YCV-01永磁弹簧式溢流阀的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外众多学者针对机械弹簧在液压元件使用过程中的疲劳断裂、氢脆断裂、腐蚀断裂、松弛、塑性变形、永久变形等失效模式,从热处理方法、材质选择等不同的角度进行了大量的研究,因机械弹簧的不同部位所承受的载荷不一样,应力集中无法完全消除,工作时受到周期性的循环应力,缓慢地扩展,当应力大于弹簧的应力极限时,机械弹簧将会断裂、变形失效,造成液压系统失控,特别对航天伺服液压系统,溢流阀主要作用是调节并稳定系统所需的压力,当系统压力达到溢流阀的调定压力值时阀口就将开启,并在设定的压力下溢流稳压。若因弹簧失效造成失压,液压伺服系统则不能正常工作,姿态控制失灵,无法将载人飞船、卫星等航天器送入预定轨道。
     很多科研人员对溢流阀的静态设计与动态分析等已经做过很多研究工作,并取得了一些重要成果,而对其永磁弹簧在溢流阀上的应用、静动态性能的优化研究相对较少,相应的理论分析也不多。如何对永磁弹簧进行功能性选择、应用,实施对直动式溢流阀的优化,使结构简单的溢流阀的性能最优,成为现今溢流阀设计研究中的重要课题之一。
     本课题在调研了国内、外永磁机械应用及研究的现状和发展的基础上,充分利用磁学中“同名磁极相互排斥,异名磁极相互吸引”的原理,提出了非接触式永磁压缩弹簧(本文后续简称“永磁弹簧”)的设计理念,降低了机械弹簧断裂,变形的风险;本课题选择钕铁硼稀土材料作为永磁弹簧的材料,开展永磁弹簧及永磁式溢流阀的特性研究与试验,本文的主要工作及成果如下:
     1、本课题重点介绍了永磁弹簧间永磁力估算的基本理论及数值计算。通过典型案例计算,阐述了数值计算的准确性,总结了永磁弹簧永磁力与位移呈线性、非线性、基本恒定或小斜率关系的充磁规律。
     2、本课题提出了永磁弹簧最大推重比的概念,便于工程人员理解、测试,既是最大磁能积的外特性参数,也是磁力机械设计的关键参数。
     3、本课题通过四种不同充磁角度的实例研究发现,最大永磁力是最小永磁力的3.3倍,得出了不同充磁方向、不同永磁力之间的变化规律,阐述了聚磁的基本原理。
     4、通过对永磁弹簧式溢流阀与机械弹簧式溢流阀研究对比发现,相同规格下,永磁弹簧式溢流阀的压力波动比较机械弹簧式溢流阀压力波动比小38.5%;永磁弹簧所占的体积较机械弹簧式溢流阀小37.5%,因此,我们应该充分利用永磁弹簧的优势在液压阀设计方面进行深入研究。
At present, many scholars at home and abroad had a lot of research on helical compression spring fatigue fracture through heat treatment, material selection and the other way, Failure modes include fatigue, corrosion, hydrogen embrittlement fracture, relaxation, plastic deformation, permanent deformation and so on. Because the loads of different the compression spring parts is different, so the stress concentration can't be eliminated completely, working by the cyclic stress, and slowly expanding, when the stress is greater than the spring stress limit, helical compression spring will fracture, deformation and failure, the hydraulic system is unable to be controlled, especially for aerospace hydraulic servo system, Once the pressure can not be controlled, hydraulic servo system will not work properly, attitude control will fail, We will not be able to put manned spacecraft, satellites into orbit.
     Many researchers has done a lot of research on the overflow valve static design and dynamic analysis work, and made some important achievements, but the application of permanent magnet spring in the relief valve is relatively small, corresponding theoretical analysis is not much. How to carry out the function selection, application of the permanent magnetic spring, the relief valve has simple structure to obtain the optimal, which is one of the important research topic in the overflow valve design.
