应力相关阻尼模型及其在梁式桥动力分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻尼对桥梁结构的动力响应有着重要的影响。众多研究表明在桥梁振动过程中,阻尼是一个变化的参数,然而现有的很多模型不能体现阻尼的变化。阻尼参数的不确定性严重制约着桥梁动力响应的求解精度。
     本文在开展混凝土材料阻尼试验的基础上,提出了混凝土材料阻尼的识别方法和计算公式,并利用试验结果对Kelvin模型在混凝土材料耗能计算中的应用进行了修正。此外,本文收集了大量的实测桥梁阻尼比数据并分析了其分布规律,利用提出的应力相关阻尼模型进行了桥梁的车桥耦合振动和地震响应计算。本文的主要研究内容如下:
     1.针对混凝土材料阻尼的应力相关性能,开展了轴向滞回试验,利用试验结果,区分了混凝土的塑性耗能和阻尼耗能,同时考虑振动应力幅值、振动频率和应力水平对混凝土阻尼耗能的影响。试验结果表明:混凝土材料的阻尼耗能随着振动的应力幅值增大而增大,二者的关系可以用幂函数或指数函数表示。混凝土材料的阻尼耗能对加载频率和应力水平敏感性较差。
     2.针对四种常见的粘弹性模型,推导了周期性荷载作用下耗散能量和模型参数的关系式。利用材料阻尼试验的结果,提出了Kelvin模型中混凝土的粘滞系数的表达式,并进行了试验验证。计算结果表明:混凝土的粘滞系数不是定值,它随着应力幅值的增大而增大,提出的频率不相关粘滞系数,能够很好的模拟混凝土阻尼耗能的频率不敏感性,通过与其他试验结果的对比分析,验证了所推导粘滞系数表达式的有效性。
     3.收集了114座桥梁的动力测试数据和4座桥梁的动力监测数据,测试了两座桥梁在环境激励和车辆激励下阻尼比数值,并对影响因素进行了分析。数据分析表明:不同桥型的阻尼比差距较大,相同桥型的阻尼比分布较为离散。随着桥梁的运营,阻尼比趋向于稳定值,维修和加固对桥梁阻尼比的影响不明显。车辆激励下测试的阻尼比要明显大于环境激励下测试的阻尼比。结合收集的阻尼比数据给出了不同桥型阻尼比的建议取值。
     4.编制了车桥耦合振动响应计算程序,提出了桥梁结构应力相关阻尼的计算方法,求解了桥梁在车桥耦合振动下的动力响应,并同实测结果进行了对比。结果表明:应力相关阻尼理论能够体现桥梁振动过程中的阻尼变化,更加符合实际情况。与常阻尼比5%和Rayleigh阻尼相比,利用应力相关阻尼计算的车桥耦合振动响应更加接近于实测结果。
     5.提出了区分钢筋混凝土柱在拟静力试验中的塑性耗能和阻尼耗能的方法,并通过试验验证了区分方法的有效性。考虑应力相关阻尼理论计算了钢筋混凝土柱拟动力试验动力响应,并与实测结果进行了对比分析。结果表明:考虑应力相关阻尼理论计算的结果要比常阻尼比(5%)下计算的结果更接近于实测结果,尤其是在小震和中震的情况。以一座连续刚构桥为背景,利用反应谱方法对桥梁的应力相关阻尼比进行了计算。计算结果表明:应力相关阻尼比随着地震烈度的增加而增大。
Damping has great influence on dynamic response of bridge. Numerous studies indicate that damping value is a variable during vibration process of bridge; however, most existing damping models cannot reflect this variation. The uncertainty of damping parameter severely restricts the solving accuracy of dynamic response.
     On the basis of material damping experiment of concrete, a damping identification method and relevant calculation formula are proposed in this paper. Based on experimental data, the Kelvin model is proposed and employed for the energy dissipation calculation of concrete.In addition, full-scale data on the damping ratios of highway bridges in China have been collected and analyzed, a calculation method of stress-related damping is proposed for the bridges. The dynamic responses of vehicle-bridge and earthquake are calculated. Main researching works of this dissertation are as follows:
     (1) A uniaxial hysteretic experiment including the influence of dynamic stress amplitude, frequency and stress level is conducted to study the stress-related damping characteristic of concrete. By use of the experimental results, the plastic energy dissipation and damping energy dissipation are separated, showing that the damping energy dissipation of concrete increases with the increase of stress amplitude, and the relationship can be represented by a power function. Moreover, the damping energy dissipation of concrete is not sensitive to loading frequency and stress level.
