造纸污泥掺入链条炉混烧处置技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来的三十多年间,随着我国经济的高速发展,各行各业对纸的需求逐年递增,促使造纸行业得到了长期、迅速和蓬勃的发展。与此同时,造纸过程中需要排放大量的废水,相关数据显示2009年全国造纸工业废水排放量为36.7亿吨,只有92%的废水经过处理达标排放,废水处理过程中也将产生大量的造纸污泥,废水与污泥的处理处置问题也日益尖锐。本课题以河南滑县光明纸业有限责任公司的造纸污泥为研究对象,研究其在链条炉中和燃煤混烧的可行性。
     对造纸污泥进行热值分析和工业分析,发现当造纸污泥含水率为75.6%时,其热值仅为1.12 MJ/kg;当造纸污泥含水率降为9.8%时,其热值升至12.18MJ/kg。通过对造纸污泥工业分析得出:含水率为7.81%的造纸污泥其固定碳含量仅有11.76%,而燃煤固定碳含量为32.37%,这是造纸污泥和燃煤热值相差较大的主要原因。通过造纸污泥干化试验,了解到造纸污泥干化过程中可分为三阶段:裂纹初现段、裂纹发展段和缓慢干化段。确定不同厚度的造纸污泥含水率干化至25.4%-26.7%时需要4-5天的时间。
     混烧试验主要试验研究了造纸污泥在不同含水率、不同煤泥混合比、不同工况下,与燃煤在链条炉中混烧的情况。通过观察记录链条炉蒸汽温度、排烟温度和炉温来研究造纸污泥在各试验条件下对链条炉各参数的影响。在不同含水率造纸污泥与燃煤混烧试验中,选取4中不同含水率的造纸污泥与燃煤进行混烧,发现48.9%含水率的造纸污泥排烟温度变化幅度最大,最高温度为187.1℃,最低温度为161.2℃,相差25.9℃;而9.8%含水率的造纸污泥排烟温度变化幅度最小,最高温度为183.2℃,最低温度为165.2℃,变化幅度为18℃。在不同煤泥混合比的造纸污泥与燃煤混烧试验中,选取4:1、3:1、2:1三种不同煤泥混合比进行混烧,发现4:1煤泥混合比时最高温度和最低温度相差13.4℃,而2:1煤泥混合比时最高温度和最低温度相差21.8℃。
     最后通过试验研究链条炉在不同工况下,造纸污泥和燃煤混烧的燃烧性能。通过改变各风室的配风比和炉排速度来观察造纸污泥混烧情况,发现在加强前端供风、减少后端供风(前后各变化10%的比例)情况下,或者是增加炉排速度的情况下,混烧试验过程中链条炉的蒸汽温度、排烟温度和炉温均比未调整提高:而同时调整配风比和炉排速度条件下,炉温和蒸汽温度先小幅度下降后又上升直至一稳定值,炉温为1009℃,蒸汽温度为177.7℃,均和起始值相差很小。和正常运行时锅炉工况相似。
     通过以上几组试验,得出以下结论,将链条炉炉排速度设置为5m/h,各风室配风比为25%、35%、30%、10%,含水率30%的造纸污泥以燃煤:污泥=3:1的比例混烧时锅炉各项数值均能达到最佳状态。
Since the reform and opening up. with China's rapid economic development, the needs of various industries on the paper gradually increase each year, the economic development of the paper demand for products to promote paper industry boomingly. In the year of 2009. nation emissions of paper industry wastewater was 3.67 billion tons, only 92% of which has been discharged within standards. A large number of paper mill sludge has been produced during the wastewater treatment process. This paper took paper sludge from the Hua County Light Paper Co. Ltd for the study objective and studied the paper sludge's buring conditions.
     In the paper sludge drying experiment, we found the sludge drying process can be divided into three parts:the early section of the crack, the crack development and slow dry section. During the interval, the sludge water content decreased rapidly in a short time. Through the calorific value of paper mill sludge laboratory analysis done in the laboratory and industry analysis, it showed the water content of paper mill sludge and calorific value is a negative correlation.
     Paper sludge co-fire with coal in the grate furnace in different water content experiment. We can learn that the paper sludge with 48.9% water content got exhaust temperature changes.the highest temperature is 187.1℃,the lowest temperature is 161.2℃.they had 25.9℃variation:and the water content 9.8% papermaking sludge exhaust temperature variation amplitude.the highest temperature of minimum 183.2℃the lowest temperature relatively 165.2℃variation amplitude for for 18℃. Slime mix in different than paper-making sludge with coal-fired&coal mixing trials, select 4:1,3:1,2:1 three different mixing ratio, we found that 4:1 mixing ratio, highest temperature and minimum temperature differ 13.4℃comparing the mix ratio 2:1 which with 21.8℃, it is small.
