用于变体机翼的大变形柔性蒙皮构型及性能的初步探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变体机翼成为未来先进飞行器的发展方向之一。变体机翼为了实现光滑大变形以及承受较大的气动载荷,要求机翼蒙皮沿变形方向有较大柔度,在垂直变形方向有较强的抗弯刚度。波纹结构在沿波纹方向(纵向)有较大柔度,在垂直于波纹方向(横向)有较大的抗弯刚度,因此,可以作为变体机翼蒙皮的一种候选结构。本文的研究重点是波纹式纤维增强复合材料蒙皮,另外对蜂窝柔性蒙皮构型进行了初步探究。
     为研究波纹蒙皮特性,提出了波纹蒙皮基体的纵向拉伸及横向弯曲承载分析模型,得到了纵向伸长量及横向抗弯刚度的计算式。制作了纤维增强复合材料波纹蒙皮基体试件,通过实验测试证明了理论计算模型的正确性。在此基础上,对波纹结构参数进行了优化,优化件测试结果表明:优化后的波纹蒙皮基体纵向拉伸性能得到了显著地提高,且保持了较强的横向承载能力。
     为使蒙皮具有主动变形能力,设计制作了将形状记忆合金(SMA)作为驱动器埋入蒙皮内部的装置,并用该装置制作了试件。驱动实验显示:弹性变形范围内,可利用蒙皮自身弹性使蒙皮回复为原来形状;用热电片对SMA制冷后,蒙皮回复速度有了明显提高。此外,本文开发了红外测温系统,用于实时监测SMA及蒙皮表面温度,保证蒙皮稳定、正常工作,为蒙皮的变形控制提供了研究基础。
     最后,对蜂窝式柔性蒙皮进行了初步探究,推导了基于Y模型的蜂窝胞元在单向应力下x、y方向的等效弹性模量,并对蜂窝测试件进行了拉伸测试。
One of development directions of future aircrafts is morphing wing.Flexible in deformation direction and stiff in the direction perpendicular to the deformation direction are essential to get smooth large deformation and withstanding large aerodynamic loads. Corrugated-form is very flexible in the corrugation (longitudinal) direction and show enough resistance against bending loads in the direction (transverse) perpendicular to the corrugation. So, corrugated-form is expected to be a candidate to develop skin of morphing wings. In this investigation, research focus was put on the corrugated-form composites. On the other hand, honeycomb core flexible skin was preliminary inquiry.
     Calculation models of corrugated basal body were proposed to analysis the longitudinal tensile deformation characteristics and bending lateral bearing characteristics. The formulas of longitudinal extension length and transversal flexural rigidity were calculated. Corrugated skin specimens reinforced by composite were made and experimental tests were done to prove the correctness of calculation models. On this basis, optimization work of corrugated skin specimens was carried out. The experimental results of optimal specimens indicated that longitudinal tensile deformation characteristics of optimal specimens were significantly increased and enough resistance against bending loads in transverse direction was inherited.
     A debice was designed and made to embed shape memory alloy (SMA) actuator in corrugated skin specimens to make skin posses active deformation ability. Specimens were made and driving experiment showed that skin can self-actuated revert because of the elasticity in elastic range. The velocity of shape recovery of skin was accelerated afer using thermoelectric chips. What is more, infrared temperature measurement system was developed to monitor the temperature variation of SMA and skin real-timely to ensure the stable and normal performance of the skins. And the development of infrared temperature measurement system provided the research foundation for deformation control system.
     Finally, cellular flexible skin was studied simply. Equivalent elastic modulus of x and y directions were deduced based onY model cellular unit in uniaxial stress. And tensile testing of specimens of cellular structure was performed.