     (2) The relationship between dynamic energy dissipation and model parameters are derived for four common viscoelastic models. A formula for calculating viscosity coefficient of Kelvin model is proposed and validated by experimental results. The calculating results show that the viscosity coefficient of concrete increases with increase of stress amplitude. The proposed viscosity coefficient being independent of frequency can well simulate the frequency insensitivity of the damping energy dissipation of concrete. Finally, the validity of the formula is verified by the comparison with others test results.
     (3) Full-scale data on the natural frequencies and the damping ratios of114highway bridges in China, and the dynamic characteristics monitoring data of four bridges under ambient excitation, have been collected and analyzed. The data indicate that the damping ratios of different bridge types have large difference, and for the same bridge type, the damping ratios are scattered. With the increase in service ages, the damping ratios of the bridges decrease and tend toward stable after certain years; maintenance and reinforcement do not considerably affect the damping ratios. The test results of damping ratios under vehicle excitation are much larger than that of ambient excitation. The proposed damping ratios of different bridge types are given on the basis of damping ratio data.
     (4) A calculation method of stress-related damping is proposed for bridges, and a vehicle-bridge coupled programming is developed to calculate the dynamic response. A helpful conclusion is obtained by comparing the test results; it shows that the stress-related damping is capable of presenting the variation of damping during the vibration process of bridge, and fitting the reality better. In comparison with the traditional constant damping ratio (5%) and Rayleigh damping, the stress-related damping is also much closer to the measured data.
     (5) A calculate method is proposed for reinforcement concrete column to separate the plastic energy dissipation and the damping energy dissipation in quasi-static test. Correctness and validation of the method is testified by the comparison of measured data and the calculation result. Using stress-related damping theory, the dynamic response of reinforcement concrete column is calculated and compared with the quasi-static test result. Comparing with measured test, the result calculated by the stress-related damping is more accurate than that by constant damping ratio (5%), especially in small-moderate earthquake. Taking continuous rigid frame bridge as an instance, the stress-related damping ratio of a bridge is calculated by the method of response spectrum. The calculating results show that the damping ratio increases with the increase of earthquake intensity.
引文
[1]张炜,冯谦,王韬.从汶川地震典型桥梁震害谈桥梁抗震对策[J].建筑结构,2010,40(6):719-721
    [2]李国豪.桥梁结构稳定与振动[M].北京,中国铁道出版社,1996
    [3]Thomson W T, Dahleh M D. Theory of Vibration with Applications振动理论及应用[M].第五版,北京:清华大学出版社,2005
    [4]克拉夫R w,彭津J,王光远译.结构动力学[M].第二版,北京:高等教育出版社,2006
    [5]Lege P, Dussualt S. Seismic-energry dissipation in MDOF structure [J]. Journal of Structure Engineering,1992,118(5):1251-1269
    [6]董军,邓避,王肇民.结构动力分析阻尼模型研究[J].世界地震工程,2000,16(4):63-69
    [7]瑞思尼克R,哈里德D.物理学[M].北京:科学出版社,1979
    [8]周光坰,严宗毅,许士雄,章克本.流体力学(第二版)[M].北京:高等教育出版社,2006
    [9]王光远.建筑结构的振动[M].北京:科学出版社,1978
    [10]Rayleigh L. Theory of Sound [M]. New York:Dover Publications,1945
    [11]Jacobsen L S. Steady forced vibration as infuenced by damping [J]. Transactions of the American Society of Mechanical Engineers, ASME,1930,52(1):169-181
    [12]Theodorsen T, Garrick I E. Mechanism of flutter—A theoretical and experimental investigation of the flutter problem [R]. NACA,1940
    [13]Myklestad N O. The concept of complex damping [J]. Journal of Applied Mechanics,1952, 19(3):20-30
    [14]Lazan B J. Damping of Material and Members in Structural Mechanics [M]. London:Pergamon Press,1968
    [15]颜海泉.地震作用下桥梁结构的阻尼建模[D].同济大学,2008
    [16]于航,李林.叶栅流场中的气动阻尼研究[J].航空动力学报,2009,24(4):819-824
    [17]吴业伟Grp/AZ91复合材料阻尼行为与力学性能研究[D].哈尔滨工业大学,201 1
    [18]Lavernia E J, Perez R J, Zhang J. Damping behavior of discontinuously reinforced Al alloy metal-matrix composites [J]. Metallurgical and Materials Transactions A,1995,26(11):2803-2818
    [19]Bock E. Behavior of concrete and reinforced concrete subjected to vibrations causing bending [J]. VDIZ,1942 (86):145-147
    [20]柯国军等.混凝土阻尼试验研究及其机理分析[J].噪声与振动控制,2005,5:60-63
    [21]Mckaranagh B, Stacey F D. Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies [J]. Physics of the Earth and Planetary Interiors,1974,8(3):246-250
    [22]Cement and Concrete Association (1963a), Report for 1963
    [23]万泽青.高阻尼混凝土的试验研究及其在结构耗能减振中的应用[D].扬州大学,2005
    [24]Wang Y, Chung D D L. Effects of sand and silica fume on the vibration damping behavior of cement [J]. Cement and Concrete Research,1998,28 (10):1353-1356
    [25]Nelson D J, Hancock J W. Interfacial slip and damping in fiber reinforced composites [J], Journal of Materials Science,1978,13:2429-2440.
