聚环氧氯丙烷胺及其聚合氯化铝复合混凝剂的脱色性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在采用化学混凝法处理染料及印染废水的过程中,混凝剂是决定化学混凝效果的关键。目前,阳离子型有机高分子絮凝剂受到国内外研究者的广泛关注。因为在处理染料及印染废水时,阳离子型有机高分子絮凝剂具有以下优点:脱色效果好、适用范围广、用量少、产生的污泥量少等。其中,阳离子型季铵盐聚合物是一类具有很大发展前景的水处理药剂,对其混凝性能开展全面系统的研究是很有必要的。在综合国内外大量相关文献的基础上,本文以环氧氯丙烷和二甲胺为原料合成聚环氧氯丙烷胺(EPI-DMA)系列絮凝剂。通过混凝烧杯实验研究EPI-DMA处理各种染料的混凝效果,明确不同特征的EPI-DMA对不同处理对象的混凝性能及混凝机理。通过在线监测混凝剂的混凝动态过程,研究EPI-DMA的絮体形成过程、絮体抗剪切能力及恢复能力。为了得到更高效的混凝脱色效果,本文以聚合氯化铝(PAC)和EPI-DMA为原料制备了聚合铝基无机-有机复合混凝剂(PAC-EPI-DMA)。通过研究有机组分的粘度(η)、有机组分的含量(P)及无机组分的碱化度(B)对PAC-EPI-DMA的混凝脱色过程及混凝动力学过程的影响,明确η、P和B对PAC-EPI-DMA的混凝效果、混凝机理、絮体强度、恢复能力等的影响,揭示复合絮凝剂在无机有机组分相互作用的条件下高效的混凝效果,为复合混凝剂的开发应用提供理论指导。
     主要研究结论如下:
     1.利用红外光谱分析技术研究了环氧氯丙烷单体及聚环氧氯丙烷胺的分子结构,证实季铵盐的形成。通过对絮凝剂、染料及絮体的红外光谱对比分析发现,EPI-DMA中的季铵基R4N+与染料中的磺酸基-SO3-发生静电相互作用。通过透射电镜观察研究PAC-EPI-DMA与EPI-DMA的结构形貌,发现复合絮凝剂形成更为密集的枝网状结构,证实了PAC与EPI-DMA之间的相互作用。采用Zetasizer3000HSA型zeta电位仪测定EPI-DMA与PAC-EPI-DMA的zeta电位,研究混凝剂表面的荷电情况。结果表明η值中等的EPI-DMA的表面电荷最高,而且与PAC复合后,其zeta电位明显升高,复合混凝剂的表面电荷随着P值的增大而增大。
     2.利用EPI-DMA与PAC-EPI-DMA处理各种模拟染料水样,研究pH值以及无机盐对其混凝脱色效果的影响。实验结果表明,EPI-DMA对水体pH值有很强的适应性,在很大pH值范围内都具有良好的混凝效果;但受水体中无机盐浓度的影响较大。PAC-EPI-DMA对水体pH值亦有很强的适应性,尤其在碱性条件下具有更好的脱色效果,不过PAC的加入却导致PAC-EPI-DMA的脱色效果受到水体离子强度的更大影响。
     3.通过混凝烧杯实验考察不同η值和阳离子度(τ)值的EPI-DMA对各种模拟染料水样的混凝效果,并利用JS94F型微电泳仪分析絮体的zeta电位变化情况,研究EPI-DMA处理不同水样的混凝机理。对于水溶性染料,EPI-DMA首先通过静电作用、疏水作用以及氢键等与水溶性染料分子发生相互作用,然后依靠吸附架桥或电中和作用对染料进行絮凝脱色;EPI-DMA的吸附架桥及电中和能力与其η和τ密切相关。对活性染料水样的处理结果表明,较高η值和τ值的EPI-DMA可获得高效的脱色效果,主要混凝机理是吸附架桥作用和电中和作用,而且在混凝前期吸附架桥作用占主导地位。对直接染料水样的处理结果表明,较高η值和τ值的EPI-DMA可在低投药量下获得高效的脱色效果,主要混凝机理是吸附架桥作用。对酸性染料水样的处理结果表明,低η值和τ值的EPI-DMA即可在低投药量下获得高效的脱色效果,主要混凝机理是吸附架桥作用。对分散染料水样的处理结果表明,较高η值和τ值的EPI-DMA可在低投药量下获得良好的脱色效果,吸附架桥作用是其主要的混凝机理。
     4.通过混凝烧杯实验考察η值、P值和B值对PAC-EPI-DMA处理活性染料水样混凝性能的影响。结果表明,复合絮凝剂的脱色效果明显优于EPI-DMA的脱色效果,而且有机组分的η值和P值是影响PAC-EPI-DMA混凝性能的主要因素。PAC-EPI-DMA (η=2400 mPa·s)的混凝脱色效果明显优于粘度过低或过高的PAC-EPI-DMA。对于水溶性染料,PAC-EPI-DMA首先通过静电作用、氢键等与水溶性染料分子发生相互作用,然后依靠吸附架桥和电中和作用对染料进行絮凝脱色,而吸附架桥作用随着P值的增大发挥越来越重要的作用。
     5.利用PDA2000光散射颗粒分析仪在线监测EPI-DMA及PAC-EPI-DMA的混凝动力学过程,研究混凝过程中絮体的聚集特性。对活性、分散、酸性等模拟染料水样的处理结果表明,η值较高的EPI-DMA生成絮体的粒度较大,且絮体的生长速度及沉降速度较快,絮体间的差异性较小。对直接染料水样的处理结果表明,低η值的EPI-DMA的絮体粒度较大,絮体生长速度较快,絮体间的差异性较小。PAC-EPI-DMA的使用可以提高絮体的生长速度及沉降速度,缩短混凝剂与污染物反应时间,并提高絮体的粒度。而且η值、P值及B值对PAC-EPI-DMA的絮体聚集特性均有一定的影响,其中P值对絮体生长速度和絮体粒度的影响较为明显,而η值和B值的影响较小。当采用η=3200 mPa·s、P=10%、B=1.5的PAC-EPI-DMA处理水样时,能够以较快的生长速度得到较大的絮体,而且絮体以较快的速度沉降。
     6.利用PDA2000光散射颗粒分析仪考察EPI-DMA和AC-EPI-DMA的絮体抗剪切及恢复能力。对于活性和直接染料水样的处理结果表明,较高η值的EPI-DMA能够提高絮体的强度及恢复能力。对分散染料水样的处理结果表明,EPI-DMA(η=3200 mPa·s)能够生成具有较高强度及恢复能力的絮体。对于酸性染料水样的处理结果表明,利用高η值的EPI-DMA虽然使絮体强度略有升高但却降低了其恢复能力。提高η值和B值,可以在一定程度上提高PAC-EPI-DMA的絮体强度及恢复能力。
     上述研究从多方面系统的探讨了EPI-DMA及PAC-EPI-DMA对各种染料的混凝效果、混凝行为和混凝机理。结果表明,二者均是适用于染料废水处理的新型高效混凝剂,且复合混凝剂是一种更为高效节约的混凝剂。本论文的研究为高效脱色混凝剂的研制奠定了理论基础,并为开发应用提供理论指导。
During the chemical coagulation process for treating dyeing and printing wastewater, coagulation efficiency is mainly dependent on the coagulant used. At present, cationic organic polymer has received wide attention. Because its advantages for treating dyeing and printing wastewater:high color removal, wide application, low chemical cost and low sludge, etc. Among them, cationic quaternary ammonium polymer is one floccuant that has great development foreground, and so systematic study on its coagulation is necessary. Synthesizing a number of references and literature, epichlorohydrin-dimethylamine ploymer (EPI-DMA) was prepared by the polycondensation of epichlorohydrin and dimethylamine with amines as the modifying agent. The flocculation efficiency of EPI-DMA for various dyes was investigated, and the flocculation performance and mechanism of EPI-DMA with different characteristics were clearly studied in the treatment