不同大豆品种叶片含氮代谢物的变化及SSR标记分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是世界五大作物之一,是非常重要的植物蛋白质和食用油资源,也是重要的优质工业原料,世界各国均高度重视大豆的综合利用和开发。大豆的经济价值更大程度上取决于其蛋白质的含量,蛋白质含量的高低是衡量大豆品质优劣的重要指标。我国是栽培大豆的起源地,拥有最为丰富的栽培大豆、野生大豆资源。但作为同属的野生大豆和栽培大豆的蛋白质含量具有较大差异,与两者的蛋白质形成机制有重要的关系。野生大豆具有蛋白质含量高、适应性广、抗逆性强等优点,野生大豆这种高蛋白质的特性正是未来高蛋白大豆育种最需要的性状。
     本研究选取三类不同蛋白质含量的大豆品种:高蛋白野生大豆、普通野生大豆和栽培大豆,详细分析了大豆品种在不同生育时期叶片含氮代谢物(硝态氮含量、亚硝态氮含量、游离氨基酸含量和可溶性蛋白质含量)以及氮循环中关键酶—硝酸还原酶活性的变化,并对不同蛋白质含量的大豆品种进行SSR分子标记检测。从生理生化角度和分子生物学角度分析不同品种大豆氮代谢的变化规律及高蛋白野生大豆籽粒高蛋白质含量形成的机制。结果如下:
     1、在整个生育过程中,幼苗期硝酸还原酶活性和硝态氮含量最高,到成熟期都达到最低值,二者的变化都是基本呈降低趋势的;亚硝态氮含量在成熟期最高,初荚期最低;游离氨基酸含量以盛花期最高;可溶性蛋白质含量在初荚期时达到最高值。
     2、在大豆各个生育时期内,苗期叶片硝酸还原酶活性与籽粒蛋白质含量呈负相关,其它时期均呈现正相关;分枝期的亚硝态氮含量和游离氨基酸含量,盛花期和成熟期的可溶性蛋白质含量都与籽粒蛋白含量成极显著正相关;而硝态氮含量与籽粒蛋白质的含量相关性不明显。
     3、筛选出的12对SSR引物从24份大豆材料中共检测到87个等位变异,每个SSR位点的等位变异范围为4~10个,平均为7.2500个;有效等位基因总数为60.2196个,平均值为5.0183个,占观察到等位基因数的69.2%;Shannon-weaver指数变化范围为1.2389~2.1662,平均值为1.6933;Nei期望杂合性最高为0.8750,最低为0.6372,平均值为0.7755。
     4、24份大豆材料的遗传相似性系数范围:0.000-0.895,其中ZYD00857和ZYD01251遗传相似性系数最大,为0.895,ZYD05610和ZYD01018最低,为0.000。在遗传相似系数为0.165处,NTSYS软件将24份大豆材料聚类为三大类:第一大类,3份栽培大豆、蛋白含量低于和高于45.4%的野生大豆各2份;第二大类,15份蛋白含量超过了45.4%野生大豆及蛋白含量为45.07%的野生大豆ZYD01040;第三类,一份蛋白含量很低的野生大豆ZYD05610。这说明能够通过以SSR标记为基础建立的聚类树状图将多数不同蛋白质含量的大豆种质区分开来。
Soybean is one of the five worldwide crops. It is a very important resource of plant protein and oil, and also an important quality industrial raw material. The comprehensive utilization and development of soybean are highly valued by countries around the world. The economic value of soybean depends on its protein content which is the important index to measure soybean quality in a greater extent. China, which has the most abundant cultivated and wild soybean, is the origin of cultivated soybean. The wild and cultivated soybean have different protein contents although they belong to the same genus, which have an important relationship to the formation mechanism of protein. Wild soybean has many advantages such as high protein content, wide adaptability, strong resistance, and so on. The high-protein characteristic of wild soybean will be needed most in high-protein soybean breeding in the future.