引文
[1] R Guiler, Dr. Wade Huebsch. Wind tunnel analysis of a morphing swept wing tailless aircraft. AIAA, 2005-4981
    [2]罗翌.灵巧蒙皮与灵巧结构.飞航导弹,1999, 2, 25~29
    [3] Kudva J et al. Overview of the DARPA/AFRL/NASA Smart Wing program. SPIE, vol.3674, pp.230~236, 2002
    [4] P Jardine, B Jonatan, J Flanagan. Improved design and performance of the SMA torque tube for the DARPA smart wing program. SPIE, Vol.3674, pp.260~270, 1999
    [5] P Jardine, J Flanagan. Smart wing shape memory alloy actuator design and performance. SPIE, Vol.3044, pp.48~55
    [6] S.Bharti, M Frecker, G Lesieutre et al. Active and passive material optimization in a tendon actuated morphing aircraft structure. SPIE, Vol.5390, pp.247~257, 2004
    [7] J Bartley-Choet al. Development of high-rate adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model. Intelligent Material System and Structures, 2004, 15(4):279~291
    [8] A.J. Lockyer et al. Power systems and requirements for integration of smart structures into aircraft. SPIE, Vol.4700, 234~245, 2002
    [9] D.Lee. T. Weisshaar. Aeroelastic studies on a folding wing configuration. AIAA 2005-1996
    [10] J Bae, T Seigler and D Inman. Aerodynamic and aeroelastic considerations of a variable-span morphing wing. AIAA, 2004-1726
    [11] J Henry, J Blondeau and D Pines. Stability analysis for UAVs with a variable aspect ratio wing. AIAA, 2005-2044
    [12] P Marmier, N Wereley. Morphing Wings of a small Scale UAV using inflatable actuators for sweep control. AIAA, 2003-1802
    [13] Y Heryawan, H. Park, N. Goo et al. Design and demonstration of a small expandable morphing wing. SPIE, Vol. 5764, 224~231, 2005
    [14] K Lu, S Kota. Synthesis of shape morphing compliant mechanisms using a load path representation method. SPIE, Vol. 5049, 337~348, 2003
    [15] K Moored III, H Bart-Smith. The analysis of tense gritty structures for the design of a morphing wing. Proc. of SPIE Vol. 5764, 253~261
    [16]付鸿雁,朱自强,刘航等.简化自适应机翼的气动外形优化设计.空气动力学学报,2003,21(4):439~445
    [17]刘航,朱自强等.自适应翼型的气动外形优化设计.航空学报,2002,23(4):289~293
    [18]郑华,裴承鸣等.自适应机翼的控制系统设计及其试验研究.西北工业大学学报,2006,24(6):749~753
    [19]李毅,王生楠.变体飞行器结构振动特性研究.航空计算技术,2006,36(6):66~69
    [20]张为华,曾庆华.微型飞行器飞行控制问题研究进展.国防科技大学学报,2004,26(5):30~33
    [21]崔尔杰,白鹏,杨基明.智能变形飞行器的发展道路.航空制造技术,2007,8:38~41
    [22] Kingnide R, Olympio and Farhan Gandhi. Zero-νcellular honey comb flexible skins for one-dimensional wing morphing. AIAA, 2007-1735
    [23]杨士斌,徐敏.智能蒙皮飞行器的飞行控制研究.飞行力学,2007,25(1):39~42
    [24] Matt Detrick, Greg Washington. Morphing inflatable wing development for compact package unmanned aerial vehicles. AIAA, 2004-1807
    [25] David A, Perkins, John Let al. Morphing wing structures for loitering air vehicles. AIAA, 2004-1888
    [26] Tomohiro Yokozeki, Shin-ichi Takeda, Toshio Ogasawara et al. Mechanical properties of corrugated composites for candidate materials of flexible wing structures. Composites, 2008, Article in press