of different pollutants. Through on-line monitoring the flocculation dynamic process of EPI-DMA, floc growth process, breakage resistance capability of floc and the regrowth ability of broken floc were studied. In order to improve the decolorization efficiency, a series of composite flocculants polyaluminum chloride-epichlorohydrin-dimethylamine ploymer (PAC-EPI-DMA) with different intrinsic viscosity (η), organic mass fraction (P) of EPI-DMA and basicity (B) of PAC, were prepared. The effect ofη, P and B on the flocculation efficiency, flocculation mechanism, floc growth process, breakage resistance capability of floe, and the regrowth ability of broken floc were investigated. The improved flocculation efficiency of the composite flocculant was revealed, based on the combination organic with inorganic component, which provides theoretical guidance for the development and application of composite flocculant.
     The main conclusions are as follows:
     1. Infrared spectral analysis technology was used to investigate the molecular structure of epichlorohydrin monomer and EPI-DMA. The results confirmed the formation of quaternary ammonium. Based on the IR analysis of flocculants, dyes and flocs, the results showed that quaternary ammonium R4N+ of EPI-DMA reacted with sulfonic group-SO3- of dye molecule. TEM was used to study the flocculant morphology. The results showed that the appearance of the composite flocculant PAC-EPI-DMA was denser branch network structure, indicating the interaction between PAC and EPI-DMA. The zeta potential of EPI-DMA and PAC-EPI-DMA was determined using a Zetasizer3000HSA analyzer. The results showed that EPI-DMA with an intermediateηhad the highest surface charge. The zeta potential of PAC-EPI-DMA was higher than that of EPI-DMA, and increased with the increse of P value.
     2. The effect of pH and inorganic salt on the flocculation efficiency of EPI-DMA and PAC-EPI-DMA was studied for the removal of various dyes. The experimental results showed that high flocculation efficiency of EPI-DMA could be achieved within a wide pH range, but was influenced by the inorganic salt in treated water. PAC-EPI-DMA also could obtain high flocculation efficiency within a wide pH range, especially under alkaline condition. However, the negative effect of ionic strength on the decolorization of PAC-EPI-DMA was exacerbated due to the exsit of the inorganic content.
     3. The flocculation efficiency of EPI-DMA with differentηand cationicity (τ) was stuied in the treatment of various simulation dyeing wastewater, and the variation of zeta potential was also investigated using a JS94F micro-electrophoresis analyzer, which explained the flocculation mechanism. In the treatment of water-soluble dye, EPI-DMA interacted first with dye molecules by electrostatic, hydrophobic as well as hydrogen bonding, after then, adsorption bridging or charge neutralization of EPI-DMA played a role for the decolorization. The adsorption bridging and charge neutralization of EPI-DMA was dependent on itsηandτ, respectively. In the treatment of reactive dye, higherηandτof EPI-DMA was more effictive based on its stronger adsorption bridging and charge neutralization ability, and adsorption bridge was dominant in the prophase of flocculation process. In the treatment of direct dye, higherηandτof EPI-DMA was more effictive based on its stronger adsorption bridging ability. In the treatment of acid dye, lowηandτof EPI-DMA could obtain high color removal based on its adsorption bridging ability. In the treatment of disperse dye, higherηandτof EPI-DMA was more effictive based on its stronger adsorption bridging ability.
