饮用水中微污染物质的快速检测及藻毒素降解动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越来越多的研究结果证实饮用水中微污染物质诸如内分泌干扰物、消毒副产物、藻毒素等对人体有害,且这类物质在饮用水中通常以很低的浓度(μg/L甚至是ng/L级别)存在,因此开发快速、廉价和精确的检测方法对饮用水水质管理至关重要。本论文第一部分选择了对饮用水水质安全有较大威胁且常见的邻苯二甲酸酯(PAEs)、卤乙酸(HAAs)和微囊藻毒素-LR(MC-LR)作为研究对象,应用超高效液相色谱-电喷雾-串联四级杆质谱联用仪(UPLC-ESI-MS/MS),开发出快速检测这些物质方法。
     世界卫生组织(WHO)将饮用水中MC-LR的建议值设为1μg/L(相当于人体摄入量为0.04μg/kg bw/day),但此设定值没有考虑低浓度、长期接触条件下对人体健康的影响。最新研究表明,当人类长期摄入低浓度MC-LR时(如0.04μg/kgbw/day),会出现不同症状的慢性疾病。本文第二部分研究了氯和高锰酸钾氧化降解低浓度MC-LR(初始浓度为1μg/L)的动力学特征,并对MC-LR在水处理过程中能够达到的最低限值进行了讨论。
     本论文得到的主要成果有:
     (1)随着塑料制品的大量使用,内分泌干扰物PAEs已广泛存在于各类环境中,对人类健康造成较大威胁。本研究首先使用UPLC-ESI-MS/MS梯度洗脱方式对邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄酯(BBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)进行了分离测定研究。研究发现,在分离过程中色谱图会出现“鬼峰”,干扰DEHP的准确定量。实验分析发现:在梯度洗脱的初始阶段(有机相比例较低时),流动相中含有的痕量DEHP会吸附在色谱柱上,这些物质随着有机相比例的升高而被快速压缩,最终进入检测器,就像进了样品一样,从而形成“鬼峰”。与梯度洗脱方式不同,尽管等度洗脱会减小DBP和BBP的分离度,但是能够避免出现“鬼峰”。本研究采用等度洗脱方式结合多通道检测(MRM)技术,开发出能够对PAEs精确定量的检测方法。本研究同时也讨论了真实样品检测中,基质效应对色谱分离及信号强度的影响。研究发现饮用水中的无机离子对目标物质的检测信号有很大影响,向实际样品中投加一定比例的甲醇能够提高质谱信号强度,从而能够缓解因基质效应引起的信号压缩现象。本研究开发的方法线性范围为0.5~50μg/L,样品无需富集处理检测限能够达到0.32~0.54μg/L,满足饮用水中痕量PAEs的检测需求。
     (2)当使用氯对饮用水进行消毒处理时,除三卤甲烷(THMs)外,HAAs是第二大类常见的、毒性较大的消毒副产物。现有检测HAAs的方法大多具有样品预处理复杂、9种HAAs不能完全分离和检测限过高等缺点。本研究使用HSS T3色谱柱,在UPLC-ESI-MS/MS MRM模式下开发出一种能够实现9种HAAs完全分离、样品预处理简单、价格低廉且分离快速的检测方法,并且根据实验结果提出并讨论了HSS T3色谱柱分离离子型化合物的机理。研究同时也讨论了甲醇-水流动相体系的水相中加入0.125mM甲酸作为修饰剂分离小分子HAAs(如一卤乙酸、二卤乙酸)的作用和机理。样品无需进行富集处理的条件下,9种HAAs即可得到很低的检测限(0.06~0.16μg/L),建立标准曲线的线性范围为0.5~100μg/L(R2=0.9993~0.9997,n=6)。当使用开发的方法检测真实水样中HAAs时,样品中的无机离子导致HAAs分离度变差和信号减弱,进一步研究发现将样品pH值调至3.0或以下时能够基本消除基质效应。以地表水(总溶解固体(TDS):145±3mg/L)和地下水(TDS:362±1mg/L)为研究对象,采用“标准添加法”进行方法验证表明,所开发的方法具有很高的精确度和回收率。
     (3)MC-LR是自然水体中常见的、毒性极强的微囊藻毒素,因此加强MC-LR的监测对供水安全具有重要意义。本研究使用UPLC-ESI-MS/MS结合样品稀释法开发出检测饮用水中痕量MC-LR的方法,其检测限为0.04μg/L,定量限为0.1μg/L。同时,本研究探讨了水中离子强度、溶解态有机碳(DOC)和pH值对基质效应的影响规律。研究发现在超纯水背景条件下,加入的离子浓度越高,MC-LR检测信号压缩的越厉害;而信号强度随着样品pH值和低浓度DOC的增加而略有增强。实验还发现向样品中投加一定比例的甲醇(<30%,v/v)能够提高质谱信号强度。在本研究中,向自来水中投加4%甲醇(v/v)能够解决因基质效应产生的信号压缩问题。向三种含有不同离子浓度的空白自来水样品中添加0.2、1.0和10μg/L的MC-LR进行方法验证,结果表明样品的回收率为84.4~112.9%,完全满足水质分析的需求。
     (4)氯和高锰酸钾是水处理中常用的消毒剂,探究其氧化降解微量有机物质的特征具有现实意义。本文研究了使用氯、高锰酸钾降解浓度为1μg/L的MC-LR至ng/L级别的动力学特征及其机理,结果表明与之前氧化降解高浓度MC-LR(初始浓度>20μg/L)的结果相似,超纯水中低浓度区间(1μg/L~2ng/L)的MC-LR降解依然符合准一级反应,然而当MC-LR浓度降至10ng/L以下时,反应动力学常数减小。另外,溶液中腐植酸浓度对两种氧化剂降解MC-LR的反应速率及最终浓度具有不同影响,这可能与这两种氧化剂降解MC-LR的机理不同有关。本研究结果表明使用氯或高锰酸钾依然能够将水中MC-LR浓度降低至10ng/L甚至更低,但是,在水处理过程中确定所需CT值之前,必须仔细考察水的溶液性质(特别是pH和腐植酸浓度)。
More and more studies show that some micro-organic substances such asendocrine disruptors, disinfection byproducts and microcystins in drinking water havecarcinogenic, teratogenic and mutagenic effect for human. The concentration of thesubstance usually stays in drinking water at μg/L or ng/L grade, thus, developingsensitively and fast detection methods have becaming more and more important inwater quality management. There are two parts in this thesis, in part1, simple and rapidmethods are developed using ultra performance liquid chromatography-electrosprayionization tandem mass spectrometry (UPLC-ESI-MS/MS) for determining phthalates(PAEs), haloacetic acids (HAAs) and microcystin-LR (MC-LR) in drinking water.
     The World Health Organization (WHO) recommends a guideline value of MC-LR1μg/L; however, since the guideline value is based on the acute toxicity, it does not takeinto account the effects of possible long-term exposure to MC-LR at a lowconcentration. A new study indicated that there were kinds of chronic health effectswhen human intake the WHO value at long time. In order to safeguide the drinkingwater, in part2of this study investigated the reaction kinetic characteristics of MC-LRat low concentrations, and discussed the final concentration of MC-LR in drinkingwater treatment processes.
     The main conclusions of this study are as follows.
     (1)With a large number and diverse of commercial plastic products in use, PAEshave found their way ubiquitously into environmental compartments. In the analysis ofphthalates, specifically diethyl phthalate (DEP), dibutyl phthalate (DBP), butylbenzylphthalate (BBP), and diethylhexyl phthalate (DEHP) using UPLC-ESI-MS/MS,‘ghostpeaks’ appeared when a gradient liquid chromatography elution mode was employed. A systematic diagnostic analytical protocol was designed to show that the source of thepersistent ‘ghost peaks’, which jeopardized a quantitative analysis of these endocrinedisruptors was the mobile phase. A trace amount of DEHP in the mobile phase, eitherfrom ultrapure water or organic solvent, was responsible for the observed phenomenon.In contrast to gradient elution, isocratic chromatographic elution mode (ICEM) wasfound to be free of the problem at the expense of less effective separation of DBP andBBP. Thus, a detection method for analyzing the phthalates is proposed based on ICEMand the multiple reaction monitoring (MRM) modes with multi-channel detection in theUPLC-MS/MS. In the method development, tap water matrix effects were examinedand a solution for detection intensity suppression in the analysis of tap water sampleswas proposed. An addition of methanol into tap water samples could basically relievethe signal detection suppression by the real water matrix. This provides a detectionmethod of these trace environmental pollutants with a linear range between0.5to50μg/L and detection limits (LODs)(0.32-0.54μg/L) without need of samplepre-concentration. It is a simple, fast and sensitive method for determining PAEs indrinking water.
