鄂尔多斯盆地上古生界天然气成藏特点及开发对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据地质资料、录井解释及测井解释等资料,结合岩心、薄片观察和孔隙度、渗透率测试分析,对鄂尔多斯盆地上古生界早白垩世末烃源岩最大埋深期、晚白垩世以来地层剥蚀期及现今构造定型阶段的天然气运移最大驱动力源区的分布特征进行分析,并对最大驱动力源区及天然气藏的连通关系、烃源岩、储层和隔层的连通关系及上古生界天然气的成藏特点进行研究,在此基础上,对鄂尔多斯盆地上古生界天然气藏的开发对策进行初步探讨。主要取得以下认识:
     1.鄂尔多斯盆地上古生界早白垩世末烃源岩最大驱动力源区分布在盆地西部马儿庄—大巴嘴—堵后滩—姬塬一带;晚白垩世以来地层剥蚀期最大驱动力源区分布在盆地西北部铁苏克庙地区及西南部的山城一带;现今构造定型阶段最大驱动力源区分布在盆地西北部铁苏克庙一带。
     2.目前发现的天然气藏与盆地在不同地质时期的最大驱动力源区具有良好的连通关系,其连通性主要是通过裂缝实现的。其中,裂缝性泥岩平行层面方向的渗透率平均值为311.74×10-3μm2,裂缝性砂岩的渗透率平均值可达14279.2×10-3μm2。
     3.鄂尔多斯盆地上古生界砂岩储气层和相邻的泥岩(烃源岩层、泥岩隔层)具有良好的连通关系,其连通主要是通过裂缝实现的。
     4.在天然气藏开发过程中,鄂尔多斯盆地上古生界天然气藏流体的驱动能量在区域上与盆地烃源岩最大驱动力源区有密切关系,储气层和烃源岩、隔层之间可以通过裂缝实现有效的连通。基于上述原因,天然气藏在开发过程中可从气藏以外的区域或与储气层连通的隔层或烃源岩中得到有效的补充。在制定气藏开发措施时,应充分考虑这种特点。
This article is based on geological data, logging and log data interpretation, and core, thin sections and porosity, permeability test and analysis, to analyze the largest depth of source rocks in late early Cretaceous, the denudation since of the late Cretaceous and the biggest driving force distribution of the source area in the current construction phase,to analyze the distribution of natural gas in the basin,to discusses the biggest driving force source and the connectivity relations of natural gas and source rocks, reservoirs and compartments, based on the above analysis,to analyze the characteristics of upper Paleozoic of Ordos Basin gas reservoir, and discuss development strategies. The obtained knowledge are as the follows:
     1. The area of late early Cretaceous source rocks of the biggest driving force source in upper Paleozoic of Ordos Basin is maerzhuang-dabazui-duhoutan-jiayuan. The area of the denudation since of the late Cretaceous is Tiesukemiao in the northwest and shancheng in the southwest. The area of the biggest driving force distribution of the source area in the current construction phase is Tiekesumiao in the northwest.
     2. The natural gas found currently has a good connection relationship in different geological periods with the greatest driving force source, and the connectivity is mainly achieved through communication cracks. The average shale permeability with fractured parallel to the direction of layers is 311.74×10-3μm2, and the average penetration of fractured sandstone is 14279.2×10-3μm2.
     3. The sandstone reservoir and adjacent shale (source rocks, insulation layer) have a certain connectivity relation in Upper Paleozoic of Ordos Basin, and the connectivity relations are achieved through the communication cracks.
     4. In the gas reservoir development process, the fluid-driven of upper Paleozoic gas reservoir in Ordos Basin have closely relationship with the greatest driving force source, and through the cracks source rocks, reservoir and the insulation layer can achieve effective connectivity. Based on the above analysis, the connectivity relationships may result in supplement of the region outside the gas reservoir the gas layer in the compartment or the effective source rocks. When working out the gas reservoir development measures, this feature should be fully considered.
