用户名: 密码: 验证码:
聚丙烯/天然海藻纤维复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以聚丙烯(PP)为基体树脂、以天然海藻纤维(SW)为增强材料,制备了全新的聚丙烯/天然海藻纤维(PP/SW)复合材料。基于对“熔融加工-注塑成型”工艺参数的优化,在普通热塑性复合材料成型设备中成功制备了PP/SW复合材料,并对其力学性能、热机械性能、结晶性能、动态流变特性、热稳定性及燃烧性能进行了详细表征。本论文提出了PP/SW复合材料内部相结构的转变模型,并发现SW纤维对PP树脂的固相阻燃剂功效。
     首先探讨PP/SW复合材料的可加工性,比较了SW纤维添加量、螺杆挤出机类型对复合材料熔融过程的影响。实验结果表明,双螺杆挤出机可有效对PP/SW复合材料进行熔融加工,能在保证SW纤维热稳定性的同时实现其在PP树脂中良好的分散性。TPU可作为高效熔融助剂消除熔体破裂现象。然而SW纤维添加量不应超过50wt%,以保证足够的熔体流动性能;熔融温度不应超过185℃,螺杆转速不应超过60rpm,以避免SW纤维剧烈热降解的发生。同时,PP/SW复合材料可通过注塑成型工艺制备,最佳注塑成型参数为:注塑温度=180℃,螺杆转速=60rpm,注塑压力=保压压力=60bar,模具温度=60℃,冷却时间=45s。
     通过力学性能表征衡量了SW纤维对PP树脂的增强效果。研究表明,表面碱处理能去除杂质从而提高SW纤维强度。然而PP树脂与SW纤维之间的弱相容性导致复合材料低劣的力学强度,因此必须使用界面相容剂。本论文将界面相容剂作用机理区分为“内相容机理”及“外相容机理”。结果表明“外相容剂”MAPP及“内相容剂”CESA均能有效提高PP/SW复合材料的力学强度;热机械测试中储能模量及损耗模量的提高同样证明了SW纤维对PP树脂的增强作用。然而损耗因子的不同改变趋势证明两种相容剂不同的作用机理;MAPP提高了PP/SW复合材料的刚性而CESA提高了柔性。SW纤维能加快PP树脂的结晶过程,但降低了相对结晶度。MAPP及CESA均能提高PP树脂的相对结晶度,充分发挥SW纤维的异相成核作用。
     动态流变学测试给出界面相容剂对PP/SW复合材料相结构改变的信息。SW纤维能有效的增强PP树脂,末端区“牛顿平台”的出现说明PP树脂与SW纤维物理交联网络的形成;同时PP/SW复合材料较宽的线性粘弹区域证明了成型加工工艺的可行性。CESA通过对相结构的改变,从本质上提高了PP树脂与SW纤维之间物理交联网络的表观屈服应力;而MAPP对末端区特性改变不明显。通过“时-温等效原理”分析,CESA将PP/SW复合材料从非均相体系转变为均相体系,从而提高了相结构的稳定性。在测试温度范围内,CESA避免了PP/SW复合材料内部相分离情况的发生。
     本论文还系统研究了PP/SW复合材料的热降解及燃烧性能。SW凭借自身良好热稳定性,能有效推迟PP树脂的热降解过程。SW纤维同时能发挥固相阻燃功效,显著降低PP树脂的燃烧参数。稳定的相结构有利于充分发挥SW纤维阻燃效应,最终实现其热释放总量及热释放速率峰值分别下降25%和75%,达到普通应用标准。然而,SW纤维没有改变PP树脂的可燃性。
     研究表明,PP/SW复合材料具有理想的加工性能,其基本性能达到使用要求;同时PP/SW复合材料的耐热、耐燃烧性能明显优于PP树脂,具有耐热复合材料的应用前景。本论文的研究丰富了PP/NVF复合材料中的界面相容剂作用理论,并为此类复合材料研究提出新的思路。
In this thesis, seaweed fibre (SW) is adopted as reinforcing fibre for polypropylene matrix (PP) for the first time, the novel polypropylene/seaweed fibre (PP/SW) composites is prepared. After optimization of the parameters during "melt extrusion-injection moulding", PP/SW composites are successfully prepared by traditional processing equipments. The mechanical, thermal dynamical, crystallization, dynamic rheological properities as well as thermal decomposition and combustion progressions are well characterized. The model for phase structure transition of PP/SW composites is proposed as well as the solid-phase flame retardancy of SW fibre for PP matrix.
     Taking consideration of the influence of SW content and type of extruder on the compounding, the processability of PP/SW composites is well evaluated. Based on the results, PP/SW composites are successfully prepared in a twin-screw extruder, which maintain the thermal stability of SW fibre as well as realize fine dispersion within PP matrix. TPU could act as efficient PPA (Polymer Processing Aid) in compounding that eliminates melt-fracture phenomena in PP/SW melt. However, SW content should below 50wt% in order to keep enough melt flow rate. Compounding temperature and rotation speed of screw should be strictly controlled below 185℃and 60rpm to avoid fierce thermal decomposition of SW fibre during extrusion. PP/SW composites could be easlier moulded in-mjection maschine, the ideal moulding parameters in this thesis are:injection temperature=180℃, rotation speed of screw=60rpm, injection pressure=moulding pressure=60bar, moulding temperature=60℃and cooling time=45s.
     The reinforcing effect of SW fibre for PP matrix is evaluated by mechanical characterization. According to the properties, surface alkalization is could remove impurities from SW fibre thus improve its stiffness. However, the poor adhesion between PP matrix and SW fibre limits the properties of PP/SW composites; compatibilization and lubricating are of necessity. The lubricating effects are classified into "inner effect" and "outter effect" in this thesis. Based on the results, MAPP as "inner lubricant" and CESA as "outter lubricant" can both enhance the mechanical properties of PP/SW composites, which is in agreement to the raing of storage modulus and loss modulus from DMA test. Diversed effects on the damping factor state their difference in lubricating mechanisms, the stiffness is raised by MAPP while CESA improved the elasticity of PP/SW composites.