     (2)After trihalomethanes (THMs), haloacetic acids (HAAs) are the second mostprevalent group of disinfection byproducts in chlorinated water. There are manydisadvantages in methods for detecting haloacetic acids (HAAs), for example, complexpreparation, large amounts of toxic organic reagents, high detection limits and nineHAAs can not be separated completely. In this paper, a simple and rapid detectionmethod for nine HAAs in water has been developed using UPLC-ESI-MS/MS inmultiple reactions monitoring (MRM) mode. A separation mechanism of the ionicanalytes using a reversed phase liquid chromatographic column (HSS T3) possessing ahydrophilic affinity has been proposed and discussed. Addition of a small amount offormic acid (FA) as a modifier for the methanol-water eluent was found to be critical forseparation of the analytes with smaller molecular size (i.e. the mono and di-haloaceticacids). Without the need of sample preconcentration, very low limits of detection (LODs)for the nine HAAs were achieved (0.06-0.16μg/L). The linear calibration rangeextended from0.5up to100μg/L (R2=0.9993-0.9997, n=6). The water matrix effect hasbeen examined, and seems to be related to the ions in real water samples. Interestingly, an adjustment of the pH of the tap water samples to an acidic value of3.0or belowbasically eliminated the matrix effect. The method has been tested using tap watersamples sourced from both surface water (total dissolved solid (TDS):145±3mg/L) andgroundwater (TDS:362±1mg/L) with high precision and recovery.
     (3)MC-LR has been identified as the most common and most toxic ofmicrocystins in the natural water, and analysis of MC-LR in drinking water is veryimportant. A simple detection method using UPLC–ESI–MS–MS coupled with thesample dilution method for determining trace microcystin-LR (MC-LR) in drinkingwater is presented. The limit of detection (LOD) was0.04μg/L and the limit ofquantitation (LOQ) was0.1μg/L. Water matrix effects of ionic strength, dissolvedorganic carbon (DOC) and pH were examined. The results indicate that signal detectionintensity for MC-LR was significantly suppressed as the ionic strength increased fromultrapure water condition, whereas it increased slightly with solution pH and DOC atlow concentrations. However, addition of methanol (MeOH) into the sample was able tocounter the signal suppression effects. In this study, dilution of the tap water sample byadding4%MeOH (v/v) was observed to be adequate to compensate for the signalsuppression. The recoveries of the samples fortified with MC-LR (0.2,1, and10μg/L)for three different tap water samples ranged from84.4%to112.9%.
     (4)Chlorine and permanganate are common used disinfectant in drinking watertreatment, therefore, study the degradation characterism of trace organic substances bychlorine and permanganate are very important. In response to the increasing concerns inthe literature about its human toxicity in drinking water at very low concentration levels,this study investigated the destruction of MC-LR down to concentrations of ng/L byboth chlorine and permanganate. The results showed that, similar to the previous studiesof MC-LR oxidation in the high concentration range (1g/L) the decomposition in thelow concentration range (1g/L-2ng/L) exhibits the features of pseudo-first-orderreaction with respect to each of the two oxidants in pure water solution conditions.However, when reaction proceeded down to a very low concentration (10ng/L) adifferent or a much smaller rate constant dictates the kinetics. In addition, in thepresence of humic acids (HA) in solution the reaction rates and the final concentrationremoval limit were affected presumably due to competition from reactions between the oxidant and HA. The behavior and the extent of such detrimental influence variedbetween the two oxidants. This creates some profound effects of the governance of anoxidant exposure CT over MC-LR degradation between the two oxidants, likely relatedto different reaction mechanisms of the two oxidants with MC-LR under the solutionconditions. This study indicates that chlorine and permanganate may be still effectivefor MC-LR decomposition down to a concentration of10ng/L or below; however theinfluence of solution chemistry (particularly pH for chlorine, and natural organic matterfor permanganate) must be carefully examined before a feasible CT is determined forthe control of this toxin in a water treatment system.
引文
[1]崔玉川,刘振江.饮水·水质·健康[M].北京:中国建筑工业出版社,2009.
    [2] Barzilay J I, Weinberg W G, Eley J W. The water we drink: water quality and its effects onhealth [M]. USA: Rutgers University Press,1999.
    [3]齐文启,孙宗光.痕量有机污染物的监测[M].北京:化学工业出版社环境科学与工程出版中心,2002.
    [4] Hendrick D W. Fundamentals of water treatment unit processes: physical, chemical, andbiological [M]. USA: CRC Press, Taylor&Francis Group,2011.
    [5]张丙印,倪广恒.城市水环境工程[M].北京:清华大学出版社,2005.
    [6]孙秋菊,郭兴宽.环境保护与物流[M].北京:清华大学出版社,2004.
    [7]原盛广,王东红,马梅,等.自来水厂不同净水工艺对持久性有机物的去除效果实验研究[J].环境工程学报,2008,2(5):586-590.
    [8] Jones O A, Lester J N, Voulvoulis N. Pharmaceuticals: a threat to drinking water?[J]. TrendsBiotechnol.,2005,23(4):163-167.
    [9]黄业茹,田洪海,郑明辉,等.持久性有机污染物调查监控与预警技术[M].北京:中国环境科学出版社,2009.
    [10] GB/T5749-2006.生活饮用水卫生标准[S].
    [11] Bull R J, Kopfler F C. Health effects of disinfectants and disinfection by-products [M]. AWWAand AWWARF, Denver,1991.
    [12] Dietrich D, Hoeger S. Guidance values for microcystins in water and cyanobacterialsupplement products (blue-green algal supplements): a reasonable or misguided approach [J].Toxicol. Appl. Pharm.,2005,203:273-289.
    [13]夏凤毅.邻苯二甲酸酯生物降解性研究[D].杭州:浙江大学,2002.
    [14] Ser dio P, Nogueira J M F. Considerations on ultra-trace analysis of phthalates in drinkingwater [J]. Water Res.,2006,40:2572-2582.
    [15] Wams T J. Diethylhexylphthalate as an environmental contaminant-A review [J]. Sci TotalEnviron.,1987,66:1-16.
    [16] Dargnat C, Teil M J, Chevreuil M, Blanchard M. Phthalate removal throughout wastewatertreatment plant: Case study of Marne Aval station (France)[J]. Sci. Total Environ.,2009,407:1235-1244.
    [17] ECB (European Chemicals Bureau),2004. Risk assessment report for bis (2-enthylhexyl)phthalate [R].(DEHP consolidated final report: February2004). Ducument No.R042_0402_env_hh_4-6.
    [18] EFSA (European Food Safety Authority), Statement on the scientific panel on food additives,flavourings, processing aids and materials in contact with food (AFC panel) on thereclassification of some phthalates for consistency with the new SCF guidelines for foodcontact materials [S],26May2004.2004.
    [19] CSTEE (Scientific Committee on Toxicity, Ecotoxicity and the Environment), Phthalatemigration from soft PVC toys and child-care articles [R]. Opinion expressed at the CSTEEthird plenary meeting, Brussels, April24,1998.
    [20] CSTEE (Scientific Committee on Toxicity, Ecotoxicity and the Environment), Phthalatemigration from soft PVC toys and child-care articles [R]–Data made available since the16thof June1998, opinion expressed at the6th CSTEE Plenary Meeting, Brussels,26/27November1998.
    [21] CSTEE (Scientific Committee on Toxicity, Ecotoxicity and the Environment), Phthalateonresults of a second risk assessment of bis(2-enthylhexyl)phthalate (DEHP) in human healthpart [R]. Adopted by the CSTEE during the41th Plenary Meeting of8January2004.
    [22] ATSDR, Toxicological profile for diethyphthalate, Agency for Toxic Substance and Disease [R],Atlanta, GA,1995.
    [23] ATSDR, Toxicological profile for di-n-octylphthalate, Agency for Toxic Substance and Disease
    [R], Atlanta, GA,1997.
    [24] ATSDR, Toxicological profile for di-n-butyl phthalate. Agency for Toxic Substance andDisease [R], Atlanta, GA,2001.
    [25] ATSDR, Toxicological profile for di(2-ethylhexyl) phthalate. Agency for Toxic Substance andDisease [R], Atlanta, GA,2002.