     In this paper,the author fully investigate the current situation of domestic and foreign permanent magnetic mechanical application and research, make full use of magnetism " Like magnetic poles repel each other, unlike magnetic poles attract each other",and puts forward the non-contact permanent magnetic compression spring (the following referred to as "permanent magnet spring") design concept, which reduces mechanical spring fracture, deformation of the risk; the neodymium iron boron permanent magnetic material is used as spring material, We carried out research and experimental characteristics of permanent magnet spring and permanent magnet type overflow valve, the main work and achievements are as follows:
     1、The paper introduces the basic theory and numerical calculation of permanent magnet spring permanent magnetic force estimation. Through the calculation of the typical case, discusses the accuracy of numerical calculation, summarize the magnetizing law, when the permanent magnet spring permanent magnetic force and displacement is linear, nonlinear, a substantially constant or small slope relationship.
     2、The paper puts forward the concept of permanent magnet spring maximum thrust weight ratio, convenient for engineers to under stand, which is not only the external characteristic parameters of maximum energy product, but also the key parameters of magnetic machine design.
     3、Through the study of four different magnetization angle, we found the largest permanent magnetic force is3.3times of the minimum permanent magnetic force, derive magnetization direction and the permanent magnetic variation, and expound the basic principle of magnetic.
     4、Based on the permanent magnetic spring type overflow valve and mechanical spring relief valve of comparison, the same specifications, permanent magnetic spring valve fluctuation is38.5%smaller than mechanical spring valve; permanent magnet spring volume is37.5%smaller than mechanical spring valve, therefore, we should make full use of permanent magnetic spring advantage of in-depth study on hydraulic valve design.
引文
[1]赵韩,王勇,田杰.磁力机械研究综述.机械工程学报,2003,39(2):31-36.
    [2]李文彬,等.磁力应用工程:用途广泛富有强大生命力的领域.北京:兵器工业出版社,1991,12-24.
    [3]高希彦,王燕,方武.数值仿真在泵阀参数优化中的应用.排灌机械工程学报,2010,28(1):63-67.
    [4]邱文鹏,常序华,王仁智.圆柱螺旋弹簧氢脆断裂失效分析.金属制品,2007,33(1):24-27.
    [5]杨红,赵韩.稀土永磁弹簧的力学特性研究.农业机械学报,2003,34(1):111-113+117.
    [6]齐乃明,张文辉,高九州,霍明.空间微重力环境地面模拟试验方法综述.航天控制.2011,29(3):95-100.
    [7]程建峰,苏晓峰.磁悬浮列车的发展及应用[J].铁道车辆,2003,41(11):14-18.
    [8]Guolei Si, Fengyu Yang, Wenjie Wang, etal. Study on Relief Valve with Permanent Magnetic Spring. Advanced Materials Research [J].2011,328-330: 224-227.
    [9]王洪礼.张新生等.磁悬浮轴承的控制和动态过程研究,机械工程学报,1994
    [10]赵韩,李露,王勇.电磁轴承中磁场时间和空间变化对涡流的影响.农业机械学报,2007,38(6):130-133.
    [11]王兴元.磁力弹簧式共振型压电气泵研究:[吉林大学硕士学位论文].吉林:机械科学与工程学院,2012,3-5.
    [12]赵韩,杨志铁,王忠臣.磁力轴承电磁力计算的两种建模方法与比较.农业机械学报,2002,33(6):22-25.
    [13]赵韩,王勇.径向电磁轴承结构设计与分析.农业机械学报,2005,36(7):122-125.
    [14]赵韩,李露,王勇,等.电磁推力轴承结构分析.机床与液压,2006(5):68-70
    [15]文湘隆,胡业发,陈龙.一种轴向磁力轴承定子结构参数的确定方法.轴承,2005(7)
    [16]胡业发,周祖德,江征风.磁力轴承的基础理论及应用.北京:机械工业出版社,2006.
    [17]朱坤,胡业发,陶飞.磁力轴承参数化结构设计研究.机械制造,2007(5):22-24.
    [18]方家荣,林良真.超导混合磁力轴承的发展现状和前景.电工电能新技术, 2000,19(1):27-31.
    [19]高志华,胡业发.磁力轴承刚度阻尼特性研究.中国制造业信息化,2005,34(2):130-132.