     4. The effect ofη, P and B on the flocculation pefromance of PAC-EPI-DMA was investigated for the removal of reactive dye by jar test. The results showed that the decolorization of PAC-EPI-DMA was obviously superior to that of EPI-DMA. Theηand P value were the key factors affecting the flocculation pefromance of PAC-EPI-DMA. PAC-EPI-DMA (η=2400 mPa·s) exhibited the highest decolorization. For water-soluble dye, PAC-EPI-DMA interacted first with dye molecules by electrostatic interaction and hydrogen bonding, after then, adsorption bridging and charge neutralization ability played an important role in removing dye. Adsorption bridging ability of PAC-EPI-DMA was stronger with the increase of P.
     5. PDA2000 laser scatter analyzer was used to on-line monitor the floc growth process of EPI-DMA and PAC-EPI-DMA, and floc aggregation parameters were calculated and analyzed. In the treatment of reactive, disperse, acid dyes, larger average floc size, faster floc growth velocity and sedimentation velocity, and smaller floc variance were achieved by higherηof EPI-DMA. In the treatment of direct dye, lowηof EPI-DMA produced larger flocs with faster growth and sedimentation velocity, and smaller floc variance. The floc growth and sedimentation velocity, and average floc size of PAC-EPI-DMA were much larger than those of EPI-DMA. The effct of P and B on the floc growth velocity and average floc size was much more significant than that ofη. Faster floc growth and sedimentation velocity, and larger average floc size were achieved by PAC-EPI-DMA (η=3200 mPa·s, P=10%, B= 1.5).
     6. PDA2000 laser scatter analyzer was used to investigate the breakage resistance capability of floc and the regrowth ability of broken floc of EPI-DMA and PAC-EPI-DMA. In the treatment of reactive and direct dyes, higherηof EPI-DMA could improve floc strength and regrowth ability. In the treatment of disperse dye, stronger floc strength and regrowth ability was achieved by EPI-DMA (η= 3200 mPa·s). In the treatment of acid dye, although highηof EPI-DMA improved the floc strength, foc regrowth ability was decreased slightly. For PAC-EPI-DMA, higherηand B could increase floc strength and regrowth ability in a certain extent.
     The above research investigeted the flocculation behavior and dynamics process of EPI-DMA and PAC-EPI-DMA in the treatment of dyes, indicating that both of them are highly efficient floccualnt for the treatment of dyeing wastewater, and the composite flocculant was more efficient. This research provides theoretical basis for the practical application.
引文
[1]Cheng W.P., Chi F.H.. A study of coagulation mechanism of polyferric sulfate reacting with humic acid using a fluorescence-quenching method [J]. Water Research,2002,36:4583-4591.
    [2]何慧琴,童仕唐.水处理中絮凝剂的研究进展[J].应用化工,1999,30:14-16.
    [3]Choi J.H., Shin W.S., Lee S.H., et al.. Application of Synthetic Poly(DADM)Flocculants for Dye Wastewater Treatment [J]. Environmental Technology,2001,22:1025-1033.
    [4]戴日成,张统,郭茜等.印染废水水质特征及处理技术综述[J].给水排水,2000,26:33-37.
    [5]潘碌亭,肖锦.高分子絮凝剂在印染废水处理中的应用进展[J].工业用水与废水,2002,31:1-6.
    [6]Subramanian R., Zhu S., Pelton R.H.. Synthesis and Flocculation Performance of Graft and Random Copolymer Microgels of Acrylamide and Diallydimethylammonium Chloride [J]. Colloid Polym Sci.,1999,277: 939-946.
    [7]Zhao H.Z., Luan Z.K., Gao B.Y., et al.. Synthesis and Flocculation Properties of Poly (diallyldimethyl ammonium chloride-vinyl trimethoxysilane) and Poly(diallydimethyl ammonium chloride-acrylamide-vinyl trimethoxysilane) [J]. Journal of Applied Polymer Science,2002,84:335-342.
    [8]Choi J.H., Shin W.S., Lee S.H. et al.. Application of Synthetic Polyamine Flocculants for Dye Wastewater Treatment [J]. Separation Science and Technology,2001,36:2945-2958.
    [9]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999,9-18.
    [10]汤鸿霄.无机高分子复合混凝剂的研制趋向[J].中国给水排水,1999,15:1-4.
    [11]邹家庆.工业废水处理技术[M].化学Ⅰ业出版社,北京,2003,124-168.
    [12]Gregory J.. Precipitation and coagulation in waste treatment [C], In: Comprehensive Biotechnology (Eds:Young M.M.), Oxford, Pergamon,1985, Chapter 4.
    [13]汤鸿霄.无机高分子絮凝剂的研究、生产和应用[M].《资源、发展与环境保护》,北京:中国环境科学出版社,1995,27-33.
    [14]钱国纸.染料化学[M].上海交通大学出版社,上海,1988,43-47.