    [26] Kavlock R, Boekelheide K, Chapin R, et al. NTP center for evaluation of risks to humanreproduction: phthalates expert panel report on the reproductive and developmental toxicity ofdi(2-ethylhexyl) phthalate [J]. Reprod. Toxicol.,2002,16:529-653.
    [27] Kavlock R, Boekelheide K, Chapin R, et al. NTP center for evaluation of risks to humanreproduction: phthalates expert panel report on the reproductive and developmental toxicity ofdi-isodecyl phthalate [J]. Reprod. Toxicol.,2002,16:655-678.
    [28] Kavlock R, Boekelheide K, Chapin R, et al. NTP center for evaluation of risks to humanreproduction: phthalates ecpert panel report on the reproductive and developmental toxicity ofdi-isononyl phthalate [J]. Reprod. Toxicol.,2002,16:679-708.
    [29] Kavlock R, Boekelheide K, Chapin R, et al. NTP center for evaluation of risks to humanreproduction: phthalates expert panel report on the reproductive and developmental toxicity ofdi-n-butyl phthalate [J]. Reprod. Toxicol.,2002,16:489-527.
    [30] Kavlock R, Boekelheide K, Chapin R, et al. NTP center for evaluation of risks to humanreproduction: phthalates expert panel report on the reproductive and developmental toxicity ofbutyl benzyl phthalate (BBP)[J]. Reprod. Toxicol.,2002,16:453-487.
    [31] Kavlock R, Boekelheide K, Chapin R, et al. NTP center for evaluation of risks to humanreproduction: phthalates expert panel report on the reproductive and developmental toxicity ofdi-n-octyl phthalate [J]. Reprod. Toxicol.,2002,16:721-734.
    [32] Kavlock R, Boekelheide K, Chapin R, et al. NTP center for evaluation of risks to humanreproduction: phthalates expert panel report on the reproductive and developmental toxicity ofdi-n-hexyl phthalate [J]. Reprod. Toxicol.,2002,16:709-719.
    [33] Kavlock R, Barr D, Boekelheide K, et al. NTP-CERHR expert panel update on thereproductive and developmental toxicity of di(2-ethyltexyl) phthalate [J]. Reprod. Toxicol.,2006,22:291-399.
    [34] US EPA, Integrated risk information system (IRIS)-Dibutyl phthalate [R],1990.
    [35] US EPA, Integrated risk information system (IRIS)–Di(2-ethyl) phthalate (DEHP)[R],1993.
    [36] US EPA, Integrated risk information system (IRIS)–Butyl benzyl phthalate [R],1993.
    [37] US EPA, Integrated risk information system (IRIS)–Dietyl phthalate [R],1993.
    [38] IARC (International Agency for Research on Cancer). Some industrial chemicals [J]. IARCMonographs,2000,77:41-148.
    [39]陈波,林建国,陈青.水环境中的邻苯二甲酸酯类污染物及其环境行为研究[J].环境科学与管理,2009,34(2):71-75.
    [40]于涵,胡建英,金晓辉等.北方某水厂原水和处理过程中邻苯二甲酸酯类的监测[J].给水排水,2005,31(6):20-23.
    [41] Li W, Duan J. Detection of phthalates in water using ultra performance liquidchromatography–electrospray ionization tandem mass spectrometry MRM mode–‘ghost peaks’and measurement methodology [J]. Anal. methods,2011,3:314-321.
    [42]王春,李晓东,杨自力等.南通市饮用水中邻苯二甲酸酯类含量调查[J].环境与健康杂志,2007,24(6):438-440.
    [43]李玲,田晓梅,张霞等.宁夏地区饮用水中4种邻苯二甲酸酯类污染现状研究[J].环境与健康杂志,2010,27(11):984-986.
    [44]张付海,张敏,朱余等.合肥市饮用水和水源水中邻苯二甲酸酯的污染现状调查[J].环境监测管理与技术,2008,20(2):22-24.
    [45]陆洋,袁东星,邓永智.九龙江水源水及其出厂水邻苯二甲酸酯污染调查[J].环境与健康杂志,2007,24(9):703-705.
    [46]吴平谷,韩关根,王惠华等.饮用水中邻苯二甲酸酯类的调查[J].环境与健康杂志,1999,16(6):338-339.
    [47] Luks-Betlej K, Popp P, Janoszka B, et al. Solid-phase microextraction of phthalates from water[J]. J. Chromatogr. A,2007,938:93-101.
    [48] Prokupkova G, Holadova K, poustka J, et al. Development of a solid-phase microextractionmethod for the determination of phthalic acid esters in water [J]. Anal. Chimic. Acta,2002,457:211-223.
    [49] US Environmental Protection Agency (EPA), Method606-Phthalate Esters [S].http://www.caslab.com/EPA-Method-606/.
    [50] US Environmental Protection Agency (EPA), Method8061A–Phthalate esters by gaschromatography with electron capture detection (GC-ECD)[S], revision1,1996.
    [51] Commission of the European Communities, Communication from the Commission to theCouncil and the European Parliament on the implementation of the community strategy forendocrine disrupters-a range of substances suspected of interfering with the hormone systemsof humans and wildlife [S], COM (1999)706: COM (2001)262final, Brussels,2001,http://www.eeb.org/activities/chemicals/KOM2001-262.pdf.
    [52]巩余禾,赵文良.环境水体中邻苯二甲酸酯类化合物的方法研究[J].中国卫生检验杂志,2009,19(11):2468-2469.
    [53] US EPA Method506, Determination of Phthalate and Adipate Esters in Drinking Water byLiquid-Liquid Extraction or Liquid-Solid Extraction and Gas Chromatography withPhotoionization Detection [S], Revision1.1, http://www.caslab.com/EPA-Method-506/.
    [54] Pietrogrande M C, Rossi D, Paganetto G. Gas chromatographic-mass spectrometric analysis ofdi(2-ethylhexyl) phthalate and its metabolites in hepatic microsomal incubations [J]. Anal.Chim. Acta,2003,480:1-10.
    [55] US EPA, Determination of organic compounds in drinking water by liquid-solid extraction andcapillary column gas chromatography/mass spectrometry [S], US Environmental ProtectionAgency Method525.2, Cincinnati, OH,1995.
    [56] Psillakis E, Mantzavinos D, Kalogerakis N. Monitoring the sonochemical degradation ofphthalate esters in water using silid-phase microextraction [J]. Chemosphere,2004,54,849-857.
    [57] Ballesteros O, Zafra A, Navalón A, et al. Sensitive gas chromatographic–mass spectrometricmethod for the determination of phthalate esters, alkylphenols, bisphenol A and theirchlorinated derivatives in wastewater samples [J]. J. Chromatogr. A,2006,1121,154-162.
    [58] Liu H, Den W, Chan S, et al. Analysis of trace contamination of phthalate esters in ultrapurewater using a modified solid-phase extraction procedure and automated thermal desorption-gaschromatography/mass spectrometry [J]. J. Chromatogr. A,20081188,286-294.
    [59] Wang L, Jiang G, Cai Y, et al. Cloud point extraction coupled with HPLC-UV for thedetermination of phthalates esters in environmental water samples [J]. J. Environ. Sci.,2007,19:874-878.
    [60] Pérez Feás C, Barciela Alonso M C, Peňa-Vázquez E, et al. Phthalates determination inphysiological saline solution by HPLC-ES-MS [J]. Talanta,2008,75,1184-1189.
    [61] Ito R, Miura N, Kawaguchi M, et al. Simultaneous determination of Di(2-ethylhexyl) phthalate,mono(2-ethylhexyl) phthalate, and phthalic acid migrating from Gamma-Ray irradiatedpolyvinyl chloride sheet by liqiud chromatography-tandem mass spectrometry [J]. J. Liq.Chromatogr. Related Technol.,2008,31:198-209.
    [62] Pérez Feás C, Barciela Alonso M C, Bermejo-Barrera P. Direct LC-ES-MS/MS determinationof phthalates in physiological saline solutions [J]. J. Chromatogr. B,2011,879:231-235.
    [63] Bulz D, Mincea M, Lupsa I R, et al. Determination of phthalates esters in liqiud samples usingUPLC-PDA [J]. Series of Chem.,2010,19(1):113-120.
    [64] Wu T, Wang X, Xiao H Q, et al. Comparison of UPLC and HPLC for Analysis of12Phthalates[J]. Chromatographia,2008,68(9-10):803-806.
    [65] Letterman R D. Water Quality and Treatment-A Handbook of Community Water Supplies,5thEd.[M]. USA: McGraw-Hill inc.,1999.