     SW fibre accelerates the process of crystallization of PP matrix, but reduces its degree of crystallization. With either MAPP or CESA, the degree of crystallization is improved which proves the heterogeneous nucleation effect of SW fibre for PP matrix.
     Dynamic rheological characterizations provide important information on the transition of phase structure for PP/SW composites. The wide linear viscoelastic region signifies fine dispersion of SW fibre, as well as feasibility of compounding and moulding process. A formation of "Newton Plateau" indicates the establishment of physical network between PP matrix and SW fibre. CESA remarkably changes the phase structure of PP/SW composites, and achieve a higher apparent yield stress; while MAPP leads to slight influence on the rheological properties. With "time-temperature superposition principle", it can be concluded that CESA transforms PP/SW composites from heterogeneous system into homogeneous system. Within studied temperature region, no evidence for phase-separation is traced after the addition of CESA.
     Moreover, the thermal decomposition and combustion behaviour of PP/SW composites are well studied in this thesis. With high thermal stability, SW fibre could delay the thermal decomposition of matrix. SW fibre also acts as a solid-phase flame retardant in the composite, remarkably reduces the combustion parameters of PP matrix. Higher uniformity in the composite is beneficial for SW fibre's retarding effect, the total heat release and peak heat release rate are declined by 25% and 75%, respectively. However, SW fibre hardly reduces the flammability of PP matrix.
     To conclude, PP/SW composites possess favourable processability with satisfying mechanical properties for normal usage. The heat and flame resistance of PP/SW composites is greatly higher in comparsion to PP matrix, thus promises its potential in applications. The lubricating mechanism for PP/NVF composites and SW fibre's interesting flame retarding effect found in this thesis could promote related research.
引文
[1]山本良一,王天明译.环境材料.北京:化学工业出版社,1997.
    [2]翁端.关于生态环境材料研究的基本思考[J].材料导报.1997(1):57-59.
    [3]陈军.生态环境材料的研究与进展[J].中国科技博览.2009(3):25.
    [4]聂柞仁.循环型社会的生态环境材料[J].中国材料进展.2009(28):38-44.
    [5]Mohanty K., Misra M. and Hinrichsen G. Biofibres, biodegradable polymers and biocomposites:an overview [J]. Macromolecular Materials and Engineering. 2000(276):1-24.
    [6]周凤飞,李贾禄.天然纤维增强生态复合材料的研究进展[J].国际纺织导报.2009(3):54-59.
    [7]Cyras P., Kenny M. and Vazquez A. Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers [J]. Polymer Composites.2001(22):104-110.
    [8]Mohanty K. and Khan A. Effect of chemical modification on the performance of biodegradable juteyarn-biopol composites [J]. Journal of Materials Science. 2000(35):2589-2595.
    [9]李诚.生态复合材料研究进展及发展前景[J].建材发展导向.2005(3):70-73.
    [10]王荣国.复合材料概论哈尔滨:哈尔滨工业大学出版社,2004.
    [11]黄丽主.聚合物复合材料北京:中国轻工业出版社,2001.
    [12]吴人洁.复合材料天津:天津大学出版社,2000.
    [13]钱伯章.聚合物复合材料的研发进展[J].国外塑料.2007(25):39-41.
    [14]李正光.聚丙烯生产技术与应用北京:石油工业出版社,2006.
    [15]Dieter M. and Andreas K. New discovery in the properties of composites reinforced with natural fibers [J]. Journal of Industrial Textiles.2003(33):110-130.
    [16]杨文斌,黄祖泰,李坚.植物纤维/塑料复合材料作地板基材的研究[J].福建林学院学报,2005(25):10-13.
    [17]张素梅.纤维植物纤维[J].中国纤检.2004(11):45-47.
    [18]庄馥萃.植物纤维和纤维植物[J].生物学通报.2001(36):16-18.
    [19]阮林光,李志君.天然植物纤维聚合物基复合材料的研究进展[J].热带农业科学.2006(26):76-80.
    [20]刘涛.PVC/木粉复合材料结构与性能研究[D].北京化工大学.2004:7-10.
    [21]刘仁庆.纤维素化学基础北京:科学出版,1985.
    [22]赵科.天然植物纤维改性与聚丙烯基复合材料[M].玻璃钢学会第十六届全国玻璃钢/复合材料学术年会论文集,2006.
    [23]张录平,李晖,刘亚平.高分子生态环境材料的研究进展及应用[J].工程塑料应用.2009(37):87-90.
    [24]Morton J., Quarmaley J. and Rossi L. Current and emerging applications for natural and wood fiber-plastic composites [M].7th International Conference on Woodfiber-Plastic Composites. Madison. WI. USA.2003:3-6.
    [25]Rossi L. Wood-plastic composites:putting innovation on a faster track.8th International Conference on Woodfiber-Plastic Composites [M]. Madison. WI. USA.2005:3-6.
    [26]赵敏.改性聚丙烯新材料北京:化学工业出版社,2002.
    [27]Bledzki K., Reihmane S. and Gassan J. Properties and modifications of NVF composites [J]. Journal of Applied Polymer Science.1996(59):1329-1336.
    [28]刘英俊.塑料填充改性北京:中国轻工业出版社,1998.
    [29]吴宏仁.纺织纤维的结构与性能北京:纺织工业出版社,1985.
    [30]Gassan J. A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites [J]. Composites:Part A.2002(33):369-394.