引文
[1]Berkenpas P G, The Milk River shallow gas pool:Role of the undip water trap and connate water in gas production from the pool[J]. SPE,1991,22922,19
    [2]Cordell R.J. How oil migration in classics Sediments[J]. World oil,1976,1977,183(6)
    [3]Dembicki H.J.and Anderson M.J. Secondary migration of oil:experiments supporting efficient movement of separate, buoyant, oil phase along limited conduits[J]. AAPG 1989,73(8), P.1018-1021
    [4]Dickey P. A. Possible primary migration of oil from source rock in oil phase[J]. AAPG., 1975,59(2), P337-345
    [5]Emmons W.H. Experiments on accumulation of oil in sands[J]. AAGP Bull.,1924, V.5, 103~104
    [6]Grunau H R. A worldwide look at the caprock problem[J]. Journal of Petroleum Geo logy, 1987
    [7]Gussow W.C. Differential entrapment of oil and gas:a fundamental principle[J]. AAGP Bull,1954,38(2):816-853
    [8]Hindle A D. Petroleum migration pathways and charge concentration; a three-dimensional model[J]. AAPG 1997, Bulletin,81(9),1451-1481
    [9]Watts N.L. Theoretical aspects of cap-rock and fault seals for single and two-phase hydrocarbon columns;Marine and Petroleum Geology[J],1987,4:274~307
    [10]M.и.马克西莫夫,魏智,何庆森译.油田开发地质基础[M].石油工业出版社,1980
    [11]陈碧珏.油矿地质学[M].石油工业出版社,1987
    [12]邓宗淮等.滇黔桂上扬子地区油气盖层条件研究,“七五”国家重点科技攻关项目成果报告,1990
    [13]顿铁军.储层研究现状与发展趋势向[J].西北地质,1995,16(2):6~8
    [14]付广,吕延防.天然气扩散作用及其研究方法[M].石油工业出版社,1999
    [15]甘华军,米敬奎,王华等.鄂尔多斯盆地中北部上古生界气田天然气气源与运聚研究[J].石油天然气学报,2007,29(1):16-23
    [16]郝石生,陈章明等.天然气藏的形成和保存[M].北京:石油工业出版社,1995
    [17]郝石生,刘广弟等.油气初次运移的模拟模型[J].石油学报,1994,15(2)
    [18]郝石生等.天然气运聚动平衡及其应用[M].北京:石油工业出版社.1994
    [19]何更生.油层物理[M].石油工业出版社,1994
    [20]何自新,付金华,席胜利.苏里格大气田成藏地质特征[J].石油学报,2003,24(2):6-12
    [21]阂琪,付金华,席胜利等.鄂尔多斯盆地上古生界天然气运移聚集特征[J].石油勘探与开发,2000,27(4):9-11,26-29
    [22]黄志龙等.天然气的运移机理及研究方法,全国第三届油气运移学术讨论会论文摘要汇编.1994
    [23]霍光明,高维亮.中国石油地质学[M].石油工业出版社,2005
    [24]金爱民,楼章华,朱蓉等.鄂尔多斯盆地上古生界储层现今地下水动力及其流体特征[J].高校地质学报,2002,8(3):334-344
    [25]李国平,郑德文等.天然气封盖层研究与评价[M].石油工业出版社,1996
    [26]李剑,罗霞,单秀琴等.鄂尔多斯盆地上古生界天然气成藏特征[J].石油勘探与
    开发,2005,32(4):54-59
    [27]李明诚.石油和天然气运移、聚集的特征[J].地球物理学进展,1994,9(1):122-123
