. Am. Ceram. Soc,1984,67, c230-c231.
    [21]J. L. McArdle, G. L. Messing. Transformation, microstructure development, and densification in α-Fe2O3-seeded boehmite-derived alumina [J]. J. Am. Ceram. Soc,1993,76,214-222.
    [22]R. B. Bagwell, G. L. Messing. Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 from γ-Al2O3 [J]. J. Am. Ceram. Soc,1999,82, 825-832.
    [23]J. L. McArdle, G. L. Messing, L. A. Tietz, C. B. Carter. Solid-phase epitaxy of boehmite-derived a-alumina on hematite seed crystals [J]. J. Am. Ceram. Soc, 1989,72,864-867.
    [24]X. Du, X. Su, Y. Wang, J. Li. Thermal decomposition of grinding activated bayerite [J]. Mater. Res. Bull.,2009,44,660-665.
    [25]H. Song, R. L. Coble. Origin and growth kinetics of platelike abnormal grains in liquid-phase-sintered alumina [J]. J. Am. Ceram. Soc,1990,73,2077-2085.
    [26]H. Song, R. L. Coble. Morphology of platelike abnormal grains in liquid-phase-sintered alumina [J]. J. Am. Ceram. Soc,1990,73,2086-2090.
    [27]Y. K. Simpson, B. Carter. Faceting behavior of alumina in the presence of a glass [J]. J. Am. Ceram. Soc,1990,73,2391-2398.
    [28]M. M. Seabaugh, G. L. Messing. Texture development and microstructure evolution in liquid-phase-sintered α-alumina ceramics prepared by templated grain growth [J]. J. Am. Ceram. Soc,2000,83,3109-3116.
    [29]W. A. Kaysser, M. Sprissler, C. A. Handwerker, J. E. Blendell. Effect of a liquid phase on the morphology of grain growth in alumina [J]. J. Am. Ceram. Soc, 1987,70,339-343.
    [30]S. C. Srivastava, K. M. Godiwalla, M. K. Banerjee. Fuel ash corrosion of boiler and superheater tubes [J]. J. Mater. Sci.,1997,32,835-849.
    [31]R. D. Vengrenovitch. On the ostwald ripening theory [J]. Acta. Metall.,1982,30, 1079-1086.
    [32]N. S. Bell, S. B. Cho, J. H. Adair. Size control of α-alumina particles synthesized in 1,4-butanediol solution by α-alumina and a-hematite seeding [J]. J. Am.Ceram. Soc,1998,81(6),1411-1420.
    [33]I. M. Lifshitz, V. V. Slyozov. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids.,1961,19,35-50.
    [1]J. Karch, R. Birringer, H. Gleiter. Ceramics ductile at low temperature [J]. Nature, 1987,330,556-558.
    [2]A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, C. Schardt. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides [J]. Nature,2004,430,761-764.
    [3]G-D. Zhan, J. D. Kuntz, J. E. Garay, A. K. Mukherjee. Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2003,83,1228-1230.
    [4]M. Cain, R. Morrell. Nanostructured ceramics:a review of their potential [J]. Appl. Organomet. Chem.,2001,15,321-330.
    [5]M. Ocana, V. Fornes, C. J. Serna. A simple procedure for the preparation of spherical oxide particles by hydrolysis of aerosols [J]. Ceram. Int.,1992,18, 99-106.
    [6]T. Ogihara, H. Nakajima, T. Yanagawa, N. Ogata, K, Yoshida, N. Matsushita. Preparation of monodisperse, spherical alumina powders from alkoxides [J]. J. Am. Ceram. Soc,1991,74,2263-2269.
    [7]H. H. Willard, N. K. Tang. A study of the precipitation of aluminum basic sulfate by urea [J]. J. Am. Chem. Soc,1937,59 (7),1190-1196.
    [8]T. Nomura, Y. Kousaka, M. Alonso, M. Fukunaga. Precipitation of zinc sulfide particles from homogeneous solutions [J]. J. Colloid. Inter. Sci.,2000,223, 179-184.
    [9]Y. Sarikaya, K. Ada, T. Alemdaroglu, I. Bozdogan. The effect of Al3+ concentration on the properties of alumina powders obtained by reaction between aluminium sulphate and urea in boiling aqueous solution [J]. J. Eur. Ceram. Soc, 2002,22,1905-1910.
    [10]F. Porta, S. Recchia, C. Bianchi, F. Confalonieri, G. Scari. Synthesis and full characterization of nickel (II) colloidal particles and their transformation into NiO [J]. Colloid. Surface. A,1999,155,395-404.
    [11]陈松.湿法制备单分散Co3O4粉末的形貌和粒度控制研究.博士学位论文,中南大学.2003.
    [12]I. Levin, D. Brandon. Metastable alumina polymorphs:crystal structure and transition sequences [J]. J. Am. Ceram. Soc,1998,81,1995-2012.
    [13]T. Ogihara, H. Nakajima, T. Yanagawa, N. Ogata, K. Yoshida, N. Matsushita. Preparation of monodisperse, spherical alumina powders from alkoxides [J]. J. Am. Ceram. Soc,1991,74(9),2263-2269.
    [14]H. Kao, W. Wei. Kinetics and microstructural evolution of heterogeneous transformation of θ-alumina to α-alumina [J]. J. Am. Ceram. Soc,2000,83(2), 362-368.
    [15]R. Vacassy, R. J. Flatt, H. Hofmann, K. S. Choi, R. K. Singh. Synthesis of microporous silica spheres [J]. J. Colloid Interf. Sci.,2000,227,302-315.
    [16]R. B. Bagwell, G. L. Messing. Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 from γ-Al2O3 [J]. J. Am. Ceram. Soc,1999, 82(4),825-832.
    [17]R. A. Shelleman, G. L. Messing, M. Kumagai. Alpha alumina transformation in seeded boehmite gels [J]. J. Non-Cryst. Solids,1986,82,277-285.
    [18]杜雪莲.单分散α-Al2O3纳米颗粒粉体的制备与表征.博士学位论文,兰州大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700