     Three different protein contents of soybeans were selected in this study:high-protein wild soybean, common wild soybean and cultivated soybean. The nitrogen metabolites (nitrate nitrogen content, nitrite nitrogen content, free amino acids content and soluble protein content) at different growth stages in soybean leaves and the variation of the key enzyme-nitrate reductase activity in the nitrogen cycle had been analysed in detail. The soybeans with different protein contents were detected by SSR molecular marker. The variation of nitrogen metabolism in different varieties of soybean and the formation mechanism of high-protein wild soybean kernel's high-protein content were analyzed from the physiological, biochemical and molecular biological perspectives. Results are as follows:
     1. In the whole growth process, the nitrate reductase activity and nitrate nitrogen content of the seedling stage were the highest and reached the minimum value at the mature stage. The basic trend of their variation was reduced. The highest nitrite content was at the mature stage while the lowest was at the early pod setting stage; the highest free aminoacid content was at the flowering stage. The soluble protein content reached the highest value at the early pod setting stage.
     2. Between nitrate reductase activity of the seedling stage and grain protein content were negative correlation at all growth periods of soybean and they showed positive correlation at other stages. Both the nitrite nitrogen content and free amino acids content at the ramification stage and the soluble protein content at flowering stage and mature stage were extreme significant positive correlation with grain protein content. But nitrate content had no obvious correlation with grain protein content.
     3. A total of 87 alleles were detected from 24 soybean materials with 12 pairs of SSR primer that were screened. Each SSR locus's alleles ranged from 4 to 10 with average for 7.2500. The total of effective alleles were 60.2196 with average for 5.0183, which was 69.2% of the observed alleles; Shannon-weaver indexes were in the range of 1.2389~2.1662 with average for 1.6933. The highest value of Nei expected heterozygosity was 0.8750 and the lowest value was 0.6372 with average for 0.7755.
     4. The genetic similarity coefficient's range of 24 soybean materials was 0.000-0.895. The largest coefficient of genetic similarity was 0.895 between ZYD00857 and ZYD01251 among 24 soybean materials. The lowest coefficient of genetic similarity was 0.000 between ZYD05610 and ZYD01018.24 soybean materials were clustered into three major categories by NTSYS software at the cutoff of the genetic similarity coefficient 0.165:the first category included 3 cultivated soybeans,2 wild soybeans with protein content under 45.4% and 2 wild soybeans with protein content over 45.4%; the second category included 15 wild soybeans with protein content over 45.4% and the wild soybean ZYD01040 with protein content 45.07%; The wild soybean ZYD05610 with very low protein content was the third category. This shows that the establishment of clustering dendrogram based to SSR marker can be used to distinguish the majority of the soybeans with different protein content.
引文
[1]王曙明,孟凡凡,郑宇宏,等.大豆高产育种研究进展[J].中国农学通报,2010,26(9):162~166
    [2]赵明珠.不同类型大豆品种氮同化和蛋白质积累规律的研究:[硕士学位论文].东北农业大学,2009.06.
    [3]文自翔.中国栽培和野生大豆的遗传多样性、群体分化和演化机器育种形状QTL的关联分析:[博士学位论文].南京农业大学,2008.05.
    [4]Fritz K L, Seppanem C M, Kurzer, et al.. The invivo antioxidant activity of soybean isoflavones in human subjects[J]. NatrRes,2003,23:479~487.
    [5]Valachovicova J, Slivova V, Sliva D. Cellular and physiological effects of soy flavonoids[J]. Mini Rev Med Chem,2004,4:881~887.
    [6]Zittermann A, Geppert J, Baier S, et al.. Short-tern effects of high soy supplementation on sex hormones, bonemarkers, and lipid parameters in young female adults[J]. European Journal of Nutrition,2004,43: 100~108.
    [7]吴胜芳,顾小红,张灏,等.卵磷脂的功能特性及其应用[J].食品科技.2001(4):36~38.
    [8]Safford F, et al.. Testing the effects of dietary lecithin on memory in the elderly:An example of social work practice,1994,4:349.
