盾壳霉胞外蛋白酶特性、分离纯化及其生防作用评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾壳霉是防治核盘菌的重要生防菌。在盾壳霉寄生核盘菌的过程中会分泌多种胞外酶,包括葡聚糖酶、几丁质酶和蛋白酶。前人已对盾壳霉产生葡聚糖酶和几丁质酶及其生防作用进行了许多研究,但对盾壳霉产生蛋白酶及其生防作用尚未见报道。为了明确蛋白酶在盾壳霉寄生核盘菌中的作用,本课题开展了对盾壳霉产生胞外蛋白酶的条件、盾壳霉蛋白酶基本酶学性质、蛋白酶分离纯化、以及蛋白酶粗提物对核盘菌菌丝和原生质体的作用效果等方面进行了研究。
     比较了马铃薯葡萄糖培养液(PDB)、马铃薯培养液(PB)、核盘菌菌核提取物培养液(Ss)、马铃薯菌核提取物培养液(PBSs)、马铃薯葡萄糖菌核提取物培养液(PDBSs)5种培养基对盾壳霉胞外蛋白酶产量影响。结果发现Ss培养液适合盾壳霉产生蛋白酶。结果还表明:葡萄糖不利于盾壳霉产生蛋白酶。
     采用福林酚法对盾壳霉胞外蛋白酶活性进行了定量测定,并研究了影响盾壳霉蛋白酶活性的因子。结果表明:盾壳霉蛋白酶活性最适温度为60℃,最适pH值为7。在40℃以下保存,蛋白酶稳定;一些金属离子,包括Na+、K+、Li+、Mg2+、Zn2+、Ca2+、Cu2+和Nn2+等(5mM)对盾壳霉蛋白酶酶活没有影响;而Fe2+(5 mM)对盾壳霉蛋白酶活性发挥具有明显的促进作用;当Fe2+浓度达到250 mM时,盾壳霉蛋白酶活性发挥受到显著抑制。盾壳霉蛋白酶对苯甲基磺酰氟(PMSF)非常敏感,说明盾壳霉产生的蛋白酶可能是一种丝氨酸蛋白酶。
     经过硫酸铵沉淀、透析后的样品,通过Q sepharose Fast Flow阴离子交换层析后,纯度有所提高,但仍未达到电泳纯,收集管中可以检测到蛋白酶的活性,为0.3U/ml,经过超滤,通过HiPrep 16/60 sephocryl s-100 High Resolution层析后,虽达到电泳纯,但未检测到蛋白酶活性,问题的原因还有待进一步探讨。
     经过Q sepharose Fast Flow层析收集液,检测到蛋白酶活性的收集管,处理核盘菌菌丝和原生质体,可以降解核盘菌的菌丝,也可以降解核盘菌的原生质体,说明盾壳霉产生蛋白酶在其重寄生过程中扮演重要角色。
Coniothyrium minitans is an important biocontrol agent of Sclerotinia sclerotiorum. During the process that C. minitans parasited SI sclerotiorum, C. minitans would secret many extracellular enzymes including glucanase, chitinase and protease. The biocontrol function of glucanase and chitinase during interaction between C. minitans and S. sclerotiorum had been well studied in previous researches, however, the bicocontrol function of protease remain to be determined. In order to clarify the role of protease during interaction between the two organisms, A study was carried out on the protease production conditions, protease properties, protease purification and the effect of the crude extraction of protease on S.sclerotiorum mycelium and protoplasts.
     Five media, namely potato dextrose broth (PDB), potato broth (PB), S. sclerotiorum extracts (Ss), potato broth S. sclerotiorum extracts (PBSs) and potato dextrose broth S. sclerotiorum extracts (PDBSs) were used for comparing the yield of the protease. Results showed that the medium Ss was the most suitable medium for protease production by C. minitans. In addition, the result also showed that glucose inhibited the production of protease.
     The activity of protease produced by C. minitans were measured quantitatively by Folin phenol method and the factors affected the protease activity were also determined. The results were:the optimum temperature of the crude protease was 60℃, the optimum pH was 7, and the protease was stable bellow 40℃.5 mM Na+, K+, Li+, Mg2+, Zn2+, Ca2+, Cu2+, Mn2+ had no effect on protease activity,5 mM Fe2+ could enhance the protease activity, whereas 250mM would inhibit the the protease activity. The protease was highly sensitive to PMSF (phenylmethyl sulfony fluoride) indicating it belonged to the serine protease family.