    [31]Zafeiropoulos E., Williams R. and Matthews L. Engineering and characterization of the interface in flax fibre/polypropylene composite materials. Part I:Development and investigation of surfaces treatments [J]. Composites:Part A.2002(33):1083-1093.
    [32]Nunez A., Sturm C. and Kenney M. Mechanical characterization of polypropylene-wood flour composites [J]. Journal of Applied Polymer Science.2003(88):1420-1428.
    [33]周兴平,解孝林PP/PMMA接枝剑麻纤维复合材料:剑麻纤维MMA接枝聚合反应[J].高分子材料科学与工程.2004(20):57-60.
    [34]Histov N., Lach R. and Grellmann W. Impact fracture behaviour of modified polypropylene/wood fiber composites [J]. Polymer Testing.2004(23):581-589.
    [35]Kazayawoko M., Balatunecz J. and Woodhams T. Diffuse reflectance fourier transform infrared spectra of wood fiber treated with maleated polypropylenes [J]. Journal of Applied Polymer Science.1977(66):1163-1173.
    [36]Arbelaiz A., Cantero G. and Fernandez B. Flax fiber surface modifications:effects on fiber physic mechanical and flax/polypropylene interface properties [J]. Polymer Composites.2005(26):324-332.
    [37]Geng Y., Li K., and Simonsen J. Effect of a new compatibilizer system on the flexural properties of wood polyethylene composites [J]. Journal of Applied Polymer Science. 2004(91):3667-3672.
    [38]Harper D. and Wolcott M. Interaction between coupling agent and lubricants in wood-polypropylene composites [J]. Composites:Part A.2004(35):385-394.
    [39]Wolcott M., Yin Z. and Rials G. Using dynamic mechanical spectroscopy to monitor the crystallization of PP/MAPP blends in the presence of wood [J]. Composite Interface. 2000(7):3-12.
    [40]Wu S., Yu M. and Chan C. Effect of fiber pretreament condition on the interfacial strength and mechanical properties of wood fiber/PP composite [J]. Journal of Applied Polymer Science.2000(76):1000-1010.
    [41]Hjertberg T., Palmlof M and Sultan A. Chemical reactions in crosslinking of copolymers of ethylene and vinyltrimethoxy silane [J]. Journal of Applied Polymer Science. 1991(42):1185-1192.
    [42]Zaini M.J., Fuad M.A., Ismail Z., Mansor M.S. and Mustafah J. The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites [J]. Polymer International.1996(40):51-55.
    [43]Rana A.K., Mandal A., Mitra B.C., Jacobson R., Rowell R. and Banerjee N. Short jute fiber-reinforced polypropylene composites:Effect of compatibilizer [J]. Journal of Applied Polymer Science.1998(69):329-338.
    [44]Zhang S.W., Rodrigue D. and Riedl B. Preparation and morphology of polypropylene/wood flour composites forms via extrusion [J]. Polymer Composites. 2005(26):731-738.
    [45]赵素合,张丽叶.聚合物加工工程北京:中国轻工业出版社,2001.
    [46]Scaffaro R., Morreale M. and LoRe G. Effect of the processing techniques on the properties of ecocomposites based on vegetable oil-derived mater-bi and wood flour [J]. Journal of Applied Polymer Science.2009(114):2855-2863.
    [47]李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业.2003(31):22-25.
    [48]宋国君,王海龙,王立HDPE-g-MAH增容HDPE/木粉复合材料的制备及加工设备的研究[J].塑料.2006(35):46-49.
    [46]郭广思主编.注塑成型技术.北京:机械工业出版社,2001.
    [47]李基洪,胡再明主编.注塑成型实用新技术.石家庄:河北科学技术出版社,2004.
    [49]肖加余,张小静.高性能天然纤维复合材料及其制品研究及开发现状[J].玻璃钢/复合材料.2000(2):38-43.
    [50]陈玉放,揣成智.植物纤维热塑性复合材料的开发及有关问题[J].现代塑料加工应用.1998(10):50-53.
    [51]Zhang C., Li K.C. and Simonsen J. Improvement of interfacial adhesion between wood and polypropylene in wood-polypropylene composites [J]. Journal of Adhesion Science and Technology.2004(18):1603-1612.
    [52]Singha A. S. and Thakur W. K. Mechanical, thermal and morphological properties of grewia optiva fiber/polymer matrix composites [J]. Polymer-Plastics Technology and Engineering.2009(48):201-208.
    [53]Joseph S., Sreekala M.S. and Thomas S. Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composite [J]. Journal of Applied Polymer Science.2008(110):2305-2314.
    [54]Rana A.K., Mandal A. and Banerjee A.N. Jute sliver-LDPE composites:effect of aqueous consolidation on mechanical and dynamic properties [J]. Journal of Applied Polymer Science.2000(76):684-689.
    [55]Bledzki A.K., Reihmane S. and Gassan J. Thermoplastics reinforced with wood fillers:a literature review [R]. Polymer-Plastics Technology and Engineering.1998(37):451-468.
    [56]Takagi H., Kako S., Kusano K. and Ousaka A. Thermal conductivity of PLA-bamboo fiber composites [J]. Advanced Composite Materials.2007(16):377-384.
    [57]Davis T. and Llanes F. Metal selectivity of sargassum spp. and their alginates in relation to their a-L-guluomic acid content and conformation [J]. Environmental Science and Technology.2003(37):261-267.
    [58]Indergaard M. and Shjak-Brak G. Characteristics of alginate from Laminaria digitata cultivated in a high-phosphate environment [J]. Hydrobiologia.1987(151):541-549.
    [59]展义臻,朱平,张建波.海藻纤维的性能与应用[J].印染助剂.2006(23):9-12.
    [60]张传杰,朱平,王怀芳.高强度海藻纤维的性能研究[J].印染助剂.2009(26):15-18.