    [66]张晓健,李爽.消毒副产物总致癌风险的首要指标参数-卤乙酸[J].给水排水,2000,26(8):1-6.
    [67] Lee K J, Kim B H, Hong J E, Pyo J S, Park S J, and Lee D W. A study on the distribution ofchlorination by-products (CBPs) in treated water in Korea [J]. Water Res.,2001,35:2861-2872.
    [68]赵玉丽,李杏放.饮用水消毒除产物:化学特征与毒性[J].环境化学,2011,30(1):20-33.
    [69] United States Environmental Protection Agency. National primary drinking water regulations:Stage2disinfectants and disinfection byproducts rule [S]. US EPA,2006.
    [70] Bryant B J, Jokinen M P, Eustis S L, et al. Toxicity of monochloroacetic acid administered bygavage to F344rats and B6C3F1mice for up to13weeks [J]. Toxicology,1992,72(1):77-87.
    [71] Stacpoole P W, Hardwood H J, Jr Cameron D F, et al. Chronic toxicity of dichloroacetate:possible relation to thiamine deficiency in rats. Fundam [J]. Appl. Toxicol.,1990,14:327-337.
    [72] Mather G G, Exon J H, Koller L D. Subchronic90day toxicity of dichloroacetic andtrichloroacetic acid in rats [J]. Toxicology,1990,64:71-80.
    [73] Kato-Weinstein J, Stauber A J, Orner G A, et al. Differential effects of dihalogenated andtrihalogenated acetates in the liver of B6C3F1mice [J]. J. Appl. Toxicol.,2001,21:81-89.
    [74] Melnick R L, Nyska A, Foster P M, et al. Toxicity and carcinogenicity of the water disinfectionbyproduct, dibromoacetic acid, in rats and mice [J]. Toxicology,2007,230(2-3):126-136.
    [75] Moser V C, Phillips P M, Levine A B, et al. Neurotoxicity produced by dibromoacetic acid indrinking water of rats [J]. Toxicol. Sci.,2004,79:112-122.
    [76] Smith M J, Germolec D R, Luebke R W, et al. Immunotoxicity of dibromoacetic acidadministered via drinking water to female B6C3F1mice [J]. J. Immunotoxicol.,2010,7(4):333-343.
    [77] NTP (National Toxicology Program). Toxicology and carcinogenesis studies ofmonochloroacetic acid (CAS No.79-11-8) in F344/N rats and B6C3F1mice (gavage studies).NIH Publication No.92-2851[S]. NTP,1992, National Institutes of Health, Public HealthService, U.S. Department of Health and Human Services.
    [78] DeAngelo A B, Daniel F B, Most B M, et al. Failure of monochloroacetic acid andtrichloro-acetic acid administered in the drinking water to produce liver cancer in male F344/Nrats [J]. J. Toxicol. Environ. Health.,1997,52:425-445.
    [79] Bull R J, Sanchez I M, Nelson M A, et al. Liver tumour induction in B6C3F1mice bydichloroacetate and trichloroacetate [J]. Toxicology,1990,63:341-359.
    [80] Tao L, Kramer P., Ge R, et al. Effect of dichloroacetic acid and trichloroacetic acid on DNAmethylation in liver tumors of female B6C3F1mice [J]. Toxicol. Sci.,1998,43:139-144.
    [81] Tao L, Yan S, Xie M, et al. Effect of trichloroethylene and its metabolites, dichloroacetic acidand trichloroacetic acid, on the methylation and expression of c-jun and c-myc protooncogenesin mouse liver: Prevention by methionine [J]. Toxicol. Sci.,2000,54:399-407.
    [82] NTP (National Toxicology Program). NTP technical report on the toxicology andcarcinogenesis studies of dibromoacetic acid (CAS No.631-64-1) in F344/N rats and B6C3F1mice (drinking water studies)[R]. NTP Technical Report Series No.537. NTP, NationalInstitutes of Health, Public Health Service, U.S. Department of Health and Human Services,2007.
    [83] Andrews J E, Nichols H P, Schmid J E, et al. Developmental toxicity of mixtures: the waterdisinfextion by-products dichloro-, dibromo-and bromochloro acetic acid in rat embryo culture[J]. Reprod. Toxicol.,2004,19:111-116.
    [84] Pereira M A, Li K, Kramer P M. Promotion by mixtures of dichloroacetic acid andtrichloroacetic acid of N-methyl-N-nitrosourea-initiated cancer in the liver of female B6C3F1mice [J]. Cancer Lett.,1997,115:15-23.
    [85] US EPA. Controlling disinfection byproducts and microbial contaminants in drinking water [S].U.S. Environmental Protection Agency,2001,3-6.
    [86] Hodgeson J W, Collins J, Barth R E. EPA method552. Determination of haloacetic acids indrinking water by liquid-liquid extraction, derivatization, and gas chromatography withelectron capture detection [S]. United States Environmental Protection Agency,1990.
    [87] Hodgeson J W, Becker D.1992. EPA Method552.1, Revision1.0. Determination of haloaceticacids and dalapon in drinking water by ion-exchange, lipid-solid extraction and gaschromatography with an electron capture detector [S]. United States Environmental ProtectionAgency,1992.
    [88] Munch D J, Munch J W, Pawlecki A M. EPA Method552.2, Revision1.0. Determination ofhaloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization andgas chromatography with electron capture detection [S]. United States EnvironmentalProtection Agency,1995.
    [89] Domino M M, Pepich B V, Munch D J, Fair P S, Xie Y. EPA Method552.3, Revision1.0.Determination of haloacetic acids and dalapon in drinking water by liquid-liquidmicroextraction, derivatization, and gas chromatography with electron capture detection [S].United States Environmental Protection Agency,2003.
    [90] Xie Y. Analyzing haloacetic acids using gas chromatography/Mass spectrometry [J]. Water Res.,2001,35(6):1599-1602.
    [91] Sarrión M N, Santos F J, Galceran M T. Solid-phase microextraction coupled with gaschromatography–ion trap mass spectrometry for the analysis of haloacetic acids in water [J]. J.Chromatogr. A,1999,859:159-171.
    [92] Saraji M, Bidgoli A A H. Single-drop microextraction with in-microvial derivatization for thedetermination of haloacetic acids in water sample by gas chromatography-mass spectrometry[J]. J. Chromatog. A,2009,1216:1059-1066.
    [93] Waseem S, Abduliah M P. Comparative study of sample preparation techniques coupled to GCfor the analysis of halogenated acetic acids (HAAs) acids in tap water [J]. J. Chromatog. Sci.,2010,48(3):188-193.
    [94] Liu Y, Mou S. Determination of trace levels of haloacetic acids and perchlorate in drinkingwater by ion chromatography with direct injection [J]. J. Chromatogr. A,2003,997(1-2):225-235.
    [95] Lopez-Avila V, Liu Y, Charan C. Determination of haloacetic acids in water by ionchromatography-method development [J]. J. AOAC Int.,1999,82(3),689-704.
    [96] Zaffiro A D, Zimmerman M, Pepich B V, et al. EPA Method557, version1. Determination ofhaloacetic acids, bromate, and dalapon in drinking water by ion chromatography electrosprayionization tandem mass spectrometry (IC-ESI-MS/MS)[S]. U. S. Environmental ProtectionAgency,2009.
    [97] Kou D, Wang X, Mitra S. Supported liquid membrane microextraction with high-performanceliquid chromatography-UV detection for monitoring trace haloacetic acids in water [J]. J.Chromatogr. A,2004,1055:63-69.
    [98] Loos R, Barcelo D. Determination of haloacetic acids in aqueous environments by solid-phaseextraction followed by ion-pair liquid chromatography-electrospray ionization massspectrometric detection [J]. J. Chromatogr. A,2001,938:45-55.
    [99] Takino M, Daishima S, Yamaguchi K. Determination of haloacetic acids in water by liquidchromatography-electrospray ionization-mass spectrometry using volatile ion-pairing reagents[J]. Analyst,2000,125:1097-1102.
    [100] Chen C Y, Chang S N, Wang G S. Determination of ten haloacetic acids in drinking water usinghigh-performance and ultra-performance liquid chromatography–tandem mass spectrometry [J].J. Chromatogr. Sci,2009,47:67-74.
    [101] Meng L, Wu S, Ma F, Jia A, Hu J. Trace determination of nine haloacetic acids in drinkingwater by liquid chromatography–electrospray tandem mass spectrometry [J]. J. Chromatogr. A,2010,1217:4873-4876.