     The proteinase was purified by ammonium sulfate, dialysis, Q sepharose Fast Flow chromatography. Its purity was checked to be about four bands by SDS-PAGE. The protease activity could be detected. Then, using ultrafiltration and HiPrep 16/60 sephocryl s-100 High Resolution chromatography, it was checked to be a single band by SDS-PAGE, but the protease activity could not be detected. This problem needed to be resolved in further study.
     After a Q sepharose Fast Flow chromatography, S. sclerotiorum mycelium and protoplasts we're treated with the colletion that showed protease activity, the result showed that the colletion could degrade S. sclerotiorum mycelium and protoplasts. All the rusults indicate that the protease produced by C. minitans may play an important role in the infection of S. sclerotiorum by C. minitans.
引文
1.曹煜成,李卓佳,冯娟.地衣芽孢杆菌胞外蛋白酶的纯化及特性分析[.J].水生生物学报,2006,30(3):262-268
    2.曹志云.黑曲霉产酸性蛋白酶催化机制和稳定剂研究.2005:29-34
    3.范文艳,文景芝,马建等.水稻纹枯病菌胞外蛋白酶特性研究.植物保护,2010,36(4):55-59
    4.高俊明,马丽娜,李欣,韩巨才.盾壳霉对核盘菌的拮抗作用研究.植物保护,2006,32(6):66-70
    5.谷维.油菜菌核病的发生原因及综合防治对策黑龙江农业科学.2008(5):75-77
    6.郭学兰,江木兰,胡小加.油菜菌核病分子诊断的初步研究[J].中国油料作物学报,2003,25(3):64-66
    7.黄光荣,应铁进,戴德慧.嗜热芽孢杆菌蛋白酶HS08的分离纯化研究[J].食品科学,2007,128(4):179-182
    8. 黄剑华,陆瑞菊,张玉华.应用离体培养技术奠定不结球白菜耐热性及诱导耐热变异体.上海农业学报,1995,11:18-22
    9.黄雅欣,夏东敏,黄明智.用酶组合技术制备水解明胶的研究.2000,20(4):172-178
    10.姜道宏,李国庆,易先宏,付艳苹,王道本.盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28(1):29-32
    11.姜道宏.核盘菌寄生菌盾壳霉的生物学及其寄生生态学研究.[硕士学位论文].武汉:华中农业大学图书馆,1995
    12.李国庆,王道本,张顺和,但汉鸿.菌核寄生菌盾壳霉的研究Ⅰ生物学特性及在湖北省的自然分布.华中农业大学学报,1995,14:125-129
    13.李国庆,王道本.拮抗细菌的筛选及其对油菜菌核病的防治效果.华中农业大学学报,1991,10:30-35
    14.李建武.生物化学试验原理和方法.北京大学出版社,1994
    15.李金秀,陈文瑞,秦芸.油菜土壤中与核盘菌菌核存活有关的真菌.四川农业大学学报,1997,15:1-5
    16.刘连盟.菌寄生真菌纤细齿梗孢蛋白酶基因克隆与表达.[硕士学位论文].青岛:山东农业大学图书馆,2008
    17.刘永锋,张杰,陈志谊,周明国,宋福平,刘邮洲,聂亚锋,罗楚平.枯草芽孢杆菌Bs2916胞外抗菌蛋白质的生物功能分析.江苏农业学报,2008,24(3):269-273
    18.马宇翔,杨国荣,周瑞宝,等.菠萝蛋白酶水解醇法大豆浓缩蛋白的研究.河南工业大学学报(自然科学版),2006,27(5):43-46
    19.缪华军.盾壳霉抗杀菌剂农利灵突变菌株的获得、特性及其应用的研究.[硕士学位论文].武汉:华中农业大学图书馆,2004
    20.潘以楼,汪智渊,吴汉章.油菜病害研究进展.江苏农业科学,1997,13:32-35
    21.任莉.重寄生真菌盾壳霉降解草酸毒素及其引起的生防效应研究[硕士学位论文].武汉:华中农业大学图书馆,2007
    22.孙志洁,董德利.鼻炎片的抗炎作用研究.黑龙江医药,2003,16(2):104-105
    23.唐小龙,江振友,林晨等.SARS相关冠状病毒的基因组和主要蛋白酶的研究进展.第二军医大学学报,2004,25(3):272-276
    24.王春芝.油菜菌核病的发病规律与综合防治技术[J].农技服务,2008,25(6):55-56.