    [26]Yan L, Pendelton R L, Jenkins C H. Polyolefin fiber reinforced concrete composites:Part I. Damping and frequency characteristics [J]. Cement and Concrete Research,2000,30 (3):391-401
    [27]Ungar E E. and Kerwin E M. Loss factors of viscoelastic systems in terms of energy concepts [J]. The Journal of the Acoustical Society of America,1962,34 (7):954-957
    [28]Crandall S H. The role of damping in vibration theory [J]. Journal of Sound and Vibration,1970, 11(1):3-18
    [29]Caughey T K. Classical normal modes in damped linear dynamic systems [J]. Journal of Applied Mechanics,1960,27:259-269
    [30]Adhikari S. Damping modelling using generalized proportional damping [J]. Journal of Sound and Vibration,2006,293(1):156-170
    [31]Adhikari S, Phani A S. Experimental identification of generalized proportional viscous damping matrix [J]. Journal of Vibration and Acoustics,2009,131:1-12
    [32]Crandall S H. The hysteretic damping model in vibration theory [J]. Journal of Mechanical Enineering Science,1991,205:23-28
    [33]朱敏.结构阻尼体系地震反应分析方法的研究[D].中国地震局工程力学研究所,2002
    [34]Naylor V D. Some fallacies in modern damping theory [J]. Journal of Sound and Vibration, 1970, ll(2):278-280
    [35]Scanlan R H. Linear damping models and causality in vibrations [J]. Journal of Sound and Vibration,1970,13 (4):499-503
    [36]Newland D E. Mechanical vibration analysis and computation [M]. New York:Longman, Harlow and John Wiley,1989
    [37]Bishop R E D. The behavior of damped linear system in steady oscillation [J]. The Aeronautical Quarterly,1956a,7:156-168
    [38]Bishop R E D. The general theory of hysteretic damping [J]. The Aeronautical Quarterly,1956b, 7:60-70
    [39]Chen K D, Zhang S W. On the impulse response precursor of an ideal linear hysteretic damper [J]. Journal of Sound and Vibration,2008,312(4-5):576-583
    [40]Makris N. Frequency-independent dissipation and causality [J] Computational Stochastic Mechanics,1999,435-441
    [41]Gounaris G D. Structural damping determination by finite element approach [J]. Computers and Structures,1999,73:445-452
    [42]Muravskii G B. On frequency independent damping [J]. Journal of Sound and Vibration,2004, 274(3-5):653-668
    [43]朱镜清.频率相关粘性阻尼理论及有关问题的解[J].振动与冲击,1993,4:1-7
    [44]Maia N. Reflections on the hysteretic damping model [J]. Shock and Vibration,2009,16(5): 529-542
    [45]Ribeiro A M R. et al. Free vibration response using the constant hysteretic damping model [A]. Proceedings of the XIth International Conference on Vibration Engineering [C]. Romenia,2005, 65-70
    [46]朱镜清.结构抗震分析原理[M].北京:地震出版社,2002
    [47]Inaudi J A, Kelly J M. Linear hysteretic damping and the Hilbert transform [J]. Journal of Engineering Mechanics,1995,121(5):662-632
    [48]Chen J T, You D W. An integral-differential equation approach for the free vibration of a SDOF system with hysteretic damping [J]. Advances in Engineering Software,1999,30(1):43-48
    [49]朱敏,朱镜清.逐步积分法求解复阻尼结构运动方程的稳定性问题[J].地震工程与工程振动,2001,21(4):59-62
    [50]潘玉华.指数型阻尼模型及其在钢筋混凝土结构动力分析中的应用[D].北京交通大学,2013
    [51]季葆华,王乐天.汽轮机叶片干摩擦阻尼机理及其数学描述[J].汽轮机技术,1997,39(6):345-39
    [52]樊剑,唐家祥.滑移隔震结构的动力特性及地震反应[J].土木工程学报,2000,33(4):30-34