    [102]李宗来,何琴.超高效液相色谱串联质谱法检测饮用水中卤乙酸[J].分析化学,2011,30(2):574-576.
    [103] Martínez D, Farré J, Borrull F, et al. Capillary zone electrophoresis with indirect UV detectionof haloacetic acids in water [J]. J. Chromatog. A,1998,808:229-236.
    [104] Martínez D, Borrull F, Calull M. Evaluation of different electrolyte systems and on-linepreconcentrations for the analysis of haloacetic acids by capillary zone electrophoresis [J]. J.Chromatogr. A,1999,835:187-196.
    [105]王昊,徐立红.微囊藻毒素研究的当前进展和未来方向[J].水生生物学报,2011,35(3):504-514.
    [106]胡国成.我国内陆水体富营养化的原因及其治理方法[J].中国水利,2005,12:74-79.
    [107] Ho L, Onstad G, von Gunten U, et al. Differences in the chlorine reactivity of four microcystinanalogues [J]. Water Res.,2006,40:1200-1209.
    [108]张淑华,李巧,潘熙萍,等.微囊藻毒素-LR的研究进展[J].现代预防医学,2009,36(17):3236-3239.
    [109] Carmichael W W. The toxins of cyanobacteria [J]. Scientific American,1994,270:78-86.
    [110]柳丽丽,钟儒刚,曾毅.微囊藻毒素及其毒性研究进展[J].卫生研究,2006,35(2):247-249.
    [111]郭建伟,高乃云,殷娣娣,等.饮用水中微囊藻毒素去除研究进展[J].河南科学,2009,27(1):102-105.
    [112]赵建伟.富营养化原水中微囊藻毒素分析与去除方法及氧化降解机制研究[D].西安:西安建筑科技大学,2006.
    [113] Beasly V R, Lovell R A, Holmes K R, et al. Microcystin-LR decreases hepatic and renalperfusion, and causes circulatory shock, severe hypoglycemia, and terminal hyperkalemia inintravascularly dosed swine [J]. J. Toxicol. Environ. Health Part A,2006,61:281-303.
    [114] Fawell J K, Mitchell R E, Everett D J, et al. The toxicity of cyanobacterial toxins in the mouse,I Microcystin-LR [J]. Hum. Exp. Toxicol.1999,18:162-167.
    [115] Heinze R. Toxicity of the cyanobacterial toxin microcystin-LR to rats after28days intake withthe drinking water [J]. Environ. Toxicol.,1999,14:57-60.
    [116] Bhattacharya R, Sugendran K, Dangi R S, et al. Toxicity evaluation of freshwatercyanobacterium Microcystis aeruginosa PCC7806: II. Nephrotoxicity in rats [J]. BiomedEnviron. Sci.1997,10(1):93-101.
    [117] Leclaire R D, Parker G W, Franz D R. Hemodynamic and calorimetric changes induced bymicrocystin-LR in the rats [J]. J. Appl. Toxicon,1995,15:605-613.
    [118]俞顺章,赵宁,资小林,等.饮水中微囊藻毒素与我国原发性肝癌关系的研究[J].中国肿瘤杂志,2001,2:96-99.
    [119]谢平.微囊藻毒素对人类健康影响相关研究的回顾[J].湖泊科学,2009,21(5):603-613.
    [120] Pouria S, de Andrade A, Barbosa J, et al. Fatal microcystin intoxication in haemodialysis unitin Caruaruo, Brazil [J]. The Lancet,1998,352,21-26.
    [121] Carmichael W W, Azevedo S M F O, An J S, et al. Human fatalities from cyanobacteria:chemical and biological evidence for cyanotoxins [J]. Environ. Health. Perspect,2001,109:663-668.
    [122] Chen J, Xie P, Li L, et al. First identification of the hepatotoxic microcystins in the serum of achronically exposed human polulation together with indication of hepatocelluar damage [J].Toxicol. Sci.,2009,108(1):81-89.
    [123] WHO. Guidelines for drinking water quality,3rd edition [S]. World Health Organization,2004,Geneva, Switzerland.
    [124]聂晶晶,李元,李琴,等.微囊藻毒素检测方法的研究进展[J].中国环境监测,2007,2(2):43-48.
    [125] Lindner P, Molz R, Yacoub-George E, et al. Development of a highly inhibition immunoassayfor microcystin-LR [J]. Anal. Chim. Acta,2004,521:37-44.
    [126] Kim Y M, Oh S W, Jeong S Y, et al. Development of an iltrarapid one-step fluorescenceimmunochromatographic assay system for the quantification of microcystins [J]. Environ. Sci.Technol.,2003,37:1899-1904.
    [127] Lambert T W, Boland M P, Holmes C F B, et al. Quantitation of the microcystin hepatotoxinmicrocystin-LR in water at environmentally relevant concentrations with the proteinphosphatase bioassay [J]. Environ. Sci. Technol.,1994,28:753-755.
    [128] Nicholson B C, Burch M D. Evaluation of analytical methods for detection and quantificationof cyanotoxins in relation to Australian drinking water guidelines [M]. National Health andMedical Research Council of Australia, the Water Services Association of Australia, and theCooperative Research Centre for Water Quality and Treatment.2001.
    [129] Pelander A, Ojanper I, Lahti K, et al. Visual detection of cyanobacterial hepatotoxins bythin-layer chromatography and application to water analysis [J]. Water Res.,2000,34(10):2643-2652.
    [130] Vasas G, Gasper A, Pager C, et al. Analysis of cyanobacterial toxins (anatoxin-a,cylindrospermopsin, microcystin-LR) by capillary electrophoresis [J]. Electrophoresis,2004,25:108-115.
    [131] Vasas G, Szydlowska D, Gáspár A, et al. Determination of microcystins in environmentalsamples using capillary electrophoresis [J]. J. Biochem. Biophys. Methods,2006,66:87-97.
    [132]陈海燕,陆怀初,陈云霞.化学分析法在微囊藻毒素检测中的应用[J].中国卫生检验杂志,2010,20(9):2388-2390.
    [133] Meriluoto J. Chronatography of microcystins [J]. Anal. Chim. Acta,1997,352:277-298.
    [134] Lawton L A, Edwards C, Codd G A. Extraction and high-performance liquid chromatographicmethod for the determination of microcystins in raw and treated waters [J]. Analyst,1994,119(7):1525-1530.
    [135]水中微囊藻毒素的测定[S]. GB/T20466-2006.
    [136]王超,吕怡兵,许人骥,等.液相色谱-二极管阵列检测器/离子阱质谱法检测水中的5种微囊藻毒素[J].色谱,2011,29(3):212-216.
    [137] Poon K, Lam M H, Lam P K S, et al. Determination of microcystins in cyanobacterial bloomsby solid-phase microextraction-high-performance liquid chromatography [J]. Environ. Toxicol.Chem.,2001,(20)8:1648-1655.
    [138] Hiller S, Krock B, Cembella A, et al. Rapid detection of cyanobacterial toxins in precursor ionmode by liquid chromatography tandem mass spectrometry [J]. J. Mass. Spectrom.,2007,42:1238-1250.
    [139] Zhang L, Ping X, Yang Z. Determination of microcystin-LR in surface water usinghigh-performance liquid chromatography/tandem electrospray ionization mass detector [J].Talanta,2004,62:193-200.
    [140] Allis O, Dauphard J, Hamilton B, et al. Liquid chromatography-tandem mass spectrometryapplication, for the determination of extracellular hepatotoxins in Irish lake and drinking water[J]. Anal. Chem.,2007,79:3436-3447.
    [141] Xu W, Chen Q, Zhang T, et al. Development and application of ultra performance liquidchromatography-electrospray ionization tandem triple quadrupole mass spectrometry fordetermination of seven microcystins in water samples [J]. Anal. Chim. Acta,2008,626:28-36.
    [142] Oehrle S A, Southwell B, Westrick J. Detection of various freshwater cyanobacterial toxinsusing ultra-performance liquid chromatography tandem mass spectrometry [J]. Toxicon,2010,55:965-972.
    [143] Drikas M, Chow C W K, House J, et al. Using coagulation, flocculation, and settling to removetoxic cyanobacteria [J]. J. AWWA,2001,2:100-111.
    [144] Chow C W K, Drikas M, House J, et al. The impact of conventional water treatment processeson cell of the cyanobacterium microcystis aeruginosa [J]. Water Res.,1999,33:3253-3262.
    [145] Himberg K, Keijola A M, Hiisvirta L. The effect of water treatment processes on the removalof hepatotoxins form microcystis and oscillatoria cyanobacteria: a laboratory study [J]. WaterRes.,1989,23(8):979-984.