    [15]Song Z., Williams C.J., Edyvean R.G.J.. Treatment of tannery wastewater by chemical coagulation [J]. Desalination,2004,164:249-259.
    [16]李家珍.染料染色工业废水处理[M].化学工业出版社,北京,1994,11-25.
    [17]国家环境保护局科技处,我国几种工业废水治理技术研究第二分册纺织印染废水[M].化学工业出版社,1988,1-3.
    [18]Sarasa J.. Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation [J]. Water Research,1998,32:2721-2726.
    [19]Nagarathnamma R., Bajpal P.. Decolorization and detoxification of Extraction-stage Effluent from Chlorine Bleaching of Kraft pulp by Rhizopus Oryzae [J]. Appl. Envion. Microbiol.,1999,65:1078-1082.
    [20]夏雪芬.水解混凝强化复合式好氧工艺处理印染废水的试验研究[D].福州大学学报,1998,65-75.
    [21]废水处理工程[M].化学工业出版社,1995,260-270.
    [22]Brown J. P.. A review of the genetic effects of naturally occurring falconoid anthrax quinine sand related compounds [J]. Mutation Research,1980,75: 243-277.
    [23]周明耀.环境有机污染物与致癌物质[M].四川大学出版社,成都,1992,23-35.
    [24]Herrera F.. Photochemical decoloration of Remazol Brilliant Blue and Uniblue A in the presence of Fe3+ and H2O2 [J]. Environmental Science Technology, 1999,33:3145-3151.
    [25]王萍.印染废水处理方法的研究进展[J].化工环保,1997,17:273-276.
    [26]梁志荣,染料废水物理化学处理技术的现状与进展[J].四川环境,2003,22:25-29.
    [27]丁忠浩.有机废水处理技术及应用[M].化学工业出版社,北京,2002,108-143.
    [28]邹家庆.工业废水处理技术[M].化学工业出版社,北京.2003,124-168.
    [29]张林生,蒋岚岚.染料废水的脱色方法[M].化工环保,2000,20:14-18.
    [30]赵宜江,张艳,裕鸣.膜分离技术在工业废水处理中的应用[J].江苏化工,2000,28:22-26.
    [31]刘梅红.姜坪.膜法染料废水处理试验研究[J].膜科学与技术,2001,21:5045.
    [32]Purkait M.K., DasGupta S., De S.. Resistance in series model for micellar enhanced ultrafiltration of eosin dye [J]. Journal of Colloid Interface Science, 2004,270:496-506.
    [33]Chakraborty S., Purkait M.K., DasGupta S., De S., Basu J.K.. Nanofiltration of textile plant effluent for color removal and reduction in COD [J]. Separation and Purification Technology,2003,31:141-151.
    [34]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术,1997,17:7-10.
    [35]郭明远,杨牛珍.纳滤膜分离活性染料溶液的研究[J].水处理技术,1996,2:97-99.
    [36]Suksaroj C., Heran M., Allegre C., Persin F.. Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse [J]. Desalination, 2005,178:333-341.
    [37]Gomes A.C., Goncalves I.C., de Pinho M.N.. The role of adsorption on nanofiltration of azo dyes [J]. Journal of Membrane Science,2005,255: 157-165.
    [38]陆朝阳,沈莉莉,张全兴.吸附法处理染料废水的工艺及其机理研究进展[J].工业水处理,2004,24:12-16.
    [39]Walker G.M.. Adsorption of dyes from aqueous solution-the effect of adsorbent pore size distribution and dye aggregation [J]. Chemical Engineering Journal,2001,83:201-206.
    [40]A 1-Degs Y., Khraisheh M.A.M., Allen S.J.. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent [J]. Water Research,2000, 34:927-935.
    [41]A 1-Degs Y., Khraisheh M.A.M., Allen S.J.. Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons [J]. Separation and Purification Technology,2001,36:91-102.
    [42]Weng C.H.. Adsorption characteristics of new cocaine dye on to sludge ash [J]. Adsorption Science & Technology,2002,20:669-681.
    [43]Sirianuntapiboon S., Saengow W.. Removal of vat dyes from textile wastewater using biosludge [J]. Water Quality Research Journal of Canada, 2004,39:276-284.
    [44]袁毅桦,赖兴华,陈纯馨,壳聚糖对印染废水的絮凝作用和脱色效果[J].应用化学,2000,17:217-218.
    [45]Wong Y.C., Szeto Y.S., Cheung W.H., McKay G. Equilibrium studies for acid dye adsorption onto chitosan [J]. Langmuir,2003,19:778-789.
    [46]Cestari A.R., Vieira E.F.S., dos Santos A.G.P., Mota J. A., de Almeida V.P.. Adsorption of anionic dyes on chitosan beads [J]. Journal of Colloid Interface Science,2004,28:380-386.
    [47]Niramol S.A., Thiravetyan P., Nakbanpote W.. Adsorption mechanism of synthetic reactive dye wastewater by chitosan [J]. Journal of Colloid Interface Science,2005,28:36-42.
    [48]Ozcan A., Ozcan A.S.. Adsorptiono f Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite [J]. Journal of Hazardous Materials,2005, 125:252-259.
    [49]Xacha S., Derriche Z., Elmaleh S.. Equilibrium and kinetics of color removal from dye solutions with bentonite and polyaluminum hydroxide [J]. Water Environment Research,2003,75:15-21.
    [50]Armagan B., Ozdemir O., Turan M., Celik M.S.. The removal of reactive azo dyes by natural and modified zeolites [J]. Journal of Chemical Technology and Biotechnology,2003,78:725-732.