    [53]钱辉等.形状记忆合金复合摩擦阻尼器设计及试验研究[J].建筑结构学报,2011,32(9):52-64
    [54]文捷,王元丰.钢筋混凝土轴压构件材料阻尼计算及应用公式[J].振动与冲击,2007,26(6):14-16
    [55]文捷,王元丰.素混凝土轴压构件单位体积材料耗能公式建立[J].北京交通大学学报,2008,32(1):79-32
    [56]文捷,王元丰.钢筋混凝土悬臂梁材料阻尼值计算[J].土木工程学报,2008,41(2):77-80
    [57]王元丰,李鹏.材料阻尼对钢筋混凝土框架结构动力响应影响分析[J].土木工程学报,2008,41(11):3943
    [58]Kume Y. Material damping of cantilever beams [J]. Journal of Sound and Vibration,1982,80(1): 1-10
    [59]张忠明等.金属材料阻尼性能测试系统[J].西安理工大学学报,2000,16(2):133-137
    [60]刘宏昭等.阻尼合金非线性本构关系及其在弹性机构动力学中的应用[J].机械工程学报,2004,40(1):17-21
    [61]Hongzhao Liu et al. Strain-dependent nonlinear damping and application to dynamic analysis of elastic linkage mechanism[J]. Journal of Sound and Vibration,2005,281(2):399-408
    [62]何益斌等.钢筋混凝士受弯构件振动中的阻尼耗能研究[J].工业建筑,2006,36(2):11-15
    [63]American Society for Testing and Materials. Standard test method for measuring vibration—damping properties of materials[S].2005
    [64]中华人民共和国国家质量监督检验检疫总局.金属阻尼材料阻尼本领试验方法扭摆法和弯曲振动法(GB/T13665-2007)一匕京,2007
    [65]Ibrahim S R. An approach for reducing computational requirements in modal identification [J]. AIAA Journal,1986,24(10):1725-1727
    [66]王建有,陈健云.提高阻尼识别精度的ITD两步法[J].世界地震工程,2003,19(3):35-38
    [67]吴子英等.基于Prony法的非线性阻尼辨识与实验研究[J].振动与冲击,2008,28(1):127-130
    [68]杨和振,李华军,王国兴.海洋平台结构模态参数识别的仿真研究[J].海洋j[程,2003,21(4):75-80
    [69]周传荣,赵淳生.机械振动参数识别与应用[M].北京,科学出版社,1989
    [70]李中付等.用时域峰值法计算频率和阻尼[J].振动与冲击,2001,20(3):5-6
    [71]黄方林等.识别结构模态阻尼比的一种新方法[J].土木工程学报,2002,35(6):20-23
    [72]陈奎孚,张森文.半功率点法估计阻尼的一种改进[J].振动工程学报,2002,15(2):151-155
    [73]吴国乔,王兆华,黄晓红.离散频谱的全相位校正法.数据采集与处理,2005,20(3): 286-290
    [74]钱克矛,李川奇.频谱校正的线性调频Z变换方法.振动工程学报,2000,13(4):628-632
    [75]应怀樵,李惠彬,沈松.关于用INV的频率细化与大容量数据采集分析技术提高阻尼比计算精度的研究.噪声与振动控制,1997(2):1 7-20
    [76]Donlon W P, Hall J F. Shaking table study of concrete gravity dam monoliths [J]. Earthquake Engineering & Structural Dynamics,1991,20(8):769-786
    [77]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8
    [78]刘自明.桥梁结构模型试验研究[J].桥梁建设,1999,(4):1-7
    [79]龚炳年,郝瑞坤,赵宁.钢-混凝土混合结构模型动力特性的试验研究[J].建筑结构学报,1995,16(3):36-43
    [80]吕西林,张杰.钢和混凝土竖向混合结构阻尼特性研究[J].土木工程学报,2012,45(3):10-16
    [81]张相庭.结构阻尼耗能假设及在振动计算中的应用[J].振动与冲击,1982,2:12-22
    [82]黄宗明.结构地震反应时程分析中的阻尼研究[D].重庆:重庆建筑大学,1995:8-35
    [83]黄宗明.结构地震反应时程分析中的阻尼研究[J].土木工程学报,1998,31(2):95-105
    [84]黄宗明,赖明,白绍良.结构弹塑性地震反应中的阻尼试验方法研究[J].重庆建筑大学学报,1997,19(4):1-7
    [85]黄宗明,赖明,白绍良.结构地震反应时程分析中的阻尼问题评述[J].地震工程与工程振动,1996,16(2):95-105
    [86]Newmark N M, Hall W J. Seismic design criteria for nuclear reactor facilities [A]. Proceedings of Fourth World Conference on Earthquake Engineering [C]. Santiago,1969,37-50
    [87]卜建清,郭奕清.钢筋混凝土简支梁不同工况下自振频率和阻尼比试验研究[J].中国铁道科学,2008,29(1):36-40
    [88]朱银萍.简支梁法测量材料阻尼性能的试验研究[D].天津大学,201 1
    [89]Sihai Wen, D.D.L.Chung. Enhancing the vibration reduction ability of concrete by using steelreinforcement and steel surface treatments [J]. Cement and Concrete Research,2000, 30(2):327-330
    [90]Razak H A, Choi F C. The effect of corrosion on the natural frequency and modal damping of reinforced concrete beams [J].Engineering Structure,2001,23(9):1126-1133
    [91]欧进萍,刘铁军,梁超锋.复合纤维增强混凝土阻尼测试装置开发与试验研究[J].实验力学,2006,21(4):403-409