    [146] Jones G J, Bourne D G, Blakeley R L, et al. Degradation of the cyanobacterial hepatotoxinmicrocystin by aquatic bacteria [J]. Nat. Toxins,1994,2(4):228-235.
    [147] Jones G J, Orr P T. Release and degradation of microcystin following algicide treatment of aMicrocystis aeruginosa bloom in a recreational lake, as determined by HPLC and proteinphosphatase inhibition assay [J]. Water Res.,1994,28(4):871-876.
    [148] Bourne D G, Jones G J, Blakeley R L, et al. Enzymatic pathway for the bacterial degradation ofthe cyanobacterial cyclic peptide toxin microcyatin-LR [J]. Appl. Environ. Microbiol.,1996,62(11):4086-4094.
    [149] Park H, Sasaki Y, Maruyama T, et al. Degradation of the cyanobacterial hepatotoxinmicrocystin by a new bacterium isolated from a hypertrophic lake [J]. Environ. Toxicol.,2001,16(4):337-343.
    [150] Cousins I T, Bealing D J, James H A, et al. Biodegradation of microcystin-LR by indigenousmixed bacterial populations [J]. Water Res.,1996,30(2):481-485.
    [151]闫海,邓义敏,邹华,等.降解微囊藻毒素菌种的筛选和活性分析[J].环境科学,2004,,25(6):49-53.
    [152]吴涓,钟升,王光云,等.一株降解微囊藻毒素菌种的鉴定及其活性研究[J].中国环境科学,2011,31(1):116-122.
    [153] Hart J., Stott P. Microcystin-LR Removal from Water (Report FR0367)[R]. Foundation forWater Research, Marlow, UK,1993.
    [154] Donati C., Drikas M., Hayes R., et al. Microcystin-LR adsorption by powdered activatedcarbon [J]. Water Res.,1994,28(8):1735-1742.
    [155] Hart J., Fawell J K., Croll B. The Fate of Both Intra-and Extra-cellular Toxins During DrinkingWater Treatment [R]. Special Subject No.18, SS18-1-6, IWSA World Congress,1997.
    [156] Carlile P R. Further Studies to Investigate Microcystin-LR and Anatoxin-a Removal fromWater (Report FR0458)[R], Marlow, Buckinghamshire: Foundation for Water Research,1994.
    [157] Neumann U, Weckesser J. Elimination of microcystin peptide toxins from water by reverseosmosis [J]. Envirn. Toxicol. Water Quality,1998,13(2):143-148.
    [158] Teixeira M R, Rosa M J. Microcystins removal by nanofitration membranes [J]. Sep. Purif.Technol.,2005,46:192-201.
    [159] Chow C W K, Planglisch S, House J, et al. A study of membrane filtration for the removalcyanobacteria cell [J]. AQUA,1997,46(6):324-334.
    [160] Gijsbertsen-Abrahamse A J, Schmidt W, Chorus I, et al. Removal of cyanotoxins byultrafiltration and nanofiltration [J]. J. Membr. Sci.,2006,276:252-259.
    [161] Lee J, Walker H W. Effect of process variables and natural organic matter on removal ofmicrocystin-LR by PAC-UF [J]. Environ. Sci. Technol.,2006,40(23):7336-7342.
    [162] Lee J, Walker H W. Mechanisms and factors influencing the removal of microcystin-LR byultrafiltration membranes [J]. J. Membr. Sci.,2008,320:240-247.
    [163] Hoffman J R. Removal of Microcystis toxins in water purification processes [J]. Water SA.,1976,2(2):58-60.
    [164] Keijola A M, Himberg K, Esala A L, et al. Removal of cyanobacterial toxins in water treatmentprocesses: laboratory and pilot-scale experiments [J]. Tox. Assess.,1988,3:643-656.
    [165] Nicholson B C, Rositano J, Burch M D. Destruction of cyanobacterial peptide hepatotoxins bychlorine and chloramine [J]. Water Res.,1994,28:1297-1303.
    [166] Croll B, Hart J. Algal toxins and customers [R]. Paper presented at the UKWIR-AWWARFTechnology Transfer Conference,1996, Philadelphia.
    [167] Acero J L, Rodriguez E, Meriluoto J. Kinetics of reactions between chlorine and thecyanobacterial toxins microcystins [J]. Water Res.,2005,39:1628-1638.
    [168] Newcombe, G, Nicholson B C. Treatment options for the saxitoxins class of cynatoxins [J].Water Sci. Technol.: Water Supply,2002,2(5-6):271-275.
    [169] Newcombe G, Nicholson B. Water treatment options for dissolved cyanotoxins [J]. J. WaterSupply and Technol-AQUA,2004,52(4):227-239.
    [170] Kull T P J, Backlund P H, Karlsson K M, et al. Oxidation of the cyanobacterial hepatotoxinmicrocystin-LR by chlorine dioxide: reaction kinetics, characterization, and toxicity of reactionproducts [J]. Environ. Sci. Technol.2004,38(22):6025-6031.
    [171] Rositano J, Nicholson B C, Pieronne P. Destruction of cyanobacterial toxins by ozone [J].Ozone Sci. Engin.,1998,20:223-238.
    [172] Rositano J, Newcombe G, Nicholson B, et al. Ozonation of NOM and algal toxins in fourtreated waters [J]. Water Res.,2001,35(1):23-32.
    [173]余国忠,王占生.饮用水处理中藻毒素污染及其工艺控制特性研究[J].给水排水,2002,28(3):25-28.
    [174] Chen X, Xiao B, Liu J, et al. Kinetics of the oxidation of MCRR by potassium permanganate[J]. Toxicon,2005,45:911-917.
    [175] Rodríguez E, Majado M E, Meriluoto J, et al. Oxidation of microcystins by permanganate:raction kinetics and implications for water treatment [J]. Water Res.,2007,41:102-110.
    [176] Acero J L, Rodríguez E, Majado M E, et al. Oxidation of microcystin-LR with chlorine andpermanganate during drinking water treatment [J]. J. Water Supply: Res. Technol.-AQUA,2008,57(6):371-380.
    [177] Gajdek P, Lechowski Z, Bochnia T, et al. Decomposition of microcystin-LR by Fentonoxidation [J]. Toxicon,2001,39:1575-1578.
    [178]乔瑞平,漆新华,孔承林,等. Fenton试剂氧化降解微囊藻毒素-LR [J].环境化学,2007,26(5):614-617.
    [179] Bandala E R, Martínez D, Martínez E, et al. Degradation of microcystin-LR toxin by Fentonand Photo-Fenton processes [J]. Toxicon,2004,42(7):829-832.
    [180] Ding J, Shi H, Timmons T, et al. Release and removal of microcystins from microcystis duringoxidative-, physical-, and UV-based disinfection [J]. J. Environ. Engineer,2010,136(1):2-11.
    [181]梁志霞,梁文艳,许佳. UV和UV/H2O2对藻毒素MCLR降解及脱毒的研究[J].环境科学与技术,2010,33(6):97-100.
    [182] Liu X, Chen Z, Zhou N, et al. Degradation and detoxification of microcystin-LR in drinkingwater by sequential use of UV and ozone [J]. J. Environ. Sci.,2010,22(12):1897-1902.
    [183] Liu I, Lawton L A, Bahnemann D W, et al. The phtocatalytic decomposition of microcystin-LRusing selected titanium dioxide materials [J].Chemosphere,2009,76(4):549-553.
    [184] Cappiello A. Advances in LC-MS instrumentation [M]. UK: Elsevier Science,2007.
    [185] Srivastava B, Sharma B K, Baghel U S, et al. Ultra performance liquid chromatography(UPLC): a chromatography technique [J]. International Journal of Pharmaceutical QualityAssurance2010;2(1):19-25.
    [186] Batt A L, Kostich M S, Lazorchak J M. Analysis of ecologically relevant pharmaceuticals inwastewater and surface water using selective solid-phase extraction and UPLC-MS/MS [J].Anal. Chem.,2008,80:5021-5030.
    [187] Kovalczuk T, Jech M, poustka J, et al. Ultra performance liquid chromatography tandem massspectrometry: A novel challenge in multiresidue pesticide analysis in food [J]. Anal. Chim. Acta,2006,577:8-17.
    [188] Leandro C C, Hancock P, Fussell R J, et al. Comparison of ultra-performance liquidchromatography and high-performance liquid chromatography for the determination of prioritypesticides in baby foods by tandem quadrupole mass spectrometry [J]. J. Chromatogr. A,2006,1103:94-101.