    [61]Tachi M. and Hirabayashi S. Comparison of bacteria retaining ability of absorbent wound dressing [J]. International Wound Journal.2004(3):117-181.
    [62]秦义民.海藻酸医用敷料吸湿机理分析[J].纺织学报.2005(26):113-115.
    [63]周世海,蔡继业,陈勇.钙离子对海藻酸钠自组装行为的AFM研究[J].药物生物技术.2004(11):81-85.
    [64]Braccini I and Perez S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited[J].Biomacromolecules.2001(2):1089-1096.
    [65]廖艳芬,王树荣.氧化钙催化纤维素热裂解动力学研究[J].燃料化学学报.2005(33):692-697.
    [66]Malkapuram R., Kumar V. and Negi Y.S. Recent development in natural fiber reinforced polypropylene composites [J]. Journal of Reinforced Plastics and Composites. 2009(28):1169-1189.
    [67]Pracella M., Chionana D., Anguillesi I., Kulinsiki Z. and Piorkowska E. Functionalization and compatibilization and properties of polypropylene composites with hemp fibres [J]. Composites Science and Technology.2006(66):2218-2230.
    [68]Wambua P., Ivens, J. and Verpoest I. Natural fibres:can they replace glass in fibre reinforced plastics [J]. Composites Science and Technology.2003(63):1259-1264.
    [69]Park J.M., Quang T. Q., Hwang B.S. and DeVries K. L. Interficial evaluation of modified jute and hemp fibres/polypropylene-maleic anhydride polypropylene copolymers composites using micromechnical technique and nondestructive acoustic emission [J]. Composites Science and Technology.2006(66):2686-2699.
    [70]Joly C., Cauthier R. and Chabert B. Physical chemistry of the interface in polypropylene/cellulosic-fibre composites [J]. Composites Science and Technology. 1996(56):761-765.
    [71]Beheraveshi H., Shakouri E. and Zolfaghari A. Theoretical and experimental study on die pressure prediction in extrusion of wood-plastic composite [J]. Journal of Composites Materials.2010(44):1293-1304.
    [72]Beheraveshi H., Zohdi A. and Soury E. Experimental investigation on injection molding of wood/plastic composite [J]. Journal of Reinforced Plastics and Composites. 2010(29):456-465.
    [73]Jam J. and Beheraveshi H. Challenge to the production of fine wood-plastic injection molded composite [J]. Journal of Reinforced Plastics and Composites.2009(28):73-82.
    [74]宋国君,王海龙,王立HDPE-g-MAH增容HDPE/木粉复合材料的制备及加工设备的研究[J].塑料.2006(35):46-49.
    [75]Khondker O.A., Ishiaku U.S., Nakai A. and Hamada H. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns [J]. Composites:Part A.2006(37):2274-2284.
    [76]Bledzki A.K. and Gassan J. Composites reinforced with cellulose based fibers [J]. Processing in Polymer Science.1999(24):221-274.
    [77]Yanga H.S., Wolcotta M.P., Kimb H.S. and Kim H.J. Properties of lignocellulosic material filled polypropylene biocomposites made with different manufacturing processes [J]. Polymer Testing.2006(25):668-676.
    [78]Bledzki A.K. and Faruk O. Injection moulded microcellular wood fibre-polypropylene composites [J]. Composites:Part A.2006(37):1358-1367.
    [79]Mutje P., Lopez A., Vallejos M.E., Lopez J.P. and Vilaseca F. Full exploitation of cannabis sativa as renforcement/fillber of thermoplastic composite materials [J]. Composites:Part A.2007(38):369-377.
    [80]Hassan M., Muller M. and Wagner M. Exploratory study on seaweed as novel filler in polypropylene composite [J]. Journal of Applied Polymer Science. 2008(109):1242-1247.
    [81]Klaus S and Bledzki K. Influence of fiber treatment on the thermal longtime behaviour of wood and hemp fiber-polypropylene composites [M].7th International Conference on Woodfiber-Plastic Composites. Madison. WI. USA.2003:109-117.
    [82]邬义明.植物纤维化学北京:轻工业出版社,1990.
    [83]王玉梅,季建仁.塑木复合材料挤出成型工艺探讨[J].塑料制造.2007(152):33-34.
    [84]李自强,王传名,孙恒.木塑复合材料的成型加工及影响因素[J].工程应用塑料.2009(37):35-38.
    [85]王共冬,刘文剑.复合材料成型工艺方法的模糊综合评判[J].材料科学与工艺.2008(16):66-69.
    [86]Schirp A. and Stender J. Properties of extruded wood-plastic composites hased on refiner wood fibres (TMP fibres) and hemp fibres [J]. European Journal of Wood and Wood Products.2010(68):219-231.
    [87]Bledzki A.K., Faruk O. and Specht K. Influence of separation and processing systems on morphology and mechanical properties of hemp and wood fibre reinforced polypropylene composite [J]. Journal of Natural Fibers.2007(4):37-56.
    [88]Gehrmann K., Busch M., Meinicke S., Starke R. and Krombholz A. Der Einfluss der Fasergeometrie unterschiedlicher Naturfasern und unterschiedlicher Polypropylen-Typen auf Schlussel-Kennwerte von Composites und extrudierten Hohlkammerprofilen-Erste Erfahrungen mit einer industriekompatiblen Profil-Extrusionslinie [M]. Scientific Presentations 5th Global Wood and Natural Fibre Composites Symposium. Kassel. Germany.2004(14):1-10.
    [89]Migneault S., Koubba A., Erchiqui F., Chaala A., Englund K., Kruse C and Wollcott M.P. Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites [J]. Journal of Applied Polymer Science.2008(110):1085-1092.