    [92]梁超锋,刘铁军,邹笃建.配筋对钢筋混凝土阻尼性能的影响[J].建筑材料学报,2011,14(6):839-843
    [93]梁超锋等.再生混凝土材料阻尼性能研究[J].振动与冲击,2013,32(9):160-164
    [94]尚世英,董致仁.钢筋混凝土阻尼值实验研究[J].jI:程抗震,1993,(4):18-19
    [95]王元丰,钟铭,潘玉华.钢筋混凝土柱低周疲劳损伤后的阻尼性能试验.中国公路学报,2011,24(5):32-39
    [96]钟铭.钢筋混凝土桥墩低周疲劳损伤后性能试验及理论研究[D].北京:北京交通大学,2010
    [97]柯国军等.混凝土阻尼试验研究及其机理分析[J].噪声与振动控制,2005,5:60-63
    [98]柯国军等.混凝土阻尼比研究[J].建筑材料学报,2004,7(1):35-40
    [99]石建军等.钢筋混凝土材料阻尼值的实验研究[J].四川建筑科学研究,2003,29(3):14-15
    [100]柯国军等.轻骨料混凝土阻尼比研究[J].混凝土,2002,(10):34-37
    [101]马宁.几种构件的非比例阻尼比试验研究[J].工程抗震,2003,(1):37-41
    [102]Fu Xuli, Chung D D L. Vibration damping admixture for cement [J]. Concrete and Cement Research,1996,26(1):69-75
    [103]刘铁军,欧进萍.水泥砂浆强度和阻尼增强掺料及试验[J].低温建筑技术,2003,1:7-9
    [104]谭劲旅.自密实钢筋混凝土梁阻尼比的试验研究[J].南华大学学报(白然科学版),2010,24(1):102-105
    [105]Sezan O. Investigation of vibration damping on polymer concrete with polyester resin [J]. Cement and Concrete Research,2000,30(2):171-174
    [106]Yan L, Jenkins C H, Pendleton R H. Polyolefin fiber-reinforced concrete composites:Part Ⅰ. Damping and frequency characteristics [J]. Cement and Concrete Research,2000,30(3):391-401
    [107]Yan Li, Jenkins C H, Pendleton R H. Polyolefin fiber-reinforced concrete composites:Part Ⅱ. Damping and interface debonding [J]. Cement and Concrete Research,2000,30(3):403-410
    [108]Tsang W F, Rider E. Modelling of structures using experimental forced vibration data with a particular application in force prediction [R], Royal Naval Engineering College Research Report RNEC-RP-88023. Royal Naval Engineering College, Plymouth, UK,1988
    [109]Williams C. The effects of vibration on large structures and the determination of dynamic characteristics [A]. International Conference on Engineering Integrity through Testing[C], Birmingham, UK,1990,441-452
    [110]Williams C. Testing of large structures using vibration techniques [A]. Proceedings of Structural Integrity Assessment [C], London, UK,1992,209-229
    [111]Nalitolela N G, Penny J E T, Friswell M I. Updating structural parameters of a finite element model by adding mass or stiffness to the system [A]. Proceedings of 8th International Modal Analysis Conference [C], Orlando, FL, USA,1990,836-842
    [112]Proulx J, Hebert D, Paultre P. Evaluation of the dynamic properties of a steel arch bridge. Proceedings of International Modal Analysis, Conference [C], San Diego, CA, USA,1992, 1025-1031
    [113]Tsai W H, Yang J C S. Nondestructive evaluation of composite structures using system identification technique [J]. Journal of Engineering Materials and Technology,1988,110(2): 134-139
    [114]中华人民共和国行业推荐标准.公路桥梁抗风设计规范(JTG/T D60-01-2004)[S],北京,人民交通出版社,2004.
    [115]中华人民共和国行业推荐标准.公路桥梁抗震设计细则(JTG/T B02-01-2008) [S],北京,人民交通出版社,2008
    [116]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010)[S],北京,中国建筑工业出版社,2010
    [117]European Committee for Standardization. Eurocode 8:Design of structures for earthquake resistance[S], Brussels,2001
    [118]California Department of Transportation(Caltrans). Seismic design criteria (SDC-2010)[S], Caltrans,Sacramento,Califonia,2010
    [119]Hart G C, Vasndevan R. Earthquake design of building damping [J]. Journal of the Structural Division,1975,101(1):185-19