    [8]李涛,王天志.卵磷脂的研究进展[J].中药材,2002,25(10):752~756.
    [9]沈培英.开发大豆蛋白新领域-大豆低聚糖[J].粮食与油脂,1994,2:8~13.
    [10]高文宏,石彦国,李国基,等.大豆低聚糖提取中超滤膜的选择[J].食品科学.2000,21(5):16~20.
    [11]丁小林.大豆与肉蛋奶营养价值对比性研究[J].食品研究与开发.2005.26(1):42~44.
    [12]吴莉芳,赵晗,秦贵信,等.2种大豆蛋白替代鱼粉蛋白对鲤蛋白酶和淀粉酶活力的影响[J].吉林农业大学学报,2011.03.
    [13]胡志昂,王洪新,赵述文,等.栽培大豆和野生大豆(Glycine Soja)种子蛋白的变异[J].大豆科学,1986.5(3):205~210.
    [14]王昌陵,王文斌,闫春娟,等.野生大豆蛋白质优异基因源种间杂交遗传规律及其应用研究进展[J].辽宁农业科学,2010(6):41~44.
    [15]王果.野生大豆(Glycine soja)资源的利用研究进展[J].滁州学院学报.2007,9(3):74~76.
    [16]董英山.中国野生大豆研究进展[J].吉林农业大学学报,2008,30(4):394~400.
    [17]王金陵,孟庆喜,杨庆凯,等.野生大豆蛋白含量和性状间相关及通径分析[J].东北农业学报.1986,17(1):1~5.
    [18]Sinclair T R, de Wit C T. Photosynthate and nitrogen requirement for seed production by various[J]. Crop sci,1975,18:565~567.
    [19]Spaeth S C, Sinclair T R. Variation in nitrogen accumulation and distribution among soybean cultivars [Glycine. max, genotypes][J]. Field-Crops-Res,1983,1:1~12.
    [20]王全富,刘丽君,孙聪妹,等.大豆氮素积累及其对籽粒蛋白质含量的影响[J].2005,36(5):545~548.
    [21]杨美英,赵洪锟,蒋春玲,等.不同蛋白含量大豆品种氮代谢关键酶活性及叶片氮同化物含量变化[J].中国油料作物学报.2010,32(4):500~505.
    [22]刘鹏,杨玉爱.钼、硼对大豆氮代谢的影响[J].植物营养与肥料学报.1999,5(4):347~351.
    [23]刘迎雪.不同施氮方式和生物种衣剂对春玉米生理特性、产量及品质的影响:[硕士学位论文].东北农业大学,2007.5.
    [24]王全富.大豆植株氮素动态变化与籽粒蛋白质积累关系的研究:[硕士学位论文].东北农业大学,2003.5.
    [25]Minchin F. R., R. J. Summerfield, M. C. P. Newes. Carbon metabolism, nitrogen assimilation, and seed yield of cowpea (Vignaunguiculata L. Walp.) grown in an adverse temperature regime[J]. J. Exp. Bot,1980, 31:1327~1347.
    [26]焦光纯.大豆植株干物质积累与氮素动态变化研究:[硕士学位论文].东北农业大学,2003.12.
    [27]刘晓冰,金剑,张秋英,等.不同大豆基因型氮素积累运转研究简报[J].大豆科学,2001,20(4):298~301.
    [28]Salado-Navarro, L.R., K. Hinson, T. R. Sinclair. Nitrogen partitioning and dry matteral location in soybeans with different seed protein concentration[J]. Crop Sci.1985,25:451~455.
    [29]Streeter J.. Inhibition of legume nodule formation and N2 fixation by nitrate[J]. CRC Crit. Rev. Plant Sci. 1988,7:1-23.
    [30]Purcell, L. C., Serraj, R., Sinclair, T. R., De A.. Soybean N2 fixation estimates, ureide concentration, and yield responses to drought[J]. Crop Sci.,2004,44:484~492.