    [90]Wollcott M.P. and Englund K. A technology review of wood-plastic composites [M].33rd International Particleboard/Composites Materials Symposium Proceedings. Washington State University. USA.1999:13-15.
    [91]Joseph P.V., Joseph K. and Thomas S. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites [J]. Composites Science and Technology.1999(59):1625-1640.
    [92]Cao Y., Sakamoto S. and Goda K. Effect of heat and alkali treatments on mechanical properties of kenaf fibers [M].16th International conference on composite materials. Japan.2007(16):1-4.
    [93]Mohanty A.K., Khan M.A. and Hinrichsen G. Influence of chemical surface modification on the properties of biodgradable jute fabric-polyester amide composite [J]. Composites: Part A.2000(31):143-150.
    [93]Wallenberger F.T. and Weston N.E. Natural fibers, plastics and composite. Springer. 2004:236-241.
    [94]Gomes A., Goda K. and Ohgi J. Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites [J]. JSME International Journal:Series A. 2004(47):541-546.
    [95]Cao Y., Shibata S. and Fukumoto I. Mechanical properties of biodegradable composites reinforced with bagasse fiber before and after treatments [J]. Composites:Part A. 2006(37):423-429.
    [96]Goda K., Gomes A., Kaji T. and Ohgi J. Effect of load applying alkali-treatment on mechanical properties of ramie fibers [M]. Proceedings of Second International Workshop on Green Composites. Japan.2003:101-103.
    [97]Abdelmouleh M., Boufi S., Belgacem M.N. and Dufresne A. Short natural-fibre reinforced polyethylene and natural rubber composites:effect of silane coupling agents and fibres loading [J]. Composite Science and Technology.2007(67):1627-1639.
    [98]Cruz R. Natural fiber reinforced thermoplastics. In:Clegg D.W. and Collyer A.A. Mechanical properties of reinforced thermoplastics. New York. Elsevier Applied Science. 1986:65-81.
    [99]Amin A.R. The application of silane as a processing aid (PA) in high speed extrusion [J]. Macromolecule Symposium.2009(282):192-198.
    [100]陈福林,.陈广汉.,岑兰.,雷彩红.加工助剂对PVC木塑复合材料性能的影响[J].塑料科技.2008(36):82-86.
    [101]Orden M.U., Sanchez C.G., Quesada. M.G. and Urreaa J.M. Effect of different coupling agents on the browning of cellulose-polypropylene composites during melting processing [J]. Polymer Degradation and Stability.2010(95):201-206.
    [102]Beg M.D. and Pickering K.L. Mechanical performance of kraft fibre reinforced polypropylene composites:influence of fibre length, fibre beating and hygrothermal ageing [J]. Composites:Part A.2008(39):1748-1755.
    [103]Orden M.U., Sanchez C.G., Quesada M.G. and Urreage M.J. Novel polypropylene-cellulose composites using polyethlenimine as coupling agent [J]. Composites:Part A.2007(38):2005-2012.
    [104]Kulikov O. Novel processing aids for extrusion of polyethylene [J]. Journal of Vinyl and Additive Technology.2005(11):127-131.
    [105]Kulikov O. and Hornung K. Novel Processing aid based on modified silly putty [J]. Journal of Vinyl and Additive Technology.2006(12):131-142.
    [106]Almgren K.M., Gamstedt E.K., Berthold F. and Lindstrom M. Moisture uptake and hygroexpansion of wood fiber composite materials with polyactide and polypropylene matrix materials [J]. Polymer Composites.2009(30):1809-1816.
    [107]Panthapulakkal S., Law S. and Sain M. Enhancement of processablity of rice husk filled high-density polyethylene composite profiles [J]. Journal of Thermoplastic Composite Materials.2005(18):445-458.
    [108]Andreas M. and Harmut W. Injection molding of natural fiber reinforced thermoplastics [J]. Kunststoffe Plast Europe.2001(91):25-27.
    [109]Sun Z.Y., Han H.S. and Dai G.C. Mechanical properties of injection-molded natural fiber-reinforced polypropylene composites:formulation and compounding processes [J]. Journal of Reinforced Plastics and Composites.2010(29):637-650.
    [110]Wan A.W., Lee T.S. and Abdul R.R. Injection moulding simulation analysis of natural fiber composite window frame [J]. Journal of Materials Processing Technology. 2008(197):22-30.
    [111]Nystom B., Joffe R. and Langstrom R. Microstructure and strength of injection molded natural fiber composites [J]. Journal of Reinforced Plastics and Composites. 2007(26):579-599.
    [112]Jungil S., Gardner D.J., O'Neill S and Metaxas C. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites [J]. Journal of Applied Polymer Science.2003(89):103-108.
    [113]Madsen B. and Lilholt H. Physical and mechanical properties of unidirectional plant fibre composites- an evaluation of the influence of porosity [J]. Composites Science and Technology.2003(63):1265-1272.
    [114]Seung L., Siqun W. and Haitao X. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis [J]. Composites:Part A.2007(37):1796-1804.
    [115]Van de Velde K. and Kiekens P. Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composite [J]. Composites Structure.2003(62):443-448.
    [116]Ganster J., Fink H.P. and Pinnow M. High-tenacity man-made cellulose fibre reinforced thermoplastics-injection moulding compounds with polypropylene and alternative matrices [J]. Composites:Part A.2006(37):1796-1804.
    [117]Hristov V.N., Lach R. and Grellmann W. Impact fracture behavior of modified polypropylene/wood fiber composites [J]. Polymer Testing.2004(23):581-589.
    [118]Selke S.E. and Wichman I. Wood fiber/polyolefin composites [J]. Composites:Part A. 2004(35):321-326.
    [119]Pickering K.L., Abdalla A., Ji C., McDonald A.G. and Franich R.A. The effect of silane coupling agents on radiate pine fibre for use in thermoplastic matrix composites [J]. Composite:Part A.2003(34):915-926.