    [120]Wen J. Wang Y F. The influence of damping change on dynamic response of concrete-filled steel tubular arch bridges [A]. Proceedings of the 4th International Conference on Advances in Steel Structures [C], Shanghai, China,2005,1675-1680
    [121]Brownjohn A. Ambient vibration measurements of the Humber suspension bridge and comparison with calculated characteristics [A]. ICE Proceedings [C],1987,83(3):561-600
    [122]Littler J D. Discussion of "Ambient vibration measurements of the Humber suspension bridge and comparison with calculated characteristics"by Brownjohn et al [A]. ICE Proceedings [C], 1988,85(2):725-730
    [123]Jeary A P. Establishing non-linear damping characteristics of structures from non-stationary response time-histories [J]. Journal of Structural Engineering,1992,70(4):61-66
    [124]Carne T G.et al. Modal testing an immense flexible structure using natural and artifical excitation [J]. The International Journal of Analytical and Experimental Modal Analysis,1988, 3(4):117-122
    [125]Bendat J S, Piersol A G. Random Data:Analysis and Measurement Procedures [M]. New York-John Wiley,1986
    [126]Brownjohn J M W. Assessment of Structural Integrity by Lvnamic Measurements Thesis [D]. Department of Civil Engineering, University of Bristol, Bristol, UK,1988
    [127]Mazurek D F, Dewolf J T. Experimental study of bridge monitoring technique [J]. Journal of Structural Engineering [J].1990,116(9):2532-2549
    [128]Davenport A G, Hill-Carroll P. Damping in tall buildings:its variability and treatment in design. Proceedings of American Society of Civil Engineers (ASCE) Spring Convention, Seattle, 1986,42-57
    [129]Lagomarsino S. Forecast models for damping and vibration periods of buildings [J] Journal of Wind Engineering and Industrial Aerodynamics,1993,48(2-3):221-239
    [130]Kenichi Suda et al. Damping properties of buildings in Japan [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59(2-3):383-392
    [131]Jeary A P. Damping in structures [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,72(9-10):345-355
    [132]Glanville M J.et al. Full-scale damping measurements of structures in Australia [J].Journal of Wind Engineering and Industrial Aerodynamics,1996,59(2-3):349-364
    [133]Celebi M. Comparison of damping in buildings under low-amplitude and strong motions [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59(2-3):309-323
    [134]Hart G C. Random damping in buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59(2-3):233-246
    [135]Jonathan P S. et al. Seismic soil-structure interaction in building [J]. Journal of Geotechnical and Geoenvironmental Engineering,1999, 125(l):38-48
    [136]Q.S.Li et al. Evaluation of wind effects on a super tall building based on full-scale measurements [J]. Earthquake Engineering and Structural Dynamics,2000,29(12):1845-1862
    [137]Q.S.Li et al. Field measurements of typhoon effects on a super tall building [J]. Engineering Structures,2004,26(2):233-244
    [138]Q.S.Li et al.. Full-scale measurements of wind effects on the Jin Mao building [J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(6):445-466