    [31]Zapata, F., Danso, S. K. A., Hardarson G., Fried M.. Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology[J]. Agron. J.,1987,79,172~176.
    [32]Van Kessel C., Hartley C.. Agricultural management of grain legumes:has it led to an increase in nitrogen fixation[J]. Field Crops Res.,2000,65:165~181.
    [33]F. Salvagiottia, K. G. Cassmana, J. E. Spechta, et al.. Nitrogen uptake, fixation and response to fertilizer N in soybeans:A review[J]. Field Crops Research.2008,108:1~13.
    [34]周瑞莲,赵哈林,杨树德,等.子叶供氮对不同基因型大豆种子组分的影响[J].中国农业科学,2008,41(10):3033~3041.
    [35]李豪喆.大豆叶片硝酸还原酶活力的研究[J].植物生理学通讯,1986,(4):30~32.
    [36]孙宝启,李玉京.小麦灌浆过程中硝酸还原酶活性与籽粒蛋白质的积累[J].中国农业大学学报,1997,2(5):20,30.
    [37]戴廷波,曹卫星,孙传范,等.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响[J].应用生态学报,2003,14(9):1529~1532.
    [38]Schrader G. L., Ritenour G. L., Eilrich et al.. Some characteristics of nitrate reductase from higher plants[J]. Plant Physiol,1968,43:930~940.
    [39]Ailing M. J., Boland G., Willson J. H., Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat[J]. Plant Physiol,1976,3:721~730.
    [40]Coruzzi G, Bush D R. Nitrogen and carbon nutrient and metabolite signaling in plants[J]. Plant Physiology,2001,125:61~64.
    [41]王宪泽,张树芹.不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究[J].西北植物学报,1999,19(2):315~320.
    [42]朱长甫,苗以农.大豆硝酸还原酶活力与硝态氮含量的关系[J].大豆科学,1990,9(1):33~38.
    [43]李雪梅,李长甫,苗以农,等.大豆植株发育过程中不同部位硝态氮含量和硝酸还原酶活力的变化[J].植物生理学通讯,1993,29(4):263~365.
    [44]郑相穆,谷丽萍,周阮宝,等.钼对降低普通白菜叶片硝态氮的作用[J].植物生理学通讯,1995,(2):95~96.
    [45]Ivank S., Ingversen J.. Investigation on the assimilation of nitrogen by maize roots and the transport of some major nitrogen compounds byxylem sap[J]. Physiol Plant,1999,24:355~362.
    [46]Lewis O. A. M. The significance of transpirationally derived nitrogen in protein synthesis in fruiting plants of pea (Pisum satovum L.)[J]. J Exp Bot,1973,24-596~606.
    [47]Yoneyama T., Kumazawa K. A kinetic study of the assimilation of 15N—labelled nitrate in rice seedlings[J]. Plant Cell Physiol,1975,16:21~26.
    [48]Qusji G. O., Madu W. C. Ammonium ion salvage by glutamate dehyrogenase during defence response in maize[J]. Phytochemistry,1996,42:1491~1498.
    [49]Refouvelet E., Daguin F.. Polymorphic glutamate dehydrogenase inlilac vitroplants as revealed by combined preparative IEF and native PAGE. Effect of ammonium deprivation; darkness and atmospheric CO2 enrichment upon isomerization[J]. Plantp-hysiol,1999,105:199~206.
    [50]祁倩倩,罗奥,刘志生,等.大豆氮代谢酶作用机理及锰水平对其影响研究进展[J].黑龙江八一农垦大学学报,2008,20(6):12~15.
    [51]Thomas W Becket, Elisa Carrayol, Bertrand Hirel. Glutamine synthetase and glutamate dehydrogenase isoforms inmaize leaves localization, relative proportion and their role in ammonium assimilation or nitrogen transport[J]. Panta,2000,211:800~806.
    [52]Gonzale-Moro B., Menu-Petite A., Lacuesta M., et al. Glutamine synthetase from mesophyll and bundle sheath maize cells:isoenzyme complements and different sensitivities to phosphino thricin[J]. Plant Cell Reports,2000,19(11):1127~1134.