    [27] Torre L, Kenny MK. Impact testing and simulation of composite sandwich structures for civil transportation. Composite Structures, 2000, 50:257~67
    [28] Natacha Buannic, Patrice Cartraud, Tanguy Quesnel. Homogenization of corrugated core sandwich panels. Composite Structures, 2003, 59:299~312
    [29] Z Aboura, N Talbi, S Allaoui and M L Benzeggagh. Elastic behavior of corrugated cardboard: experiments and modeling. Composite Structures, 2004, 63:53~62
    [30]王善元,张汝光.纤维增强复合材料.北京:东华大学出版社,1998:1-169
    [31]陈绍杰.复合材料与大飞机.新材料产业,2008,1:31~35
    [32]杜善义.先进复合材料与航空航天.复合材料学报. 2007,24(1):1~12
    [33]贺福,孙微.碳纤维复合材料在大飞机上的应用.高科技纤维与应用,2007,32(6):5~8
    [34]顾正铭.平流层飞艇蒙皮材料的研究.航天返回与遥感,2007,28(1):62~66
    [35]刘鸿文.材料力学Ⅱ.北京:高等教育出版社,2004:176-192
    [36]沈关林,胡更开.复合材料力学.北京:清华大学出版社,2007:1-332
    [37]王永贵,陈永清,侯军生.先进复合材料构件波纹梁的成型工艺.航空制造技术,2005:64~67
    [38]陈立军,武凤琴,张欣宇等.环氧树脂/碳纤维复合材料的成型工艺与应用.工程塑料应用,2007,35(10):77~80
    [39]王共冬,刘文剑.复合材料成型工艺方法的模糊综合评判.材料科学与工艺,2008,16(1):66~69
    [40] GB/T 1447-2005.纤维增强塑料拉伸性能试验方法.北京:中国标准出版社,2005
    [41] HB 7624-1998.碳纤维复合材料层合板弯曲疲劳试验方法.北京:中国标准出版社,.1999
    [42]褚洪生,杜增吉,阎金华等. MATLAB 7.2优化设计实例指导教程.,北京:机械工业出社,2007:1~329
    [43]飞思科技产品研发中心. MATLAB6.5辅助优化计算与设计.北京:电子工业出版社,2003:1~320
    [44]沈浩,靳岚,谢黎明.基于MATLAB的机床主轴结构参数优化设计.科学技术与工程,2008,8(16):4722~4744
    [45]谢慧萍,张瑛.基于MATLAB的气动凿岩机部分结构参数的优化设计.煤矿机械,28(9):17-19
    [46]王家海,宣力伟.形状记忆合金在驱动器上的应用研究.机电产品开发与创新,2006,19(4):65~67
    [47]金延,启明.形状记忆合金的开发和应用金属.功能材料,2006,4:42~45
    [48] Jafar Khalil-Allafi, Gunther Eggeler, Wolfgang WSchmahl. Quantitative phase analysis in microstructures which display multiple step martensitic transformations in Ni-rich NiTi shape memory alloys. Materials science & engineering, 2006, A 438–440:593~596
    [49]陶宝祺,熊克,袁慎芳等.智能材料结构.北京:国防工业出版社,1997:23-57
    [50]徐祖耀等.形状记忆材料.上海:上海交通大学出版社,2000:1-437
    [51]舟久保,熙康.形状记忆合金(千东范译).北京:机械工业出版社,1992: 1-212
    [52]胡自力.含损伤智能结构的性能表征与细观分析. [博士学位论文].南京:南京航空航天大学,2003
    [53]晏敏,彭楚式,颜永红,曾云,曾健平.红外测温原理及误差分析.湖南大学学报,2001:31(5):110-112
    [54]张岷,张忠恒,曹柏林,谭成章.一种新的红外测温仪的测温方法.计量学报,2007:28(3A):209-212
    [55]王洪涛,郑中兴.红外测温技术的进展及应用.无损探伤,2007:31(4):1~5
    [56]陈秀娣.超薄铝蜂窝夹层结构板的弯曲刚度试验.航天工艺,1995:(4)26~29
    [57]谢莉.新型玻璃钢蜂窝夹层结构模板研究. [硕士学位论文].南京:南京工业大学,2004
    [58]赵金森.铝蜂窝夹层板的力学性能等效模型研究. [硕士学位论文].南京:南京航空航天大学,2006
    [59]麻文焱,倪晗,姚文戈.铝蜂窝地板力学性能试验研究.试验技术与试验机,2002,42(3、4):29~30
    [60]周祝林.碳纤维复合材料蜂窝夹层结构侧压强度理论计算.纤维复合材料,2000:(3):24~25
    [61]向红,傅衣铭,洪力.不规则蜂窝材料在单向载荷作用下的蠕变屈曲分析.固体力学学报,2008:29(2):181~186
    [62]孙德强,张卫红,孙玉瑾.蜂窝铝芯的弹性模量和材料效率分析.力学与实践,2008:30(1):35~40
    [63]梁森,陈花玲,陈天宇,梁天锡.蜂窝夹心结构面内等效弹性参数的分析研究. 2004:24(3):26~31
    [64]王飞,李剑荣,虞吉林.铝蜂窝结构单向压缩、失稳和破坏机制研究.力学学报,2001:33(6):741~748
    [65] Papka S Da,Kyriadkides Sa.Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Materialia 1998,46(5):2765-2776

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700