    [139]Naoki Satake.et al. Damping evaluation using full-scale data of buildings in Japan [J]. Journal of Structural Engineering,2004,129(4):470-477
    [140]樊海涛.钢筋混凝土建筑非线性阻尼性能及其地震反应研究[D].湖南大学.2005
    [141]Bentz A. Predictive models for damping in buildings:the role of structural system characteristics [A]. Structures Congress2008:18th Analysis and Computation Specialty Conference [C],2008:1-12
    [142]Rachel B. et al. Full-scale performance evaluation of tall buildings under wind [J]. Journal of Wind Engineering and Industrial Aerodynamics,2012,104-106:88-97
    [143]Farrar C R et al. Excitation methods for bridge structures [A]. Proceedings of the 17th International Modal Analysis Conference[C], Kissimmee, FL,1999:1063-1069
    [144]Okauchi I. et al. Vibration test of Ohnaruto bridge to confirm wind proofness [A]. Proceedings of International Association for Bridge and Structural Engineering [C], Tokyo, Japan,1986
    [145]Eyre R, Tilly G P. Damping measurements on steel and composite bridges [A]. Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory [C], Berkshire, UK,1977,22-39
    [146]Tilly, G. P. Damping of highway bridges:a review [A]. Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory [C], Berkshire, UK, 1977,1-9
    [147]Salane H J, Baldwin J W. Identification of modal properties of bridges [J]. Journal of Structural Engineering,1990,116(7):2008-2021
    [148]Green M F, Cebon D. Modal testing of two highway bridges [A]. Proceeding of 11 International Modal Analysis Conference [C], Kissimme, FL, USA,1993,2,838-844
    [149]Green R. Dynamic response of bridge superstructures-Ontario observations [A]. Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Read Research Laboratory [C], Berkshire, UK,1977,40-55
    [150]Billing J R. Dynamic loading and testing of bridges in Ontario [J]. The Canadian Journal of Chemical Engineering,1984, 11(4):833-843
    [151]Billing J R. Dynamic test of bridges in Ontario,1980:data capture, test procedures and data processing [R], MTC Research and Development Report SRR-82-02, Ontario Ministry of Transportation andCommunications, Downsview, Ontario, Canada,1982
    [152]Zivanovic S, Pavic A, Reynolds P. Modal testing and FE model tuning of a lively footbridge structure [J]. Engineering Structures,2006,28(6):857-868
    [153]Brownjohn J M W, Sevem R T. Full-scale dynamic testing of the second Bosporus suspension bridge[A]. Earthquake Engineering, Tenth World ConferencefC]. Rotterdam.1992:2695-2700
    [154]Frandsen J B. Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics,2001, 89(1):95-126
    [155]Macdonald J H G. Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003, 91(12-15):1465-1483
    [156]Casas J R. Full-scale dynamic testing of the alamillo cable-stayed bridge in sevilla(Spain) [J]. Earthquake Engineering and Structural Dynamics,1995,24(1):35-51
    [157]Myrvoll F, Kaynia A M, Hansen E. Full-scale dynamic performance testing of the bridgestructure and the special cable friction dampers on the cable-stayed uddevalla bridge[A].20th IMAC Conference on Structural Dynamics[C], Los Angeles:657-662.