     Finally, the experimental researched paper sludge co-firing with coal in grate furnace in different working conditions. Through the changes of the wind chamber with wind speed to observe stoker, we found that increased the ratio of the front of the wind room and reduce back-end (the proportion of each change aroun 10%) under the condition of the stocker speed increase, steam temperature, exhaust temperature and temperature of grate furnace are not adjusted than enhancing; While the adjustment with wind speed conditions(increase the speed of grate from 4.2m/h to 5m/h), we found furnace temperature and steam temperature drop first small at first, then it increased rapidly until it reached in the point 1009℃and 177.7℃, which was similar to the initial conditions without any changes.
     Through the above several groups of testing, we got the conclusion. With grate furnace grate speed settled at 5m/h, with the four wind room ratio adjusted at 25%, 35%,30%,10%, with water content of paper sludge aroud 30%. with coal and paper sludge mixing ratio adjusted 3:1 ratio, the condition of the grate furnace can reach the best state.
引文
[1]中国造纸协会.中国造纸工业2009年度报告[J].中华纸业,2010,11
    [2]王宁.吴铁山.造纸废渣和污泥的综合利用:生产新型墙体材料[J].污染防治技术,2005,01:46-49.
    [3]雷文雪.曾科.带式浓缩脱水机在活性污泥处理中的应用[J].内蒙古石油化工 2007,5,28~29.
    [4]唐志超.我国造纸固体废弃物处理现状及趋势[J].中华纸业.2010,9,(18):6~10.
    [5]王涛,钟伟刚,王允洪.草浆造纸中段废水治理资源化技术[J].中国给水排水,2004.(20):34~36.
    [6]王伟.城市污泥处理处置的关键问题与水热处理技术[R].无锡:中华环保联合会,2009
    [7]唐志超.我国造纸固体废弃物处理现状及趋势[J].中华纸业,2007,18,vol(31):6-10.
    [8]Simard R R, BaziramakengaR, Yelles, etc. Effects of de-inking paper sludge on soil properties and crop yields[J]. Canadian Journal of Soil Science.1998,78(4):689-697
    [9]汪群慧.固体废弃物处理与资源化[M].北京.化学工业出版社,2004,200~210
    [10]李培生.污泥及其煤混合物燃烧和污染物排放特性的试验研究[D].武汉.华中科技大学,2006
    [11]张清.污泥与煤在循环流化床内混烧的试验研究[D].重庆大学,2007
    [12]叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程,2002,10(2):85~88.
    [13]Simard RR. Combined primary/secondary paper mill sludge as a nitrogen source in a cabbage-sweet corn cropping sequence[J].Canadian Journal of Soil Science.2001,81(1):1-10.
    [14]甘一萍.我国污泥处理处置技术现状分析[C].北京排水集团工程咨询公司.34-36
    [15]张天红,薛澄泽.造纸污泥林地利用效果的研究[J].西北农业大学学报,1994,22(2):67~71.
    [16]郭媚兰,王亚伟,关联欣等.污泥与垃圾堆肥的农田施用对土壤性质的影响[J].农业环境保护,1994,13(5):204~209.
    [17]管丽攀,于衍真,冯岩.城市污泥资源化利用研究现状[J].江苏化工,2007,35(1):45~48.
    [18]Raghunathan K,Gullett BK,Role of sulfur in reducing PCPP and PCDF formation[J].Environ Sci Technol,1996,30(6):1827-1834
    [19]施庆珊,梁文涛,疏秀林等.一株高温放线菌及其在造纸污泥堆肥过程中的应用[J].农业环境科学学报,2006,27(1):368~371.
    [20]林云琴,周少奇,王德汉.施加堆肥后土壤中重金属形态变化研究[J].中国造纸学报,2007,22(4):51~56.
    [21]王德汉,彭俊杰,戴苗.造纸污泥作为肥料资源的评价与农用试验[J].纸和造纸,2003,(3):47~50.
    [22]陈同斌,黄启飞,高定等.中国城市污泥的重金属含量及其变化趋势[J].生态学报,2003,20(6):911~915.
    [23]李美玉,李爱民.发展我国污泥流化床焚烧技术[J].劳动安全与健康,2001(8):20~23
    [24]Leclerc J,Linard A, Villeneuve F, et all Beneficial use of pulp and paper residues for soil amendment in the province of Quebec[J].pulp&paper Canada,1999,]00(7):68
    [25]Sun CL.Kozinski JA. Ignition behavior of pulp and paper combustible wastes[J].Fuel.2000,(79).1587-1593.
    [26]杨小文.杜英豪.污泥处理与资源化利用方案选择[J].中国给水排水,2002,(4):31~34
    [27]平冈正腾.吉野善弥著.污泥处理工程学[M].华东化工学院出版社,2000.
    [28]邱丽霞,郝艳红.城市垃圾发电焚烧设备的现状与展望[J].华东电力,2002,9,22~24.