    25.王全富,缪锦来,李光友,侯艳华,王国栋.南极嗜冷菌Colwellia sp. NJ341产适冷蛋白酶及低温适应性的研究.中国水产科学,2005,12(4):437-444
    26.肖晓华.秀山县2007年油菜菌核病重发特点及原因分析.中国农技推广,2007,23(7):44-45
    27.谢晶,葛绍荣,陶勇,高平,刘昆,刘世贵.多粘类芽孢杆菌BS04拮抗成分分离纯化及其特性.化学研究与应用,2004,16(6):775-777
    28.颜青.陈瑞川,郭大勇,等.菠萝蛋白酶诱导K562细胞分化及其对P53基因表达的影响.1999,38(1):103-106
    29.杨筱静.菠萝蛋白酶研究与应用.安徽农学通报.2009,15(9):40-42
    30.杨新美.油菜菌核病Sclerotinia sclerotiorum在我国的寄主范围及生态特性的调查研究.植物病理学报,1959,15(2):111-112
    31.杨星勇,王中康,夏玉先,卢晓风,裴炎.球孢白僵菌凝乳弹性蛋白酶(BbPrl)的纯化与特性[J].菌物系统,2000,19(2):254-260
    32.张政兵,郭海明,苏彪等.湖南省油菜菌核病发生特点、流行规律及防治对策研究.农药研究与应用,2006,10(6):13-15
    33.朱小程.稻瘟病菌丝氨酸蛋白酶在水稻中的功能验证.[硕士论文],2008
    34. Adams P B and Ayers W A. Biological control of sclerotinia lettuce drop in the field by Sporidesmium sclerotivorum. Phytopathology,1982,72:485-488
    35. Adams P B and Ayers W A. Ecology of Sclerotinia species. Phytopathology,1979, 69:896-899
    36. Ajoy B. Inhibitors of proprotein convertases. Journal of Molecular Medicine,2005,83: 844-848
    37. Barrett A J, Rawlings N D, O'Brien E A. The MEROPS database as a protease information system. Struct Biol.,1994,134:95-102
    38. Boland G J and Hall R. An Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol,1994,16:93-108
    39. Campbell W A. Anew species of Coniothyrium parasitic on sclerotia. Mycologia,1947,39: 190-195
    40. deVrije T, Antoine N, et al. The fungal biocontrol agent Coniothyrium minitans:production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol.,2001, 56:58-68
    41. Fox J w, Shannon J D and Bjamason J B. Proteases and their inhibitors in Biotechnology Enzymes in biomass conversion. ACS Symp,1991,460:62-79
    42. Giczey G, Kerenyi Z, Fulop L and Hornok L. Expression of cmgl, an exo-β-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl. Environ. Microbiol.,2001,67:865-871
    43. Gilbert C. Through the Side Door. Science,2007,316:662-63
    44. Goldman MHS, Goldman GH. Trichoderma harzianum transformant has high extracellular alkaline protease expression during specific mycoparasitic interactions. Genetics and Molecular Biology,1998,21:329-333.
    45. Huang H C and Kozub G C. Longevity of normal and abnormal sclerotia of Sclerotinia sclerotiorum. Plant Dis.,1994,78:1164-1166
    46. Huang H C. and Kokko E G. Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. Phytopathol.,1988,123: 133-136
    47. Katsumi T, Hriotsugu S. Purification and characterization of a thermostable alkaline protease from Alkalophilic Thermoactinomyces sp.HS682. Biosci. Biotech. Biochem,1992,56(2): 246-250
    48. Knudsen G R, Eschen D J, Dandurand L M and Bin L. Potential for biocontrol of Sclerotinia sclerotiorum though colonization of sclerotia by Trichoderma harzianum. Plant Disease,1991, 75:466-470.
    49. LeiLei Chen, LiJun Liu, Mei Shi, et al. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett,2009,299:135-142
    50. Li G Q, Huang H C and Acharya S N. Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biol Control,2003a,28:11-18
    51. Li G Q, Huang H C and Acharya S N. Importance of pollen and senescent petals in the suppression of Sclerotinia sclerotiorum by Coniothyrium minitans. Biocon Sci Technol, 2003b,13:495-505.