    [158]Gonzalez A, Obrien E J, McGetrick P J. Identification of damping in a bridge using a moving instrumented vehicle [J]. Journal of Sound and Vibration,2012,331(18):4115-4131
    [159]Filipe M. et al. Damping estimation using free decays and ambient vibration tests [J]. Mechanical Systems and Signal Processing,2010,24(5):1274-1290
    [160]Salawu O S, Williams C. Bridge assessment using forced-vibration testing [J]. Journal of Structural Engineering,1995,121(2):161-173
    [161]Salawu O S, Williams C. Review of fullscale dynamic testing of bridge structures [J]. Engineering Structures,1995,17(2):113-121
    [162]Rebelo.C. et al. Dynamic behaviour of twin single-span ballasted railway viaducts-Field measurements and modal identification [J]. Engineering Structures,2008,30(9):2460-2469
    [163]Kaustell M, Karoumi R. Application of the continuous wavelet transform on the free vibrations of a steel-concrete composite railway bridge [J]. Engineering Structures,2011,33(3):911-919
    [164]Kaustell M, Karoumi R. Influence of non-linear stiffness and damping on the train-bridge resonance of a simply supported railway bridge [J].Engineering structures,2012,41(8):350-355
    [165]中华人民共和国国家标准.普通混凝土拌合物性能试验方法标准(GB/T 50080-2002)[S],北京,中国建筑工业出版社,2003
    [166]中华人民共和国国家标准.普通混凝土力学性能试验方法标准(GB/T 50081-2002)[S],北京,中国建筑工业出版社,2003
    (167]孟晓春.地震观测与分析技术[M].北京:地震出版社,1998
    [168]Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete [A]. ACI Journal Proceedings[C].1953:729-744
    [169]McHertry D, Shideler J J. Review of data on effect of speed in mechanical testing of Concrete[A]. Symposium on speed of testing of non-metallic materials. Philadelphia, American Society for testing Materials[C],1956:72-82
    [170]Mainstone R J. Properties of materials at high rates of straining or loading[J]. Materials and Structures,1975,8(44):102-116.
    [171]Dilger W H, Koch R Kowalczyk R. Ductility of plain and confined concrete under differem strain rates [A]. ACI Journal Proceedings[C].1984,81(1):73-1
    [172]Ahmad S H, Shah S P. Behavior of hoop confined concrete under high strain rates [J].ACI Journal,1985,82(5):634-647
    [173]Dhir R K, Sangha C M. A study of relationships between time, strength, deformation and fracture of plain concrete [J].Magazine of Concrete Research,1972,24(81):197-208
    [174]Bisehoff P H, Perry S H. Impact behavior of plain concrete loaded in uniaxial compression [J]. Journal of Engineering Mechanics,1995,121(6):685-693
    [175]Mindess S, Young JF, Darwin D. Concrete [M]. Pearson Education. Inc,2003
    [176]吕培印,宋玉普,吴智敏.变速率加载下有侧压混凝土强度和变形特性[J].大连理工大学学报,2001,41(6):716-720
    [177]肖诗云,张剑.不同应变率下混凝土受压损伤试验研究.土木工程学报.2010,43(3):40-45
    [178]肖诗云等.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报.2002,35(5):3542
    [179]闫东明.混凝土动态力学性能试验与理论研究[D].大连理工大学,2006
    [180]孙吉书等.应变速率对混凝土抗压特性影响的试验研究[J].混凝土与水泥制品,2011(5):1-5
    [181]Harsh S, Zhenjia Shen, and David D. Strain-rate sensitive behavior of cement paste and mortar in compression[A]. ACI Journal Proceedings[C],1990,87(5):508-516
    [182]Shen Dejian, Lu Xilin. Experimental study on dynamic compressive properties of microconcrete under different strain rate [A]. The 14th world conference on earthquake engineering [C], Beijing, China,2008
    [183]X.X.Zhang et al.Rate effect on the mechanical properties of eight types of high-strength concrete and comparison with FIB MC2010 [J], Construction and Building Materials,2012,30 (5):301-308
    [184]Muguruma H.et al. Ductility improvement of high strength concrete by lateral confinement [J]. Transactions of the Japan Concrete Institute,1983,5(2):403-410
    [185]Richard B. et al. Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding [J], Engineering Fracture Mechanics, 2010,77(8):1203-1223
    [186]许士杰.钢管混凝土肋拱桥自振特性及汽车荷载作用下动力响应的研究[D].北京交通大学,1999
    [187]赵辉.基于LS-DYNA公路桥梁车桥耦合振动响应研究[D].华东交通大学,2011
    [188]艾庆华.钢筋混凝土桥墩抗震性态数值评价与试验研究[D].大连理工大学,2008
    [189]王朝成.混凝土材料性能测试的三段压理论与试验的研究[D].安徽理工大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700