    [20]曹云东,夏天伟,张守礼,来常学,永磁材料在起重电器中应用的计算与分析,电气开关,1995(2):10-12
    [21]陈丕璋.严烈通,姚着萍,电机电磁场理论与计算,科学出版社,1986.
    [22]田杰.稀土永磁齿轮的设计理论及实验研究.合肥:合肥工业大学机械与汽车工程学院,1999.
    [23]田杰,赵韩.小型及微型稀土永磁齿轮传动设计初探.机械传动,1998,22(2):4-5.
    [24]田杰,赵韩,张萍.小型及微型稀土永磁齿轮传动的研究:海内外青年制造科学会议,武汉:华中理工大学出版社,1998.
    [25]李云超,王良曦,张玉春.磁力弹簧在汽车悬架系统的应用研究.车辆与动力技术,2004,2:5-9.
    [26]linmot.Corporation.Overview_MagSpring_e_recent,2011.http://www.linmot.com /fileadmin/doc/MagSpring/Overview_MagSpring_e_recent.pdf
    [27]Qilei Wang, Fengyu Yang, Qian Yang, Hongyan Guan, Junhui Chen. Study on mechanism of permanent-magnet spring and the application of it in hydraulic valves. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science.2010,224:1299-1303.
    [28]钱坤喜,吕利昌,茹伟民,等.一种新颖的磁力弹簧及其弹性.机械工程学报,1998,34(3),57-59.
    [29]林其壬,赵佑民.磁路设计原理.北京:机械工业出版社,1987.
    [30]冯慈璋.电磁场.北京:高等教育出版社,1983.
    [31]李泉凤.电磁场数值计算与电磁铁设计.北京:清华大学出版社,2000.
    [32]周克定.工程电磁场专论.武汉:华中工学院出版社,1986.
    [33]Ratnajeevan S, Hoole H.Flux density and energy perturbations adaptive finite element mesh generation. IEEE Transactions on Magnetics,1988.24(1):322-325.
    [34]Delamare J, Rullire E, Yonnet J P. Classification and synthesis of permanent magnet bearing configurations. IEEE Transon MAG,1995,31(6):4190-4192
    [35]吕利昌,马履中,钱坤喜等.一种新型磁悬浮装置的研究.机械设计与研究,1998,(1):53-54
    [36]赵韩,田杰.磁力机械学.北京:高等教育出版社,2009.
    [37]陈志刚.永磁磁性传动器驱动扭矩的分析计算.江苏理工大学学报,1995(16):79-85.
    [38]章名涛,肖如鸿.电机的电磁场.北京:机械工业出版社,1988.
    [39]赵韩,杨志铁.永磁齿轮传动力矩三维分析与计算.农业机械学报.2001,32(6):95-98.
    [40]王红,王海,王士和.磁路计算的新方法.电气开关.1995(2):22-23.
    [41]易敬曾.磁场计算与磁路设计.成都:成都电讯工程学院出版社.1987.
    [42]戈宝军,等.积分方程法在埋弧炉三维磁场计算中的应用.哈尔滨电工学报,1993,16(1):26-33.
    [43]刘圣民.电磁场的数值方法.武汉:华中理工大学出版社.1991.
    [44]盛剑霓.工程电磁场数值分析.西安:西安交通大学出版社,1991.
    [45]任仲友,Oliver de Hass,王晓融.永磁导轨上组合与单块YBCO的悬浮力关系研究.低温物理学报.2003,25(增刊):182-186
    [46]任仲友,王家素.基于有限元的永磁导轨磁场数值计算.电工电能新技术.2003,22(4):36-39
    [47]D. Camacho, J. Mora, J. Fontcuberta, etal. Calculation of Levitation Forces in Permanent Magnet Superconductor System Using Finite Element Analysis. Journal of Applied Physics.1997,82(2):1461-1468
    [48]M. Uesaka. Experimental and Numerical Analysis of Three-dimensional High-Tc Superconducting Levitation. J. Appl. Electromagn. Mater,1993,3:13-25
    [49]宋宏海,王晓融,任仲友.高温超导体在对称和不对称外磁场中的悬浮力计算.低温与超导.2004,32(2):47-50
    [50]郑晓静,苟小凡,周又和.超导电磁悬浮力的数值模拟.固体力学学报.2003,24(1):16-23
    [51]谭凤顺,金能强,夏东.应用曲面镜成像原理仿真高温超导体磁悬浮力.低温与超导.2001,29(2):48-52
    [52]张克通,王化明.圆柱永磁体磁场及磁力分析.电气技术及自动化.2010,40(3):161-164.