    52. McQuilken M P, Budge S P, Whipps J M. Effect of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycol. Res.,1997,101:11-17
    53. McQuilken M P, Gemmell J, Hill R A and Whipps J M. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol Lett,2003,219(1):27-31.
    54. Merriman P R. Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol Biochem, 1976,8:385-389
    55. Muthumeenakshi S, Goldstein A L and Stewart A. Molecular studies on intra specific diversity and phylogenetie position of Coniothyrium minitans. Mycol. Res.,2001,105(9): 1065-1074
    56. Nathalie P, Sandrine C, Genevieve B G. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiol.,2001,147: 717-726
    57. Pousserau N, Creton S, Billon-Grand G, Rascle C and Fevre M. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology,2001a,147:717-726
    58. Pousserau N, Gente S Rascle C, Billon-Grand G. and Fevre M. aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis. FEMS Microbiol. Lett.,2001b,194:27-32
    59. Pozo M J, Baek J-M, Garcia J M and Kenerley C M. Functional analysis of tvspl, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet, and Biol., 2004,41:336-348
    60. Riou C, Freyssinet G and Feure M. Production of cell wall degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol.,1991,57: 1478-1484
    61. Roberto A. Geremia, Gustavo H. Goldman, et al. Molecular characterization of the protease-encoding gene, prbl, related to mycoparasitism by Trichoderma harzianum. Molecular Microbiology,1993,8(3):603-613
    62. Shingles J, Lilly C J, Atkinson H J, Urwin P E. Meloidogyne incognita: Molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Experimental Parasitology,2007,115(2):114-120
    63. Stella M H. CELL BIOLOGY:Metallo protease, Migration and Mitosis, Science,2004,306: 1862
    64. Swarna S, Per S. Degradation of Saccharomyces cervisiae Rck2 upon exposure of cells to High levels of zinc is dependent on Pep4. Molecular Genetics and Genomics,2005.273: 33-439
    65. Takao T, et al. Purification and some properties of carboxyl protease in Mycelium of Lentinus edodes[J]. Agric. Biol. Chem.,1981,45(9):1929-1930
    66. Tetsuya K. Youhei Y, Teruyoshi A. Purification of a new 90-kDa serine protease with isoelectric point of 3.9 from Bacillus subtilis(natto) and elucidation of its distinct mode of action[J]. Biosci. Biotech. Biochem,1992,56(7):1166-1170
    67. Tu J C. Mycoparasitism by Coniothyrium minitans on Sclerotinia sclerotiorum and its effect on sclerotial germination. Phytopathology,1984,109:261-268
    68. Turner G J and Tribe H T. Preliminary field plot trails on biological control of Sclerotinia trifoliorum by Coniothyrium minitans. Plant Pathol.,1975,24:109-113
    69. Urwin P E, Lilley C J, Atkinson H J. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions, 2002,15(8):747-752
    70. Vrije T, Antoine N and Buitelaar R H. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol.,2001,56:58-68
    71. Whipps J M and Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol. Res.,1992,96:897-907
    72. Willetts H J. Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol. Res.,1997,101:939-952
    73. Xu H, Allison R, Kermode. Proteases associated with programmed cell death of megagamctophyte cells after germination of white spruce (Picea glauca) seeds. Plant Molecular Biology,2003,52:729-744
    74. Yang L, Miao H J, Li G Q, Yin L M and Huang H C. Survival of the Mycoparasite Coniothyrium minitans on Flower Petals of Oilseed Rape under Field Conditions in Central China. Biol. Control,2007,40:179-186
    75. Yang R, Han Y C, Li G Q, Jiang D H and Huang H C. Suppression of Sclerotinia sclerotinrum by antifungal substances produced by the mycoparasite Coniothyrium minitans. Eur. J. Plant Pathol.,2007,119:411-420
    76. Yasuhiro S, Toyokazu N, Sawao M. Purifcation and characterization of a membrane bound serine protease of Bacillus subtilis IFO 3027. Agric. Biol Chem.,1983,47(8):1775-1780
    77. Yoshihisa N, Yasuhiro S. Purification and Some Properties of Extracelluar Protease of Euglena gracilisz. Agric. Biol. Chem.,1979,43(2):222-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700