    [51]Orthman J., Zhu H.Y., Lu T.Q.. Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions [J]. Separation and Purification Technology,2003,31:53-59.
    [52]Miyamoto N., Kawai R., Kuroda K., Ogawa M.. Adsorption and aggregation of acationic cyanine dye on layered clay minerals [J].Applied Clay Science, 2000,16:161-170.
    [53]岳钦艳,刘玉真,高宝玉,曹先艳,李勇PDMDAAC阳离子膨润土的比表面积和吸蓝量的研究[J].环境化学,2005,24:175-178.
    [54]Hams R.G., Wells J.D., Johnson B.B.. Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces [J]. Colloids and Surfaces A, 2001,18:131-140.
    [55]Kim T.H., Park C., Yang J., Kim S.. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation [J]. Journal of Hazardous Materials,2004,112:95-103.
    [56]Allen S.J., Mckay G., Porter J.F.. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems [J]. Journal of Colloid Interface Science,2004,28:322-333.
    [57]Duggan O.. Study of the physical and chemical characteristics of a range of chemically treated lignit based carbons [J]. Water Science and Technology, 1997,35:21-27.
    [58]李亚峰,杨辉,赵红.粉煤灰处理废水的理论与实践[J].工业用水与废水,1999.30:1-3.
    [59]Ramakrishna K.R.. Dye removal using low cost adsorbents [J]. Water Science and Technology,1997,36:189-196.
    [60]Kumar K.V., Ramamurthi V., Sivanesan S.. Modeling the mechanism involved during the sorption of methylene blue onto fly ash [J]. Journal of Colloid Interface Science,2005,284:14-21.
    [61]Gupta V.K., Mittal A., Gajbe V.. Adsorption and desorption studies of a water soluble dye, Quinoline Yellow, using waste materials [J]. Journal of Colloid Interface Science,2005,284:89-98.
    [62]余颖.树脂NKY对染料活性艳蓝KN-B的吸附特性[J].离子交换与吸附,2000,16:432-440.
    [63]陆朝阳.树脂吸附法处理分散蓝NKF脱磺母液[J].化工环保,2002,22:342-346.
    [64]Karcher S.. Screening of commercial sorbents for the remove of reactive dyes [J]. Dyes and Pigments,2001,51:111-125.
    [65]Suteu D., Nacu A., Cristian G.. Removal of methyl violet triphenyl methanic dye using ion exchange celluloses [J]. Cellulose Chemistry and Technology, 2001,35:451-457.
    [66]Karcher S., Kommiiller A., Jekel M.. Anion exchange resins for removal of reactive dyes from textile wastewaters [J]. Water Research,2002,36: 4717-4724.
    [67]贺启环,叶招莲,孟新静等.二氧化氯催化氧化处理酸性大红染料废水的研究[J].染料工业,2002,39:47-48.
    [68]徐锡彪,褚宏伟,孙建中.催化氧化处理染料废水[J].中国给排水,2000,16:4546.
    [69]Meric S., Kaptan D., Olmez T.. Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process [J]. Chemosphere,2004,54:435-441.
    [70]Meric S., Lofrano G., Belgiorno V.. Treatment of reactive dyes and textile finishing wastewater using Fenton's oxidation for reuse [J]. International Journal of Environment and Pollution,2005,23:248-258.
    [71]Meric S., Selcuk H., Gallo M., Belgiomo V.. Decolourisation and detoxifying of remazol red dye and its mixture using Fenton's reagent [J]. Desalination, 2005,173:239-248.
    [72]Peres J.A., de Heredia J.B., Dominguez J.R.. Integrated Fenton's reagent-coagulation/flocculation process for the treatment of cork processing wastewaters [J]. Journal of Hazardous Materials,2004,107:115-121.
    [73]Bali U.. Application of Box-Wilson experimental design method for the photo degradation of textile dye stuff with UV/H2O2 process [J]. Dyes and Pigments, 2004,60:187-195.
    [74]Hsueh C.L., Huang Y. H., Wang C.C., Chen C.Y.. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system [J]. Chemosphere,2005,58:1409-1414.
    [75]Wang C., Yediler A., Lienert D., Wang Z., Settrup A.. Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products [J]. Chemosphere,2003,52:1225-1232.
    [76]She H.Y., Huang C.R.. Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation processes [J]. Chemosphere,1995,31: 3813-3825.
    [77]朱丽勤,何瑾馨,陈小立.染色废水臭氧氧化催化剂研制及其应用性能[J].东华大学学报(自然科学版),2005,31:72-75.
    [78]Alvares A.B.C., Diaper C., Parsons S.A.. Partial oxidation by ozone to remove recalcitrance from wastewaters-a review [J]. Environmental Technology,2001, 22:409-427.
    [79]Gkhr F., Hermanutz F., Oppermann U.. Ozonation-an important technique to comply with new German laws for textile wastewater treatment [J]. Water Science and Technology,1994,30:255-263.
    [80]Gutierrez M.C., Pepio M., Crespi M.. Electrochemical oxidation of reactive dyes:method validation and application [J]. Coloration Technology,2002, 118:1-5.
    [81]黄兴华,王黎明,关志成.电化学法处理染料废水的研究[J].高压电器,2002.38:22-26.
    [82]Jain R., Sharma N., Bhargava M.. Electrochemical treatment of effluents from textile and dyeing industries [J]. Journal of Scientific & Industrial Research, 2004,63:405-409.