    [120]Karmarkar A., Chauhan S.S., Modak J.M. and Chanda M. Mechanical properties of wood-fiber reinforced polypropylene composites:effect of novel compatibilizer with isocyanate functional group [J]. Composites:Part A.2007(38):227-233.
    [121]Felix J.M. and Gatenholm P. The nature of adhesion in composites of modified cellulose fibers and polypropylene [J]. Journal of Applied Polymer Science.1991(42):609-620.
    [122]Harper D. and Wolcott M. Interaction between coupling agent and lubricants in wood-polypropylene composites [J]. Composites:Part A.2004(35):385-394.
    [123]Pracella M., Chionna D., Anguilleis I., Kulinski Z. and Piorkowska E. Functionalization, compatibilization and properties of polypropylene composites with hemp fibers [J]. Composites Science and Technology.2006(66):2218-2230.
    [124]Girone J., Mendez A. and Mutje P. Effect of silane coupling agents on the properties of pine fibers/polypropylene composites [J]. Journal of Applied Polymer Science. 2007(103):3706-3717.
    [125]Yang H.S., Kim H.J., Son J., Park H.J., Lee B.J. and Hwang T.S. Rice-husk flour filled polypropylene composites:mechanical and morphological study. Composite Structures. 2004(63):305-312.
    [126]Amash A. and Zugenmaier P. Study on cellulose and xylan filled polypropylene composites [J]. Polymer Bulletin.1998(40):251-258.
    [127]Tajvidi M., Falk R.H. and Hermanson J.C. Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis [J]. Journal of Applied Polymer Science.2006(101):4341-4349.
    [128]Krichberg S. and Ziegmann G. Thernogravimetry and dynamic mechanical analysis of iron silicon particle filled polypropylene [J]. Journal of Composites Materials. 2009(43):1323-1334.
    [129]Amash A. and Zugenmaier P. Thermal and dynamic mechanical investigations on fiber-reinforced polypropylene composites [J]. Journal of Applied Polymer Science. 1997(63):1143-1154.
    [130]Araujo J.R., Waldman W.R. and DePaoli M.A. Thermal properties of high density polyethylene composites with natural fibres:coupling agent effect [J]. Polymer Degradation and Stability.2008(93):1770-1775.
    [131]Harper D.P., Laborie M.G. and Wolcott M.P. The impact of polypropylene-graft-maleic anhydride on the crystallization and dynamic mechanical properties of isotatic polypropylene [J]. Journal of Applied Polymer Science.2009(111):753-758.
    [132]Huang L.P., Zhou X.P., Cui W., Xie X.L. and Tong S.Y. Maleic anhydride grafted linear low-density polyethylene with low gel content [J]. Polymer Engineering and Science. 2009(49):673-679.
    [133]Sgriccia M. and Hawley M.C. Thermal, morphological, and electrical characterization of microwave processed natural fiber composites [J]. Composites Science and Technology.2007(67):1986-1991.
    [134]Bachtiar D., Sapuan S.M. and Hamdan M.M. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites [J]. Materials and Design. 2008(29):1285-1290.
    [135]Corradini E., Ito E.N., Marcocini J.M., Rios C.T., Agnelli J.A. and Mattoso L.H. Interfacial behavior of composites of recycled poly(ethylene terephthalate) and sugarcane bagasse fiber [J]. Polymer Testing.2009(28):183-187.
    [136]Moe T. and Kin L. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites [J]. Composites Science and Technology.2003(63):375-387.
    [137]Han G., Kojuma Y. and Suzuki S. Bamboo-fiber filled high density polyethylene composites:effect of coupling treatment and nanoclay [J]. Journal of Plymers and the Environment.2008(16):123-130.
    [138]Keener T.J., Stuart R.K. and Brown T.K. Maleated coupling agents for natural fibre composite [J]. Composites:Part A.2004(35):357-362.
    [139]Lu J.Z., Wu Q. And McNabb H.S. Chemical coupling in wood fibre and polymer composites:a review of coupling agents and treatments [R]. Wood Fibre Science. 199(34):189-199.
    [140]Qing X.L. and Matuana L.M. Effectiveness of maleated and arylic-acid functionalized polyolefin coupling agents for HDPE/wood-flour composites [J]. Journal of Thermoplastic Composites Materials.2003(16):551-564.
    [141]Mugisawa M., Ohnishi K. and Sawada H. Synthesis and application of novel fluoroalkyl end-capped cooligomers having adamantane as a pendant group [J]. Colloid and Polymer Science.2007(285):737-744.
    [142]Liaw D.J., Liaw B.Y. and Chung C.Y. Synthesis and characterization of new adamantane-type card polyamides [J]. Acta Polymer.1999(50):135-140.
    [143]刘册,郭建维.金刚烷的结构、溶解性及热力学性质[J].含能材料.2006(14):485-490.
    [144]Song P., Xu L.H., Guo Z.H., Zhang Y. and Fang Z.P. Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene [J]. Journal of Materials Chemistry.2008(18):5083-5091.
    [145]Xiao Y, Zhang X.P., Cao W., Wang K., Tan H., Zhang Q., Du R.N. and Fu Q. Dispersion and mechanical properties of polypropylene/multiwall carbon nanotubes composites obtained via dynamic packing injection molding [J]. Journal of Applied Polymer Science.2007(104):1880-1886.
    [146]Prashantha K., Soulestin J., Lacrampe M.F., Claes M., Dupin G. and Krawczak R. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route:improvement of dispersion and mechanical properties though PP-g-MA addition [J]. eXPRESS Polymer Letters.2008(2):735-745.