    [53]赵凤桐,王淑文.永磁体间作用力的计算.吉林工学院学报.1991,12(1):9-13.
    [54]冯浩、曹文明、丁立军.一种永磁式磁悬浮减振弹簧.中国专利.101324256,2008-12-17
    [55]Guolei Si, Fengyu Yang, Wenjie Wang, etal. Study on Relief Valve with Permanent Magnetic Spring. Advanced Materials Research.2011,328-330: 224-227.
    [56]邱文鹏,常序华,王仁智.圆柱螺旋弹簧氢脆断裂失效分析.金属制品,2007,33(1):24-27.
    [57]杨辉,吴启梁.气门弹簧断裂的影响因素及原因分析.内燃机,2010,4(2):37-40
    [58]YANG Hui, WU Qi-liang. The Influence Factor of Valve Spring Rupture and Reasons Analysis. Internal Combustion Engines.2010,4(2):37-40.
    [59]高希彦,王燕,方武.数值仿真在泵阀参数优化中的应用.排灌机械工程学报,2010,28(1):63-67.
    [60]陈星,姜涛,陶春虎,赵学伟,张道平.液压泵柱塞弹簧断裂失效分析.机械工程材料.2009,33(11):86-89.
    [61]李洋,师红旗,丁毅.安全阀弹簧断裂失效分析.材料热处理技术.2010,39(12):190-192.
    [62]董汉武,高岩,郑志军.主汽门操纵座弹簧的断裂失效分析.机械工程材料,2007,31(1):60-62.
    [63]曾鹤龄,相华.发动机气门弹簧断裂问题分析.装备制造技术.2010,(11):137-138
    [64]黄朝辉.航空燃油泵柱塞弹簧断裂分析.材料工程.1989,2:32-35.
    [65]戈宝军,李哲生.永磁传动器磁场和力矩特性的分析与计算,哈尔滨电工学报.1992,15(4):294-297.
    [66]王洪群,虞培清,章志耿.磁传动应用技术发展.重型机械,2006(6):1-4.
    [67]顾宏.郭大玲.稀土永磁电机磁场的计算特点,稀土永磁电机论文集,沈阳,1998.
    [68]王其磊,杨逢瑜,杨倩等.电磁轴承在立式高速泵中的应用.排灌机械工程学报,2010,28(1):88-92.
    [69]Will S. Robertson, M.R.F. Kidner, Ben S. Cazzolato, et al. Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. Journal of Sound and Vibration,2009,326 (1-2):88-103.
    [70]GILLES AKOOUN AND JEAN—PAUL YONNET.3D ANAL YTICAL CALCULATION OF THE FORCES EXERTED BETW EEN TW O CUBOIDAI M AGNETS IEEE TRANS—ACTIONS ON MAGNEJKS. SEPTEMBER 1984, MAG—20:5.
    [71]夏平畴著.永磁机构.北京:北京工业大学出版社.2000.
    [72]钟文定编著.技术磁学(下册).北京:科学出版社.2009.
    [73]苏德达.金属制品的应力松弛及稳定化处理.金属制品,2002,26(5):1-6.
    [74]苏德达.弹簧应力松弛及预防.天津:天津大学出版社,2002.
    [75]白明远,刘新灵,张卫方.65Mn弹簧的贮存寿命预测.失效分析与预防,2007,2(4):10-13.
    [76]郝凤祥.螺旋弹簧疲劳破坏的研究及其寿命估算方法的分析.试验技术与试验机,2003,43(4):21-22.