    [53]王月福,于振文,李尚霞,等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743~748.
    [54]陈军文,刘强,荣湘民,等.不同栽培法对饲用稻氮代谢关键酶活性的影响[J].湖南农业大学学报 (自然科学版),2005,31(3):238~241.
    [55]胡昌浩,王群英.玉米不同叶位叶片叶绿素与光合强度变化规律的研究[J].山东农大学报,1987,20(1):43.
    [56]N. R. Apuya, B. L. Frazier, P. Keim, et al.. Restriction fragment length polymorphisms as genetic markers in soybean, Glycinemax(L.) Merrill[J]. Theor. Appl. Genet,1988,75:889 ~901.
    [57]P. Keim, R. C. Shoemaker, R. G. Palmer. Restriction fragment length polymorphism diversity in soybean[J]. Theor. Appl.Genet,1989,77:786~792.
    [58]李群.大豆蛋白质和油份含量基因的SSR标记及初步定位:[硕士学位论文].南京农业大学,2004.8.
    [59]宛煜嵩.大豆遗传图谱的构建及若干农艺性状的QTL定位分析:[博士学位论文].中国农业科学院,
    2002.7.
    [60]J. K. Williams, A. R. Kubelik, K. J. Livak, et.al.. DNA polymorphisms amplified by arbitrary primers are useful as markers[J]. Nucleic Acid Res.,1990,18:6531-6535.
    [61]徐莉,赵桂仿.微卫星DNA标记技术及其在遗传多样性研究中的应用[J].西北植物学报,2002,22(3):714~722.
    [62]E. Zietkiew, A. Rafalske, et al.. Genome finger printing by simple sequence repeat(SSR)-anchored polymerase chainreaction amplication[J]. Genome,1994,20:178~183.
    [63]D. J. Perry, J. Bousquet. Sequence-Tagged-Site(STS) Markers of Arbitrary Genes:development, characterization and analysis of linkage in black spruce[J]. Genetics,1998,149(2):1089~1098.
    [64]王臻昱,许艳丽,高继国.分子标记及其在大豆抗性基因定位中的应用进展[J].大豆通报,2008,2:12~16.
    [65]Tomooka N, Vaughan D, Xu R Q, et al.. Japanese native Vigna geneticresources, jarq japan agricultural research quarterly[J]. Japan,2001,35(1):1~9.
    [66]P. Keim, J. M. Schupp, S. E. Travis, et al.. A high-density soybean genetic map based on AFLP markers[J]. Crop Sci.,1997,37:537~543.
    [67]W. M. Powell, M. Morgante, C. Andre, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis[J]. Molecular Breeding,1996,2:225~238.
    [68]Pieter Vos, Rene Hogers, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23(21):4407~4414.
    [69]刘勋甲,郑用链,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的运用[J].湖北农业科学,1998,2:38~39.
    [70]B. G. Murray, B. J. Davies. An improved method for preparing the chromosomes of Pines and other gymnosperms[J]. Biotech Histochem,1996,3:115~117.
    [71]李兆波,吴禹,王岩,等.SNP标记技术及其在农作物育种中的应用[J].辽宁农业职业技术学院学 报,2010,12(3):8,9.
    [72]粱慧珍,李卫东,王辉,等SNPs在大豆等作物遗传及改良中的应用[J].中国农学通报,2004,20(5):23~27.
    [73]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005.
    [74]Yang W. Molecular mapping of a new gene for resistance to frogeye leaf spot of soybean in'Peking'[J]. Plant breed,2001,120(1):73~78.
    [75]Zhong M, Hu Z A. Gresshoff P M. Search for molecular Markers of salt tolerance of soybean by DNA amplification fingerprinting[J]. Soybean Genetics Newsletter,1997,24:81~82.
    [76]Yu Yg, P J Amaughan. Tolin SA and microsatellite mpping of gene for soybean mosaic virus resistanse [J] Phyt opathology,1994, (84):60~64.