    [189] Baltussen E A, Noij T H M. High speed and high resolution liquid chromatography in practice[J]. Chem. Oggi,2009,27(2):31-33.
    [190] Snyder L R, Kirkland J J, Glajch J L. Practical HPLC method development2nd Edition [M].New York: Wiley-Interscience,1997.
    [191] Cazes J. Encyclopedia of chromatography2nd Edition [M]. USA: CRC Press,2005.
    [192] Snyder L R, Kirkland J J. Introduction to modern liquid chromatography2nd Edition [M]. NewYork: John Wiley&Sons, ING,1979.
    [193] Pramanik B N, Ganguly A K, Gross M L. Applied electrospray mass spectrometry [M]. MiltonPark: Taylor&Francis Ltd,2002.
    [194] Sadek P C. Illustrated pocket dictionary of chromatography [M]. New Jersey: Wiley&Sons,Inc,2004.
    [195]李金.有害物质及其检测[M].北京:中国石化出版社,2002.
    [196] US EPA,‘Assigning Values to Non-detected/Non-quantified Pesticide Residues in HumanHealth Food Exposure Assessments.’ Guidance Document: Office of Pesticide Programs [S].US Environmental Protection Agency, Washington DC,(March23,2000).
    [197] Long F, Zhu A, Sheng J, et al. Matrix effects on the microcystin-LR fluorescent immunoassaybased on optical biosensor [J]. Sensors,2009,9:3000-3010.
    [198] Van de Steen J C, Mortier K A, Lambert W E. Tackling matrix effects during development of aliquid chromatographic-electrospray ionization tandem mass spectrometric analysis of ninebasic pharmaceuticals in aqueous environmental samples [J]. J. Chromatogr. A,2006,1123:71-81.
    [199] Petrovic M, Hernando M D, Diaz-Cruz M S, et al. Liquid chromatography-tandem massspectrometry for the analysis of pharmaceutical residue in environmental samples: A review [J].J. Chromatogr. A,2005,1067:1-14.
    [200] Choi B K, Hercules D M, Gusev A I. LC-MS/MS signal suppression effect in the analysis ofpesticides in complex environmental matrices [J]. Fresenius J. Anal. Chem.,2001,369,370-377.
    [201] Kebarle P, Tang L. From ions in solution to ions in the gas phase-the mechanism of ESI-MS[J]. Anal. Chem.,1993,65: A972-A986.
    [202] Matuszewski B K, Constanzer M L, Chavez-Eng C M. Matrix effect in quantitativeLC/MS/MS analyses of biological fluids: a method for determination of finasteride in humanplasma at picogram per milliliter concentrations [J]. Anal. Chem.,1998,70:882-889.
    [203] Dijkman E, Mooibroek D, Hoogerbrugge R, et al. Study of matrix effects on the direct traceanalysis of acidic pesticides in water using various liquid chromatographic modes coupled totandem mass spectrometric detection [J]. J. Chromatogr. A,2001,926:113-125.
    [204] Bonfiglio R, King R C, Olah T V, et al. The effects of sample preparation methods on thevariability of the electrospray ionization response for model drug compounds [J]. RapidCommun. Mass Spectrom.,1999,13(12):1175-1185.
    [205] Matuszewski B K, Constanzer M L, Chavez-Eng C M. Strategies for the assessment of matrixeffect in quantitative bioanalytical methods based on HPLC-MS/MS [J]. Anal. Chem.,2003,75(13):3019-3030.
    [206] Matuszewski B K. Standard line slopes as a measure of a relative matrix effect in quantitativeHPLC-MS bioanalysis [J]. J. Chromatogr. B,2006,830:293-300.
    [207] Van De Steen J C, Lambert W E. Comparison of matrix effects in HPLC-MS/MS andUPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters [J]. J. Am. Soc. MassSpectrom.,2008,19:713-718.
    [208] Choi B K, Hercules D M, Gusev A I. Effect of liquid chromatography separation of complexmatrices on liquid chromatography-tandem mass spectrometry signal suppression [J]. J.Chromatogr. A,2001,907:337-342.
    [209]向平,沈敏,卓先义.液相色谱-质谱分析中的基质效应[J].分析测试学报,2009,28(6):753-756.
    [210] Kloepfer A, Quintana J B, Reemtsma T. Operational options to reduce matrix effects in liquidchromatography-electrospray ion-mass spectrometry analysis if aqueous environmentalsamples [J]. J. Chromatogr. A,2005,1067:153-160.
    [211] Villagrasa M, Guillamón M, Eljarrat E, et al. Matrix effect in liquid chromatography-electrospray ionization mass spectrometry analysis of benzoxazinoid derivatives in plantmaterial [J]. J. Chromatogr. A,2007,1157:108-114.
    [212] Andews C L, Yu C., Yang E., et al. Improved liquid chromatography-mass spectrometryperformance in quantitative analysis using a nanosplitter interface [J]. J. Chromatogr. A,2004,1053(1-2):151-159.
    [213] King R, Bonfiglio R, Fernandez-Metzler F, et al. Mechanistic investigation of ionizationsuppression in electrospray ionization [J]. J. Am. Soc. Mass Spectrom.,2000,11:942-950.
    [214] Brack W. Effect-Directed Analysis of Complex Environmental Contamination [M]. Berlin:Springer-Verlag,2011.
    [215] Van Wezel A P, van Vlaardingen P, Posthumus R, et al. Environmental risk limits for twophthalates, with special emphasis on endocrine disruptive properties [J]. Ecotoxico. Environ.Safety,2000,46:305-321.
    [216] United States Environmental Protection Agency (US EPA), Introduction to Water PolicyStandards [S]. Office of Water4305, EPA-823-F-99-020, Washington. DC,1999.
    [217] Public Health and the Environment World Health Organization (WHO). WHO guidelines fordrinking-water quality [S]. WHO,2009.
    [218] United States Environmental Protection Agency (US EPA). National Primary Drinking WaterRegulations [S]. EPA816-F-09-004,2009.
    [219]张晶,何士龙,张昱,等.液相色谱串联质谱法同时测定垃圾渗漏液中的邻苯二甲酸酯和氨基酚[J].分析化学,2007,35(12):1706-1710.
    [220]邢志贤,侯冬丽,牛利民等.土壤中邻苯二甲酸酯类检测空白研究[J].中国环境监测,2009,25(1):44-47.
    [221]迂君,徐烨.水中邻苯二甲酸酯的固相萃取-气象色谱-质谱测定法[J].环境与健康杂志,2008,25(11):1003-1005.
    [222] Williams S. Ghost peaks in reversed-phase gradient HPLC: a review and update [J]. J.Chromatogr. A,2004,1052,1-11.
    [223] Kato K, Shoda S, Takahashi M, et al. Determination of three phthalate metabolites in humanurine using on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry[J]. J. Chromatogr. B,2003,788,407-411.
    [224] Mayer-Helm B, Hofbauer L, Müller J, Method development for the determination of selectedpesticides on tobacco by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry [J]. Talanta,2008,74,1184-1190.
    [225] Baker J K. Characterization of phthalate plasticizers by HPLC/thermospray mass spectrometry[J]. J. Pharm. Biomed. Anal.,1996,15,145-148.
    [226] Gray N F. Drinking Water Quality: Problems and Solutions [M]. UK: Cambridge UniversityPress,2008:297.
    [227] Xie Y F. Disinfection Byproduct in Drinking Water: Formation, Analysis and Control [M]. UK:Lewis Publishers,2004:161.
    [228]严煦世,范瑾初。给水工程(第四版)[M]。北京:中国建筑工业出版社,2006:363.
    [229] Singer P C. Control of disindection by-products in drinking water [J]. J. Environ. Eng.,1994,120(4):727-745.
    [230] Barron L, Paull B. Determination of haloacetic acids in drinking water using suppressedmicro-bore ion chromatography with solid phase extraction [J]. Anal. Chim. Acta,2004,522,153-161.
    [231] Paull B, Barron L. Using ion chromatography to monitor haloacetic acids in drinking water: areview of current technologies [J]. J. Chromatogr. A,2004,1046,1-9.
    [232] Sun Y X, Gu P. Determination of haloacetic acids in hospital effluent after chlorination by ionchromatography [J]. J. Environ. Sci.,2007,19,885-891.
    [233] Ghassempour A, Chalavi S, Abdollahpour A, et al. Determination of mono-and dichloroaceticacids in betaine media by liquid chromatography [J]. Talanta,2006,68,1396-1400.