    [83]贾金平,杨骥.活性炭纤维电极法处理染料废水机理初探[J].环境科学,1997,18:31-34.
    [84]Gurese A., Yalein M.; Dogar C.. Electricoagulation of some reactive dyes:a statistical investigation of some electrochemical variables [J]. Waste Management,2002,22:491-499.
    [85]Chen X.M., Yue R.L.. Anodic oxidation of dyes at novel Ti/B diamond electrodes [J]. Chemical Engineering Science,2003,58:995-1001.
    [86]许海梁,杨卫身,周集体等.偶氮染料废水的电解处理[J].化工环保,1999,19:23-36.
    [87]Lin S.H., Peng C.F., Karlis P.K.. Treatment of textile wastewater by electrochemical method [J]. Water Research,1994,28:277-282.
    [88]Vlyssides A.Q., Lin S.H., Lizidou M., Karlis P.K.. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode [J]. Journal of Hazardous Materials,1999, B70:4152-4159.
    [89]赵永才.微电解法脱除水溶性染料废水色度的研究[J].环境污染与防治,1994,16:18-21.
    [90]蔡天明.微电解-水解酸化/接触氧化工艺处理染化废水的研究[J].环境工程,1999,17:27-30.
    [91]Chen X.J., Shen Z.M., Zhu X.L., Fan Y.B., Wang W.H.. Advanced treatment of textile wastewater for reuse electrochemical oxidation and membrane filtration [J]. Water SA,2003,31:127-132.
    [92]朱世云,李道棠.有机染料废水处理研究进展[J].上海环境科学,2000,19:396-398.
    [93]马青山.絮凝化学和絮凝剂[M].中国环境科学出版社,北京,1988,89-135.
    [94]常青.水处理絮凝学[M].化工出版社,北京,2003,126-189.
    [95]丁忠浩.有机废水处理技术及应用[M].化学工业出版社,北京,2002,]08-143.
    [96]魏美燕,陈润铭,熊亚.阴离子染料酸性大红GR水溶液的脱色及反应机理[J]_环境化学,2005,24:326-329.
    [97]汤顺林,程鸿德.一类新型的废水处理药剂-PAFC的研制及对印染废水的处理[J].工业水处理,2001,21:20-23.
    [98]高宝玉,刘保东,王淑仁.一种染料废水脱色絮凝剂的制备的效果实验[J].环境科学,1992,13:54-59.
    [99]高宝玉,宋永会.聚硅酸硫酸铁混凝剂的性能研究[J].环境科学,1997,18:46-48.
    [100]Chu W.. Dye removal from textile dye waste water using recycled alum sludge [J]. Water Research,2001,35:3147-3152.
    [101]李勇.聚硅酸镁铁的制备及对水溶性染料废水处理[J].印染,2005,8:36-37.
    [102]Allegre C., Maisseu M., Charbit F., Moulin P.. Coagulation-flocculation decantation of dye house effluents:concentrated effluents [J]. Journal of Hazardous Materials,2004,116:57-64.
    [103]李玉江,王艳芹,隗娜,曹楠,吴涛.镁铝双氢氧化物用于染料废水脱色的研究[J].环境科学研究,2005,18:71-75.
    [104]卢建杭,刘维屏,张刚.印染废水混凝脱色与染料结构及混凝剂种类同的关系[J].工业水处理,1999,19:28-46.
    [105]樊毓新,周增炎.染料废水的处理方法现状与发展前景[J].工程与技术,2002,9:22-26.
    [106]程云,周启星,马奇英,王颖慧.染料废水处理技术的研究与进展[J].环境污染治理技术与设备,2003,4:56-60.
    [107]吴冰艳,余刚.新型脱色絮凝剂木质素混凝剂的研制及其絮凝性能与机理的研究[J].化工环保,1997,17:268-272.
    [108]扬通在.阳离子型改性高分子絮凝剂对轻工业废水的处理[J].工业水处理,1998,18:27-29.
    [109]王松云.聚电解质在废物处理中的应用及其合成[M].北京科学出版社,1983,23-65.
    [110]赵华章,高宝玉,岳钦艳.二甲基二烯丙基氯化胺(DMDACC)聚合物的研究进展[J].工业水处理,1999,19:14.
    [111]赵华章,奕兆坤,岳钦艳等PDMDAAC系列絮凝剂的脱色性能研究[J].环境化学,2002,21:149-154.
    [112]岳钦艳,赵华章,高宝玉.二甲基二烯丙基氯化按聚合物除浊性能研究[J].工业水处理,2002,22:26-31.
    [113]曾小君.新型阳离子絮凝剂KD21在活性印染废水处理中的应用研究[J].环境污染治理技术与设备,2005,6:71-74.
    [114]霍宇凝,王静华,袁虹,薛莉,顾晓蔚.阳离子型PAM/PAC复合絮凝剂对活性染料废水的脱色作用[J].精细化工,2005,22:540-542.
    [115]张雪馨,游瑞生,李卓美等.一种新型的染料废水脱色混凝剂[J].环境科学,1990,11:25-29.
    [116]王艳,高宝玉,于慧,隋华PAN-DCD用于染料废水的脱色研究[J].环境化学,1995,14:531-536.
    [117]肖继波,胡勇有.菌株HX5对多种染料的吸附作用[J].环境科学学报,2005,25:525-529.