    [77]邱文鹏,常序华,王仁智.圆柱螺旋弹簧氢脆断裂失效分析.金属制品,2007,33(1):24-27.
    [78]郝凤祥.螺旋弹簧疲劳破坏的研究及其寿命估算方法的分析.试验技术与试验机,2003,43(4):21-22.
    [79]白明远,刘新灵,张卫方.65Mn弹簧的贮存寿命预测.失效分析与预防,2007,2(4):10-13.
    [80]杨辉,吴启梁.气门弹簧断裂的影响因素及原因分析.内燃机,2010,4(2):37-40.
    [81]梁桂明,朱象矩.黄希忠,齿轮技术的发展趋势,中国机械工程,1995,6(3):25-27.
    [82]虞培清,王洪群,章志耿.磁传动研究与分析//中国科协2005年学术年会论文集(中).北京:中国科学技术出版社,2005:62-65.
    [83]J. J. Croat. Current Status of Rapidly Solidified Nd.Fe.B Permanent Magnets, IEEE Trans. on Magnetics,1989,25(5):3550-3554.
    [84]J. Fidier, Y. Tawara. TEM-study of the precipitation of iron in Nd.Fe.B sintered magnets, IEEE Trans. on Magnetics,1988,24(2):1951-1953.
    [85]M. Haavisto, H. Kankaanp. Estimation of Time-Dependent Polarization Losses in Sintered Nd.Fe.B Permanent Magnets, IEEE Trans. On Magnetics,2011,47(1): 170-174.
    [86]M. Haavisto, S. Tuominen, H. Kankaanp. Time Dependence of Demagnetization and Flux Losses Occurring in Sintered Nd.Fe.B Permanent Magnets, IEEE Trans. on Magnetics,2010,46 (9):3582-3584.
    [87]S. Ruoho, A. Arkkio.Partial Demagnetization of Permanent Magnets in Electrical Machines Caused by an Inclined Field, IEEE Trans, on Magnetics,2008,44 (7): 1773-1778.
    [88]G.A. Jubb, R.A. McCurrie. Hysteresis and Magnetic Viscosity in a Nd.Fe.B Permanent Magnet, IEEE Trans, on Magnetics,1987,23(2):1801-1805.
    [89]L. Han.ka. Teorie elektromagneticke (?) ho pole. Praha, C.VUT,1987.
    [90]H. Endo, T. Takagi, Y. Saito.Magnetic currents representing magnetomotive force for magnetic field computation, IEEE Trans.on Magnetics,2005,41 (5): 1532-1535.
    [91]M. Novak, L. Slav.k, M. Ko.sek, M. Truhla.r. Measuring Low Magnetic Field in Electromagnetic Flow Meter, In proc. Measurement 2011,8th Int. Conf. On Measurement, Smolenice, Slovakia:245-248.
    [92]T. Mikolanda, M. Ko.sek, A. Richter. Modelling and measurement of permanent magnets, Acta Technica,2010,55 (1):63-81.
    [93]颜威利,徐桂芝,吴清等.生物医学电磁场数值分析.北京.机械工业出版社.2006.
    [94]倪光正.工程电磁场原理教师手册.北京:机械工业出版社.2004.
    [95]倪光正,杨仕友,邱捷等编著.电磁场数值计算.北京:机械工业出版社.2010.
    [96]倪光正,钱秀英,等.电磁场数值计算.北京:高等教育出版社,1996.
    [97]樊明武,颜威利.电磁场积分方程法.北京:机械工业出版社,1988.
    [98]何存兴,液压元件,北京:机械工业出版社,1998,10
    [99]李玉淋,液压元件与系统设计.北京:北京航空航天大学出版社,1999
    [100]袁子荣,液压传动与控制.重庆:重庆大学出版社,2003,4
    [101]黎启柏等.液压元件手册.北京:冶金工业出版社,2000.
    [102]章宏甲等.液压与气压结构.北京:机械工业出版社,2000.
    [103]林国重等.液压传动与控制.北京:北京理工大学出版社,1985.
    [104]王占林.近代液压控制.北京:机械工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700