    [147]Choi S., Jeong Y.J., Lee G.W. and Cho D.H. Thermal and mechanical properties of polypropylene filaments reinforced with multiwalled carbon nanotubes via melt compounding [J]. Fibers and Polymers.2009(10):513-518.
    [148]Guo R., Azaiez J. and Bellehumeur C. Rheology of fiber filled polymer melts:role of fiber-fiber interactions and polymer-fiber coupling [J]. Polymer Engineering and Science.2005(45):385-399.
    [149]Kabamaba E.T., Mechraoui A. and Rodirgue D. Rheological properties of polypropylene/hemp fiber composites [J]. Polymer Composites.2009(30):1401-1407.
    [150]Xiong C., Qi R.R. and Wang Y.L. Wood-thermoplastic composites from wood flour and high-density polyethylene [J]. Journal of Applied Polymer Science. 2009(114):1160-1168.
    [151]Spoljaric S., Genovese A. and Shanks R.A. Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties [J]. Composites:Part A. 2009(40):791-799.
    [152]Hristov V. and Vlachopoulos J. A study of viscoelasiticity and extrudates distortions of wood polymer composites [J]. Rheological Acta.2007(46):773-783.
    [153]Kumar R.P., Manikandan N., Thomas S., Schit S.C. and Ramamurthy K. Morphology and melt rheological behaviour of short-sisal-fibre-reinforced SBR composites [J]. Composites Science and Technology.2000(60):1737-1751.
    [154]Yu R.B., Yu W, Zhou C.X. and Feng J.J. Rheology and relaxation processes in a melting thermotropic liquid-cyrstalline polymer [J]. Journal of Applied Polymer Science. 2007(104):3780-3787.
    [155]Solis C.Q., Yan N. and Zhang S.Y. Effect of mixing conditions and initial fiber morphology on fiber dimensions after processing [J]. Composites:Part A. 2009(40):351-358.
    [156]Utracki L.A. Polymer Alloys and Blends:Thermodynamics and Rheology. New York. 1989.
    [157]Niu Y.H. and Wang Z.G. Rheological determination phase diagram and dynamically investigated phase separation kinetics of polyolefin blends [J]. Macromolecules. 2006(39):4175-4183.
    [158]Freed K.F. and Dudowicz J. Influence of monomer molecular structure on the miscibility of polymer blends [J]. Advanced Polymer Science.2005(183):63-126.
    [159]Ferry J.D. Viscoelastic Properties of Polymers. New York.1980.
    [160]Zhang J.J., Park C.B., Rizvi G.M., Huang H.X. and Guo Q.P. Investigation on the uniformity of high-density polyethylene/wood fiber composites in a twin-screw extruder [J]. Journal of Applied Polymer Science.2009(113):2081-2089.
    [161]Nayak S.K., Mohanty S. and Samal S.K. Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites [J]. Materials Science and Engineering A.2009(523):32-38.
    [162]Huang H.X. and Zhang J.J. Effect of filler-filler and polymer-filler interactions on rheological and mechanical properties of HDPE-wood composites [J]. Journal of Applied Polymer Science.2009(111):2806-2812.
    [163]Guo C.G. and Wang Q.W. Compatibilizing effect of maleic anhydride grafted styrene-ethylene-butylene-styrene (MAH-g-SEBS) on the polypropylene and wood fiber composites [J]. Journal of Reinforced Plastic and Composites. 2007(26):1743-1752.
    [164]Mohanty S. and Nayak S. Dynamic and steady state viscoelastic behavior and morphology of MAPP treated PP/sisal composites [J]. Materials Science and Engineering A.2007(443):202-208.
    [165]Azizi H. and Ghasemi I. Investigation on the dynamic melt rheological properties of polypropylene/wood flour composites [J]. Polymer Composites.2009(30):429-435.
    [166]Ma H.Y., Tong L.F., Xu Z.B. and Fang Z.P. Clay network in ABS-graft-MAH nanocomposites:rheology and flammability [J].Polymer Degradation and Stability. 2007(92):1439-1445.
    [167]Li T.Q. and Wolcott M.P. Rheology of wood plastics melt. Part 1:capillary rheometry of HDPE filled with maple [J]. Polymer Engineering and Science.2005(45):549-559.
    [168]Li T.Q. and Wolcott M.P. Rheology of wood plastics melt. Part 2:Effect of lubricating systems in HDPE/maple composites [J]. Polymer Engineering and Science. 2006(46):464-473.
    [169]Li T.Q. and Wolcott M.P. Rheology of wood plastics melt. Part 3:Nonlinear nature of the flow [J]. Polymer Engineering and Science.2006(46):114-121.
    [170]Kashiwagi T., Mu M.F., Winey K., Cipriano B., Raghavan S.R., Pack S. Rafailovich M., Yang Y., Grulke E., Shields J., Harris R. and Douglas J. Relation between the viscoelastic and flammability properties of polymer nanocomposites [J]. Polymer. 2008(49):4358-4368.
    [171]Hemmati M., Rahimi G.H., Kaganj A.B., Sepehri S. and Rashidi A.M. Rheological and mechanical characterization of multi-walled carbon nanotubes/polypropylene nanocomposites [J]. Journal of macromolecular Science:Part B.2008(47):1176-1187.
    [172]Zhao J., Morgan A.B. and Harris J.D. Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion [J]. Polymer. 2005(46):8641-8660.
    [173]Andriescu A. and Hesp A.M. Time-temperature superposition in rheology and ductile failure of asphalt binders [J]. International Journal of Pavement Engineering. 2009(10):229-240.
    [174]Zheng Q., Song Y.H., Wu G. and Song X.B. Relationship between the positive temperature coefficient of resistivity and dynamic rheological behavior for carbon black-filled high-density polypropylene [J]. Journal of Applied Polymer Science. 2003(41):983-992.