    [118]Hu T.L.. Sorption of reactive dyes by Aeromonas biomass [J]. Water Science and Technology,1992,26:357-366.
    [119]徐成勇,郭波,周莲.白腐菌对染料脱色和降解作用的研究进展[J].生物工程进展,2002,22:57-60.
    [120]Pearce C.I., Lloyd J.R., Guthrie J.T.. The removal of colour from textile wastewater using whole bacterial cells:a review [J]. Dyes and Pigments,2003, 58:179-196.
    [121]Selvam K., Swaminathan K., Chae K.S.. Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus [J]. World Journal of Microbiology & Biotechnology,2003,19:591-593.
    [122]付永胜,魏剑斌,李湘梅.活性红PBL脱色菌的筛选及其特性[J].西南交通大学学报,2005,40:561-564.
    [123]刘正芹,奚旦立,李悦.不同结构阳离子染料好氧生物脱色性能的研究[J].环境工程,2005,23:24-28.
    [124]Lee Y.H., Matthews R.D., Pavlostathis S.G.. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction Conditions [J]. Water Environment Research,2006,78: 156-169.
    [125]Kumar K., Devi S.S., Krishnamurthi K., Gampawar S., Mishra N., Pandya G.H., Chakrabarti T.. Decolorisation biodegradation and detoxification of benzidine based azo dye [J]. Bioresource Technology,2006,97:407-413.
    [126]Dominguez A., Couto S.R., Sanroman M.A.. Dye decolorization by Trametes hirsute immobilized into alginate beads [J]. Desalination,2005,21:405-409.
    [127]Yu Z.S., Wen X.H.. Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater [J]. International Biodeterioration & Biodegradation,2005,56:109-114.
    [128]Li Y., Xi D.L.. Decolorization and biodegradation of dye wastewaters by a facultative-aerobic process [J]. Environmental Science and Pollution Research, 2004,11:372-377.
    [129]Wouter D.. Anaerobic treatment of textile effluents:A review [J]. Journal of Chemical Technology,1998,73:323-335.
    [130]王桂林,马俊华.光催化氧化技术的应用进展[J].环境技术,2003,1:32-35.
    [131]Daneshvar N., Salari D., Khataee A.R.. Photocatalytic degradation of azo dye acid red 14 in water:investigation of the effect of operational parameters [J]. Journal of Photochemical Photobiology Chemistry,2003,157:111-118.
    [132]Kang S.F., Liao C.H., Po S.T.. Decolorization of textile wastewater by photo-Fenton oxidation technology [J]. Chemosphere,2000,41:1287-1294.
    [133]An T.C., Gu H.F., Xiong Y., Chen W.G., Zhu X.H., Sheng G.Y., Fu J.M.. Decolourization and COD removal from reactive dye-containing wastewater using sono photocatalytic technology [J]. Journal of Chemical Technology and Biotechnology,2003,78:1142-1148.
    [134]Epling G.A., Lin C.. Photo assisted bleaching of dyes utilizing TiO2 and visible Light [J]. Chemosphere,2002,46:561-568.
    [135]Tang W.Z., An H.. UV/TiO2 Photo-catalytic oxidation of commercial dyes in aqueous solutions [J]. Chemosphere,1995,31:4157-4170.
    [136]Liu G.. Photo assisted degradation of dye pollutants irreversible degradation o f Alizarin Red under visible light radiation in air-equilibrated aqueous TiO2 dispersions [J]. Environmental Science and Technology,1999,33:2081-2087.
    [137]Wu T.. TiO2-assisted photodegradation of dyes photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation [J]. Environmental Science and Technology,1999,33:1379-1387.
    [138]Osugi M.E., Umbuzeiro G.A., Anderson M.A., Zanoni M.V.B.. Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectron chemistry [J]. Electorchimica Acta,2005,50:5261-5269.
    [139]Sahoo C., Gupta A.K., Pal A.. Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2 [J]. Desalination,2005,181:91-100.
    [140]李玉金,王九思,田玲,朱启雷.负载型二氧化钦光催化降解分散大红RR染料研究[J].兰州交通大学学报(自然科学版),2005,24:83-85.
    [141]王怡中.二氧化钦悬浆体系中八种染料的太阳光催化氧化降解[J].催化学报,2000,21:327-331.
    [142]Purkait M.K., Vijay S.S., DasGupta S., De S.. Separation of congo red by surfactant mediated cloud point extraction [J]. Dyes and Pigments,2004,63: 151-159.
    [143]Purkait M.K., Banerjee S., Mewara S., DasGupta S., De S.. Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant [J]. Water Research,2005,39:3885-3890.
    [144]O'Melia C.R.. Coagulation inWastewater Treatment [C]. In the Scientific Basis of Flocculation. NATO ASI Series. Ives K J. Ed. Sijthoff and Noordhoff. Aalphenaan den Rijin. Netherlands,1978.
    [145]Hahn H.H., Stumm W.. Kinetics of Coagulation with Hydrolyzed Aluminum [J]. Journal of Colloidal and Interface Science,1968,28:133-142.
    [146]Ruehrwein R.A., Ward D.W.. Mechanism of Clay Aggregation by Polyelectrolytes [J]. Soil Science,1952,73:485-492.
    [147]Micheals A.S.. Aggregation of Suspensions by Polyelectrolytes [J]. Industrial and Engineering Chemistry,1954,46:1485-1490.