    [77]张治安,张美善.植物生理学实验指导[M].北京:中国农业科学技术出版社,2004.
    [78]柴晓杰,崔喜艳.生物化学实验技术[M].长春:吉林大学出版社,2003.
    [79]张智猛,万书波,宁堂原,等.氮素水平对花生氮素代谢及相关酶活性的影响[J].植物生态学报.2008,32(6):1407~1416.
    [80]Y.Y.莱谢姆(Leshem, Y. Y.)植物衰老过程及调控[M].沈阳:辽宁科学技术出版社,1990.
    [81]蔡柏岩,葛菁萍,祖伟.施磷水平对不同基因型大豆品种硝酸还原酶活性影响[J].大豆科学,2007,26(3):359~362.
    [82]陈煜,朱保葛,张敬,等.不同氮源对大豆硝酸还原酶和谷氨酰胺合成酶活性及蛋白质含量的影响[J].大豆科学,2004,23(2):143~146.
    [83]Campbell W H, Smarrelli. Nitrate reductase biochemistry and retulaton[A]. Neyra C A. Biochemical basis of plant breeding[M]. CRC Press,1986.1~451.
    [84]朱长甫,苗以农,杨文杰,等.大豆种子蛋白质含量与固氮酶活性和硝酸还原酶活性的关系[J].中国油料,1992(2):45~47.
    [85]张智猛,万书波,宁堂原,等.不同花生品种氮代谢相关酶活性的研究[J].植物营养与肥料学报,2007,13(4):707~713.
    [86]张磊,宋秋来,马春梅,等.大豆叶片硝酸还原酶活性动态研究[J].东北农业大学学报,2008,39(6):73~76.
    [87]赵洪祥,徐克章,李大勇.吉林省不同年代育成大豆品种硝酸还原酶活性变化及其与产量的关系[J].南京农业大学学报,2007,30(2):13~17.
    [88]刘丽,甘志军,王宪泽.植物氮代谢硝酸还原酶水平调控机制的研究进展[J].西北植物学报,2004,24(7):1355~1361.
    [89]Fan X H, Tang C, Rengel Z. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes[J]. Annals of Botany,2002,90:315~353.
    [90]吕伟仙,葛滢,吴建之,等.植物中硝态氮、氨态氮和总氮测定方法的比较研究[J].光谱学与光谱分析,2004,24(2):204~206.
    [91]肖焱波,李文学,段宗颜,等.植物对硝态氮的吸收及其调控[J].中国农业科技导报,2002,4(2):56~59.
    [92]龚振平.春大豆氮代谢机制及相关酶活性的研究:[博士学位论文].东北农业大学,2004,11
    [93]李向东,王晓云,张高英,等.花生衰老进程的研究[J].西北植物学报,2001,21(6):1169~1175.
    [94]Maughan P J, Saghai Maroof M A, Buss G R. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean[J]. Genome,1995,38 (4):715~723.
    [95]赵洪锟,王玉民,李启云,等.中国不同纬度野生大豆和栽培大豆SSR分析[J].大豆科学,2001,20(3):172~176.
    [96]孙晓环,刘晓冬,赵洪锟,等.吉林省龙井保护区野生大豆居群遗传多样性的研究[J].吉林农业科学,2010,35(2):1-4.
    [97]王果,胡正,张保缺,等.山西省野生大豆资源遗传多样性分析[J].中国农业科学,2008,41(7):2182~2190.
    [98]严茂粉,李向华,王克晶.北京地区野生大豆种群SSR标记的遗传多样性评价[J].植物生态学报,2008,32(4):938~950.
    [99]刘亚男.野生大豆(G soja)微核心种质的遗传多样性分析:[硕士学位论文].中国农业科学院,2008,6.
    [100]朴向民,张圣珍,许建,等.中国吉林省和韩国野生大豆的遗传多样性及遗传关系分析[J].大豆科学,2009,28(2):181~185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700