    [29]李国鼎,金子奇等编.《固体废物处理与资源化》[M].清华大学出版社,2002.
    [30]Vesilin PA,Ramsey TB. Effect of drying temperature on the fuel value of wastewater sludge[J].Wastewater Management and Research,1996.(16):189-196.
    [31]Sun C.L, Kozinski J.A. Ignition behavior of pulp and paper combustible wastes[J].Fuel.2000.(79).1587-1593.
    [32]Jensen P.K. Pyrolysis of a refinery sewage sludge a material recycling process[J].Conservation and Recyling.1977.(I):201-207.
    [33]张扬,刘秉钺,赵长明.造纸污泥脱水与污泥焚烧处理技术[J].黑龙江造纸.2009.02:53~59.
    [34]曾庭华.污泥在流化床中的焚烧特性及其二次污染物研究[D].浙江大学博十学位论文.1997.
    [35]李斌,池涌,曾庭华.造纸污泥与废水污泥流化床焚烧时NOx和S02的排放特性研究[J].工程热物理学报.1998.19(6):776~779.
    [36]王红,周浩生.孙学信.应用TGA-FTIR研究污泥与煤地热解规律[J].华中理工大学学报.1999,27(9):38-40.
    [37]李晓东,岑宁虹.污泥流化床焚烧技术的研究及应用[J].燃烧科学与技术.2002,8.(2):159~162.
    [38]Lowe, Paul et al.Revival of incineration in the UK[J], Water Sci and Technol. 1990,23(10):1803.
    [39]E.J.Anthony etc. The Technical.Environmental,and Ecnonmic feasibility of Recovering Energy from Paper mill Residual Fiber[C],Proc.of 12th Inter.Conf On FBC. ASME 1993,239.
    [40]Brain Hemphill. Fluid Bed Technology for Sludge Destruction[J], Water/Engineering&Management,1998,12:37-40.
    [41]Ann Ches,Nut Hasbach.Putting Sludge to work[J].Pollution Engineering,1999,12,62.
    [42]Janust A,Kozinski et al.Combustion of Sludge Waste in FBC distribution of metals and particle sizes[C],Proc.of 13th Inter.Conf. on FBC, ASME 1995.1493.
    [43]李一铷.污泥焚烧炉隔热衬里的施工及投运[J],化工设计通讯,1992,18(4):59.
    [44]唐志超.我国造纸固体废弃物处理现状及趋势[J].中华纸业,2004,31(18):6-10.
    [45]张云月,赵磊,陈德珍.污泥太阳能干燥试验研究[J].太阳能技术与产品,2004,11,24~26.
    [46]蒋旭光.污泥的可用能及添加辅助燃料的临界水分分析[J].浙江大学学报,1998.32(4):488~496.
    [47]张扬,刘秉钺.赵长明.造纸污泥脱水与污泥焚烧处理技术[J].节能与环保.2009,2:51-58.
    [48]贺兰海,单连文,姜钦明.焚烧法处理制浆造纸污泥技术[J].环境保护,2006,10:61-63.
    [49]李军,李媛,H.G.H0hneeker.流化床焚烧炉污泥焚烧工艺特性研究[J].环境工程, 2004.6:76~79.
    [50]马蜀.城市污水处理厂污水污泥能值测定分析研究[D].重庆大学,2007.
    [51]郑宗和.牛宝联.雷海燕.利用太阳能进行污泥脱水干燥的试验[J].中国给水排水,2003,19(13):111~113.
    [52]陈茗.污泥真空干燥特性研究[D].沈阳航空工业学院,2006.
    [53]丘锦荣,吴启堂.卫泽宾等.利用塑料棚和日光干燥废弃植物体和污泥的初步试验[J].农业工程学报,2006,22(5):211-214.
    [54]雷海燕,李惟毅,郑宗和.污泥的太阳能干燥试验研究[J].太阳能学报,2004,25(4):479~482.
    [55]邓文义,李晓东,王飞等.不同污泥水分分布特征研究[C].第二届中国水务发展国际研讨会,2007,08.
    [56]毛玉如,苏亚欣.造纸污泥燃烧、热解与孔结构特性实验研究[J].再生利用,2008,9:34~36.
    [57]丁德平,孙超.排烟温度与锅炉效率[J].林业科技情报,2007,39(3):70~72.
    [58]李振强.降低锅炉排烟温度的措施及方法[J],热力发电,2003,7:41-42.
    [59]丁明舫,崔百成,陆其虎等.锅炉技术问答1100题[M].北京.中国电力出版社,2001.323-324.
    [60]周国庆,孙涛.锅炉工安全技术[M].北京.化学工业出版社.2005.231-232.
    [61]周国庆.孙涛.工业锅炉安全技术手册[M].北京.化学工业出版社,2009.145~146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700