    [148]Smellie R.H., Jr, LaMer V.K.. Flocculation Subsidence and Filtration of Phosphate Slimes Ⅵ.A Quantitative Theory of Filtration of Flocculated Suspensions [J]. Journal of Colloidal and Interface Science,1956,13: 589-599.
    [149]LaMer V.K., Healy T.W.. Adsorption-Flocculation Reactions of Macromoleculesat the Solid-Liquid Interface [J]. Rev. Pure. App. Chem.,1963, 13:112-132.
    [150]Packham R.F.. Some studies of the coagulation of dispersed clays with hydrolyzed salts [J]. Journal of Colloidal and Interface Science,1965,20: 81-89.
    [151]胡万里.混凝、混凝剂、混凝设备[M].北京:化学工业出版社,2001.
    [152]Filho S.S.F., Hespanhol I., Moreira H.A.. Flocculation Kinetics of Colloidal Suspensions:Effects of Metallic Coagulation Dosage and Primary Particle Concentration on the Breakup and Aggregation Constants [J]. Chemical water and Wastewater Treatment,2000,23:101-103.
    [153]马喜平,邵定波.PA阳离子聚合物的合成及抑制性研究[J].钻采工艺,1999,22:47-48.
    [154]马喜平,胡星琪,杨斌.有机阳离子聚合物PQ的合成及应用[J].精细石油化工,1996,7:18-20.
    [155]Gregory J.. Turbidity fluctuation in flowing suspensions [J]. Journal of Colloidal and Interface Science,1985,105:357-371.
    [156]Burgess M.S.. On-line optical determination of floc size. Part Ⅰ:Principles and techniques [J]. Journal of Pulp and Paper Science,2002,28:63-65.
    [157]Cory Hopkins D., Ducoste Joel J.. Characterizing flocculation under heterogeneous turbulence [J]. Journal of Colloidal and Interface Science,2003, 264:184-194.
    [158]Francois R.J.. Strength of aluminum hydroxide flocs [J]. Water Research,1987, 21:1023-1030.
    [159]Yukselen M.A., Gregory J.. The reversibility of floc breakage [J]. International Journal of Mineral Processing,2004,73:251-259.
    [160]Jarvis P., Jefferson B., Parsons S.A.. Breakage, regrowth, and fractal nature of natural organic matter flocs [J]. Environmental Science and Technology,2005, 39:2307-2314.
    [161]Yang W.Y., Qian J.W., Shen Z.Q.. A novel flocculant of Al(OH)3-polycrylamide ionic hybrid [J]. Journal of Colloid and Interface Science,2004,273:400-405.
    [162]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999.
    [163]Ratnaweera H., Hiller N., Bunse U.. Comparison of the coagulation behavior of different Norwegian aquatic NOM sources [J]. Environment International, 1999,25:345-355.
    [164]Osasere O. F.. Relation of contact angle data to Hallimond tube flotation of coal with coagulants and flocculants [J]. Fuel,2000,79:193-199.
    [165]臧庆达,李卓美.丙烯酰胺-二氰二胺大单体及其与苯乙烯共聚物的研究(Л)—共聚物与甲基橙及其同系物的相互作用[J].应用化学,1992,13:1323-1327.
    [166]李卓美.一种新型阳离子聚丙烯酰胺[J].广州化工,1995,23:60-64.
    [167]王艳,高宝玉,于慧,隋华PAN-DCD用于染料废水的脱色研究[J].环境化学,1995,14:531-536.
    [168]Choi J.H., Shin W.S., Lee S.H., Joo D.J., Lee J.D., Choi S.J.. Application of synthetic polyamine flocculants for dye wastewater treatment [J]. Separation Science and Technology 2001,36:2945-2958.
    [169]Choi J.H., Shin W.S., Lee S.H., Joo D.J., Lee J.D., Choi S.J.. Application of synthetic poly(DADM) flocculants for dye wastewater treatment [J]. Environmental Technology,2001,22:1025-1034.
    [170]Gao B.Y., Yue Q.Y., Wang Y., Zhou W.Z.. Color removal from dye-containing wastewater by magnesium chloride [J]. Journal of Environmental Management,2007,82:167-172.
    [171]Joo D.J., Shin W.S., Choi J.H., Choi S.J., Kim M.C., Han M.H., Ha T.W., Kim Y.H.. Decolorization of reactive dyes using inorganic coagulants and synthetic polymer [J]. Dyes and Pigments,2007,73:59-64.
    [172]Bache D.H., Rasool E.R.. Characteristics of Alumino-Humic Flocs in Relation to DAF Performance [J]. Water Science and Technology,2001,43:203-208.
    [173]McCurdy K., Carlson K., Gregory D.. Floc morphology and cyclic shearing recovery:comparison of alum and polyaluminum chloride coagulants [J]. Water Research,2004,38:486-494.
    [174]Tambo N., Matsui Y., Kurotani K., Kubota M., Akiyama H., Ohto T., Zaisu Y., Itoh H.. Control of coagulation process by dual wavelength particle analyzer [J]. Water Science and Technology,1997,36:135-142.
    [175]Gregory D., Carlson K.. Relationship of pH and floc formation kinetics to granular media ratioltration performance [J]. Environmental Science and Technology,2003,37:1398-1403.
    [176][苏]EД巴宾科夫.论水的混凝[M].北京:中国建筑工业出版社,1982.
    [177]Dobias B.. Coagulation and Flocculation. Theory and Applications [M]. Marcel NY:Decker,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700