    [234] Vichot R, Furton K G. Variables influencing the direct determination of haloacetic acids inwater by reversed-phase ion-pair chromatography with indirect UV detection [J]. J. Liq.Chromatogr.,1994,17,4405-4429.
    [235] Sarzanini C, Bruzzoniti M C, Mentasti E. Preconcentration and separation of haloacetic acidsby ion chromatography [J]. J. Chromatogr. A,1999,850,197-211.
    [236] Hashimoto S, Azuma T, Otsuki A, etal. Distribution, sources and stability of haloacetic acids inTokyo Bay [J]. Japan Environ. Toxicol. Chem.,1998,17:798-805.
    [237] Andrey R E. Liquid Chromatography-Mass Spectrometry: An Introduction [M]. USA NewYork: John Wiley&Sons Inc.,2003.
    [238] Hanai T. HPLC: A Practical Guide [M]. The Royal Society of Chemistry, Cambridge, U.K.,1999.
    [239] Lee M S, Integrated Strategies for Drug Discovery Using Mass Spectrometry [M]. John Wiley&Sons Inc., New Jersey,2000.
    [240] McMaster M C. HPLC: A practical user’s guide [M]. John Wiley&Sons Inc., New York,2007.
    [241] Ostafin A, Landfester K. Nanoreactor engineering for life sciences and medicine [M]. USA:Artech House Publishers,2009.
    [242] Skelly N E. Separation of inorganic and organic anions on reversed-phase liquidchromatography columns [J]. Anal. Chem.,1982,54(4):712-715.
    [243] Falconer I R. Cyanobacterial toxins of drinking water supplies: cylindrospermopsins andmicrocystins [M]. Boca Raton, CRC press,2005.
    [244] Majsterek I, Sicinska P, Tarczynska M, et al. Toxicity of microcystin from cyanobacteriagrowing in a source of drinking water [J]. Comp. Biochem. Physiol.,2004,139(1-3):175-179.
    [245] Codd G A, Morrisin L F, Metcalf J S. Cyanobacterial toxins: Risk management for healthprotection [J]. Toxicol. Appl. Pharmacol.,2005,203(3):264-272.
    [246] Sedan D, Andrinolo D, Telese L, et al. Alteration and recovery of the antioxidant systeminduced by sub-chronic exposure to microcystin-LR in mice: Its relation to liver lipidcomposition [J]. Toxicon,2010,55:333-342.
    [247] Gupta N, Pant S C, Vijayaraghavan R, et al. Comparative toxicity evaluation of cyanobacterialcyclic peptide toxin microcystin variants (LR, RR, YR) in mice [J]. Toxicology,2003,188:285-296.
    [248] Rapala J, Erkomaa K, Kukkonen J, et al. Detection of microcystins with protein phosphataseinhibition assay, high-performance liquid chromatography-UV detection and enzyme-linkedimmunosorbent assay comparison of methods [J]. Anal. Chim. Acta,466(2):213-231.
    [249] Robillot C, Hennion M. Issues arising when interpreting the results of the protein phosphatase2A inhibition assay for the monitoring of microcystins [J]. Anal. Chim. Acta,512(2):339-346.
    [250] Ruangyuttikarn W, Miksik I, Pekkoh J, et al. Reversed-phase liquid chromatographic-massspectrometric determination of microcystin-LR in cyanobacteria blooms under alkalineconditions [J]. J. Chromatogr. B,2004,800:315-319.
    [251] Ortelli D, Edder P, Cognard E, et al. Fast screening and quantitation of microcystins inmicroalgae dietary supplement products and water by liquid chromatography coupled to timeof flight mass spectrometry [J]. Anal. Chim. Acta,2008,617:230-237.
    [252] Ito S, Tsukada K. Matrix effect and correction by standard addition in quantitative liquidchromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins [J]. J.Chromatogr. A,2001,943:39-46.
    [253] Mazzella N, Delmas F, Delest B, et al. Investigation of the matrix effects on aHPLC-ESI-MS/MS method and application for monitoring triazine, phenylurea andchloroacetanilide concentrations in fresh and estuarine waters [J]. J. Environ. Monitor.,2009,11:108-115.
    [254] Chan C C, Lee Y C, Lam H, et al. Analytical method validation and instrument performanceverification [M]. New Jersey: John Wiley&Sons Inc,2004.
    [255] Standard methods for the examination of water and wastewater,20th ed [M]. American PublicHealth Association/American Water Works Association/Water Environment Federation,Washington, DC, USA,1999.
    [256] Rivasseau C, Martins S, Hennion M C. Determination of some physicochemical parameters ofmicrocystins (cyanobacterial toxins) and trace level analysis in environmental samples usingliquid chromatography [J]. J. Chromatogr. A,1998,799:155-169.
    [257] Constantopoulos T L, Jackson G S, Enke C G. Effects of salt concentration on analyte responseusing electrospray ionization mass spectrometry [J]. J. Am Soc Mass Spectrom,1999,10:625-634.
    [258] Hyenstrand P, Metcalf J S, Beattie K A, et al. Losses of the cyanobacterial toxinmicrocystin-LR from aqueous solution by adsorption during laboratory manipulations [J].Toxicon,2001,39:589-594.
    [259] Fang J, Ma J, Yang X, et al. Formation of carbonaceous and nitrogenous disinfectionby-products from the chlorination of Microcystis aeruginosa [J]. Water Res.,2010,44:1934-1940.
    [260] Francis G. Poisonous Australian Lake [J]. Nature,1878,18:11-12.
    [261] Frazier K, Colvin B, Styer E, et al. Microcystin toxicosis in cattle due to overgrowth ofblue-green algae [J]. Veterinary Hum. Toxicol.,1998,40:23-24.
    [262] Ueno Y, Nagate S, Tsutsumi T, et al. Detection of microcystins, a blue-green algal hepatotoxin,in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer inChina, by highly sensitive immunoassay [J]. Carcinogenesis,1996,17:1327-1321.
    [263] Kull T P J, Sj vall O T, Tammenkoski M K, et al. Oxidation of the cyanobacterial hepatotoxinmicrocystin-LR by chlorine dioxide: influence of nature organic matter [J]. Environ. Sci.Technol.,2006,40:1504-1510.
    [264] Chorus I, Bartram J (Ed.). Toxic cyanobacteria in water: a guide to their public healthconsequences, monitoring and management [M]. E.&F.N. Spon Ltd., London, UK,1999.
    [265] Ueno Y, Makita Y, Nagato S, et al. No chronic oral toxicity of a low dose of microcystin-LR, acyanobacterial hepatotoxin, in female BALB/c mice [J]. Environ. Toxicol.,1999,14:45-55.
    [266] Duy T N, Lam P K S, Shaw G R, et al. Toxicology and risk assessment of freshwatercyanobacterial (blue-green algae) toxins in water [J]. Rev. Environ. Contam. Toxicol.,2000,163:113-185.
    [267] Hudnell H K. The state of U.S. freshwater harmful algal blooms assessments, policy andlegislation [J]. Toxicon,55(2010)1024-1034.
    [268] Upadhyayula V K K, Deng S, Mitchell M C, et al. Application of carbon nanotube technologyfor removal of contaminants in drinking water: a review [J]. Sci. Tot. Environ.,2009,408:1-13.
    [269] Xagoraraki I, Zulliger K, Harrington G W, et al. Ct values required for degradation ofmicrocystin-LR by free chlorine [J]. J. Water Supply: Res. Technol.-AQUA,2006,5:233-245.
    [270] Levenspiel O. Chemical Reacion Engineering, Third Edition [M]. John Willey&Sons, Inc. NY,USA,1999.
    [271] Lau T K, Chu W, Graham N. The degradation of endocrine disruptor di-n-butyl phthalate byUV irradiation: A photolysis and product study [J]. Chemosphere,2005,60(8):1045-1053.
    [272] Missen R W, Mims C A, Saville B A. Introduction of Chemical Engineering and Kinetics [M].John Willey&Sons, Inc. NY, USA,1999.
    [273] USEPA, Disinfection Profiling and Benchmarking. Technical Guidance Manual, Appendix B:CT tables [S]. EPA816-R-03-004, May2003.
    [274] Snoeyink V L, Jenkins D. Water chemistry,1st Edn [M]. John Wiley&Sons, Inc.,1980.
    [275] Gallard H, von Gunten U. Chlorination of phenols: kinetics and formation of chloroform [J].Environ. Sci. Technol.,2002,36:884-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700