    [175]Sanchez C.G., Quesada M.G., Orden M.U., Urreage. Comparison of the effect of polyethylenimine and maleated polypropylene coupling agents on the properties of cellulose-reinforced polypropylene composite [J]. Journal of Applied Polymer Science. 2008(110):2555-2562.
    [176]Shu Y.C., Hsiao K.J. and Tsen W.C. Thermal characterization of crystallization of ziegler-natta isotactic polypropylene/metallocene isotactic polypropylene polyblended fibers [J]. Journal of Applied Polymer Science.2009(113):265-273.
    [177]Su F.H. and Huang H.H. Rheology and thermal properties of polypropylene modified by reactive extrusion with dicumyl peroxide and trimethylol propane triacrylate [J]. Advances in Polymer Technology.2009(29):16-25.
    [178]Zhou Z.Y., Zhang Y., Zhang Y.X. and Yin N.W. Rheological behavior of polypropylene/octavinyl polyhedral oligomeric silsesquioxane composite [J]. Journal of Polymer Science:Part B.2008(46):526-533.
    [179]Schartel B., Braun U., Schwarz U. and Reinemann S. Fire retardancy of polypropylene/flax blends [J]. Polymer.2003(44):6241-6250.
    [180]Garcia M., Hidalgo J., Garmendia I. and Garcia J. Wood-plastic composites with better fire retardancy and durability performance [J]. Composites:Part A. 2009(40):1772-1776.
    [181]Chirico A.D., Armanini M., Chini P., Cioccolo G., Provasili F. and Audisio G. Flame retardants for polypropylene based on lignin [J]. Polymer Degradation and Stability. 2003(73):139-145.
    [182]欧育湘.实用阻燃技术.北京化学工业出版社.2002.
    [183]Gaan S., Rupper P., Salimova V., Hueberger M., Rabe S. And Vogel F. Thermal decomposition and burning behavior of cellulose treated with ethylester phosphoramidates:Effect of alkyl substituent on nitrogen atom [J]. Polymer Degradation and Stability.2009(94):1125-1134.
    [184]Liu N.A. and Fan W.C. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere [J]. Journal of Analytical and Applied Pyrolysis. 2002(63):303-325.
    [185]胡萍,刘佐民,姜明,陈猛.聚丙烯热降解性能研究[J].合成材料老化及应用. 2006(35):27-30.
    [186]吕明福,刘涛,张师军.聚丙烯的热降解和燃烧行为[J].合成树脂及塑料.2007(24):14-17.
    [187]Yao F., Wu Q.L., Lei Y., Guo W.H. and Xu Y.J. Thermal decomposition kinetics of natural fibers:Activation energy with dynamic thermogravimetric analysis [J]. Polymer Degradation and Stability.2008(93):90-98.
    [188]Manfredi L.B., Rodriguez E.S., Przubylak P.M. and Vazquez A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres [J]. Polymer Degradation and Stability.2006(91):255-261.
    [189]Li X.G. and Huang M.R. Thermal degradation of kevlar fiber by high-resolution thermogavimetry [J]. Journal of Applied Polymer Science.1999(71):565-571.
    [190]Sameni J.K., Ahmad S.H. and Zakaria S. Performance of rubberwood fiber-thermoplastic natural rubber composite [J]. Polymer-Plastics Technology and Engineering.2003(42):139-152.
    [191]Kashiwagi T., Grulke E., Hilding J., Harris R., Awad W. and Douglas J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotubes composites [J]. Macromolecular Rapid Communications.2002(23):761-765.
    [192]Chatterjee A. and Deopura B.L. Thermal stability of polypropylene/carbon nanofiber composite [J]. Journal of Applied Polymer Science.2006(100):3574-3578.
    [193]Cipiriano B.H., Kashiwagi T., Raghavan S.R., Yang Y, Grulke E.A., Yamomoto K. Shields J.R. and Douglas J.F. Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites [J]. Polymer.2007(47):6086-6096.
    [194]Babrauskas V. Related quantities (a) Heat of combustion and potential heat. In'Heat Release in Fires'. Elsevier.1992:207-223.
    [195]Walters R.N., Hackett S.M. and Lyon R.E. Heat of combustion of high temperature polymers [J]. Fire and Materials.2000(24):245-252.
    [196]Schartel B., Pawlowski K.H. and Lyon R.E. Pyrolysis combustion flow calorimeter:a tool to asses flame retarded PC/ABS material? [J]. Thermochimica Acta. 2007(462):1-14.
    [197]Lyon R.E. and Walter R.N. Pyrolysis combustion flow calormetry [J]. Journal of Analytical and Applied Pyrolysis.2004(71):27-46.
    [198]Lyon R.E. Plastics and rubber, in'Handbook of building materials for fire protection' New York.2004:1-51.
    [199]Schartel B. and Hull T.R. Development of fire retarded materials-interpretation of cone calorimeter data [J]. Fire and Materials.2007(31):327-354.
    [200]Bourigot S. and Duquesne S. Fire retardant polymers:recent developments and opportunities [J]. Journal of Materials Chemistry.2007(17):2283-2300.
    [201]Schartel B., Potschke P., Knoll U. and Goad A.M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites [J]. European Polymer Journal. 2005(41):1061-1070.
    [202]Schartel B., Braun U., Knoll U., Bartholmai M., Goering H., Neubert D. and Potschke P. Mechanical, thermal and fire behaviour of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites [J]. Polymer Engineering and Science.2008(48):149-158.
    [203]Weil E.D., Hirschler M.M., Patel N.G., Sain M.M. and Shakir S. Oxygen index: correlations to other fire test [J]. Fire an Materials.1992(16):159-167.
    [204]Schartel B. Uses of fibre tests in materials flammability developments. In'Fire retardancy of polymeric materials'. CRC Press.2010:387-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700