    [28]李明诚.石油与天然气运移(第二版)[M].石油工业出版社,1994
    [29]李明诚.油气运移的现状与发展[J].石油勘探与开发,1994,21(2):2-3
    [30]李明诚.油气运移基础理论与油气勘探[J].地球科学一中国地质大学学报,2004,29(4):379-883
    [31]李明城.石油与天然气运移(第三版)[M].北京:石油工业出版社,2004
    [32]李文学,高宁.断层垂向封闭形成的主控因素[J].大庆石油学院学报,2005,29(2)
    [33]林禾杰.天然气(石油)盖层研究的新认识[J].地球科学进展,1990,2:50~53
    [34]刘圣志,李景明,孙粉锦等.鄂尔多斯盆地苏里格气田成藏机理研究[J].天然气工业,2005,25(3):4-6
    [35]刘新社,席胜利,付金华等.鄂尔多斯盆地上古生界天然气生成[J].天然气工业,2000;20(6):19-23
    [36]刘新社.鄂尔多斯盆地东部上古生界岩性气藏形成机理[D].西安:西北大学地质系,2008
    [37]吕延防,付广等.油气藏封盖[M].石油工业出版社,1996
    [38]吕延防.断层封闭的差异性分析[J].大庆石油学院学报,1996,20(4):7·11
    [39]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986
    [40]米敬奎,杨孟达,刘新华.鄂尔多斯盆地上古生界气源岩抬升后是否生气的实验室模拟[J].湘潭矿业学院学报,2003,18(2):1-4
    [41]庞雄奇等.含油气盆地地史、热史、生留排烃史数值模拟研究与烃源岩定量评价[M].北京:地质出版社,1993
    [42]唐洪俊,崔凯华.油层物理[M].石油工业出版社,2007
    [43]万丛礼,付金华,杨华等.鄂尔多斯盆地上古生界天然气成因新探索[J].天然气工业,2004,24(8):1-3
    [44]王小鲁,李江涛,侯泽生.涩北一号气田气藏驱动类型浅析[J].青海石油,2001,19(2),57~58
    [45]王震亮,陈荷立.有效运移通道的提出与确定初探[J].石油实验地质,1999,21(1):71~75
    [46]王震亮,张立宽,孙明亮等.鄂尔多斯盆地神木一榆林地区上石盒子组石千峰组天然气成藏机理[J].石油学报,2004,25(3):37-43
    [47]王志雄,徐国盛.鄂尔多斯盆地苏里格庙气田上古气藏成藏机理研究[J].断块油气田,2003,10(3):9-11
    [48]夏位荣等.油气田开发地质学[M].石油工业出版社,1999
    [49]谢丛姣, 蔡尔范, 关振良.石油开发地质学[M].中国地质大学出版社,2004
    [50]闫小雄,胡喜峰,黄建松.鄂尔多斯盆地东部石千峰组浅层气藏成藏机理探讨[J].天然气地球科学,2005,16(6):736-740
    [51]杨华,姬红,李振宏等.鄂尔多斯盆地东部上古生界石千峰组低压气藏特征[J].地球科学,2004,29(4):413-419
    [52]杨华,魏新善.鄂尔多斯盆地苏里格地区天然气勘探新进展[J].天然气工业,2007,27(12): 6-1 1
    [53]杨华,席胜利,魏新善等.苏里格地区天然气勘探潜力分析[J].天然气工业,2006,26(12): 45-48
    [54]杨寿山.确定油藏驱动类型和注水方式的研究[J].江汉石油科技,1992,2(2):38~39
    [55]曾溅辉,王捷等.油气运移机理及物理模拟[M].北京:石油工业出版社,2002:160-162
    [56]张博全,王岫云.油(气)层物理学[M].中国地质大学出版社,1989
    [57]张厚福等.石油地质学[M].石油工业出版社,1999
    [58]张金功等.岩石弹性岩石弹性与油气成藏地质及模拟实验研究.西北大学地质系,2005(内部资料)
    [59]张金功等.异常超压带内开启泥质岩裂隙的分布与油气初次运移[J].石油与天然气地质,1996,17(1)
    [60]赵林,夏新宇,戴金星.鄂尔多斯盆地上古生界天然气的运移与聚集[J].地质地球化学,2000;28(3):48-53
    [61]赵文智,何登发等.石油地质综合研究导论[M].石油工业出版社,1999
    [62]朱筱敏,刘成林,曾庆猛等.我国典型天然气藏输导体系研究—以鄂尔多斯盆地苏里格气田为例[J].石油与天然气地质,2005,26(6):724-729
    [63]卓兴家, 周志军.稠油油藏溶解气驱机理[J].特种油气藏,2002,9(2):87~89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700