漆酶介体体系对毒死蜱及其水解产物TCP的降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毒死蜱是目前全世界生产量和销售量最大的杀虫剂品种之一,也是世界卫生组织唯一许可的有机磷品种,被广泛用于农业和城市卫生害虫的防治。有机磷农药长期大规模地生产和使用,不仅对环境造成严重污染,而且在食物及饲料中的残留会通过食物链对人类及养殖动物产生毒害作用。因此,人们需要寻找环境友好、安全实用的净化措施消除有机磷农药的污染,妥善地解决有机磷农药生产使用和环境保护的问题。
     白腐菌降解酶系中的漆酶,具有广泛的底物作用范围,它可催化氧化多种酚类和芳香胺类化合物,也可降解其它难降解物质。目前,漆酶介体体系已成功应用于不同领域,包括纸浆漂白、木素生物降解、多环芳烃降解、染料废水脱色、环境污染物脱毒、土壤修复等。
     本研究利用杂色云芝漆酶(Coriolus versicolor)介体体系对有机磷杀虫剂毒死蜱进行降解,研究了漆酶酶学性质、毒死蜱检测方法、漆酶介体体系对毒死蜱及其水解产物3,5,6-三氯-2-吡啶酚(TCP)的降解,并对毒死蜱降解产物进行了初步检测分析,主要研究结果如下:
     (1)研究了漆酶的酶学性质,漆酶的最适温度为60℃,最适pH值在5.0左右,当温度在25~35℃、pH在4.5~6.0范围内时,漆酶的稳定性较好。
     (2)建立了毒死蜱测定的紫外分光光度法、气相色谱法(GC-ECD)和高效液相色谱法(HPLC),其中高效液相色谱法最佳,具体分析条件:流动相为甲醇:水(V:V)=90:10,流速为1mL/min,检测器为VWD,检测波长为293nm,柱温为25℃,进样体积为20μL。萃取溶剂为石油醚,毒死蜱的加标回收率为93.84%~98.25%,变异系数为0.30%~1.51%。
     (3)研究了漆酶及漆酶介体体系对毒死蜱的降解,研究结果表明,当不加介体时,漆酶对毒死蜱的降解作用较小;香草醛对漆酶降解毒死蜱的促进作用最大,且香草醛为天然介体,具有环境和生态优势;愈创木酚对漆酶降解毒死蜱也有一定的促进作用;2,6-二甲氧基酚(2,6-DMP)及最常用的三种人工合成介体2,2′-联氮-二(3-乙基-苯并噻唑-6-磺酸)(ABTS)、1-羟基苯并三唑(HBT)和紫脲酸对漆酶降解毒死蜱均没有促进作用。MnSO4和Tween80对漆酶/ABTS降解毒死蜱有一定的促进作用,但毒死蜱的降解率仍旧不高。
     (4)选择香草醛作为漆酶降解毒死蜱的介体,首先,采用单因素法,研究了反应时间、漆酶初始酶活、反应温度、pH、介体投加量、毒死蜱初始浓度等因素对漆酶/香草醛降解毒死蜱的影响,研究结果表明,当毒死蜱初始浓度为25mg/L,反应体系中漆酶的初始酶活为0.05U/mL,分两次投加香草醛,香草醛与毒死蜱的摩尔比分别为40和80,在30℃、pH5.0的条件下,24h内毒死蜱的降解率可达98%。向反应体系中通O2,可提高漆酶/香草醛对毒死蜱的降解率;缓冲溶液浓度和摇床转速对漆酶/香草醛降解毒死蜱的影响很小。其次,对漆酶/香草醛降解毒死蜱的动力学进行了研究,当毒死蜱初始浓度为25mg/L时,在漆酶/香草醛的作用下,毒死蜱的降解半衰期为6.6h;当不加漆酶不加香草醛时,毒死蜱的半衰期为34.6h。最后,对毒死蜱的降解产物进行了初步检测分析,通过HPLC分析,HPLC谱图上有新峰出现;通过GC-MS分析,没有检测到毒死蜱的降解产物。
     (5)研究漆酶及漆酶介体体系对毒死蜱水解产物TCP的降解。首先,建立了TCP测定的HPLC法,具体分析条件为:流动相为甲醇:水:冰醋酸=80:18:2(V:V:V),流速为1mL/min,检测器为VWD,检测波长为293nm,柱温为25℃,进样体积为20μL。当萃取溶剂为二氯甲烷时,TCP的加标回收率在98.25%~120.68%。然后,利用漆酶及漆酶介体体系对TCP进行降解,漆酶本身对TCP有一定的降解能力,ABTS、HBT、紫脲酸、香草醛等介体对漆酶降解TCP均没有明显的促进作用。
Chlorpyrifos is widely used for pest control in agriculture and to a lesser degree for indooruse or soil applications to control termites. The chlorpyrifos remained in the environment couldcause contamination in water, soil and air leading toxicity to human being and biota through foodchain. Chlorpyrifos was concerned because it is moderately toxic and used excessively posing ahigh contamination risk to soil and groundwater. Therefore, an ecofriendly and effectivetechnology was needed for treatment of these hazardous pesticides.
     Laccase is one of the enzymes produced by white-rot fungi. Laccase has been studied due toits ability to oxidize phenolic compounds. It was characterized by its remarkably wide substratespecificity and a variable range of oxidizable substrates. Laccase could catalyze the oxidation ofa wide variety of substrates, including monophenols, diphenols, polyphenols, aminophenols,methoxyphenols, aromatic amines and so on. The laccase mediator system had been successfullyapplied in different fields of biotechnology, such as paper pulp bleaching and delignification, thedegradation of polycyclic aromatic hydrocarbons, the decolorrization of textile dyes, thedetoxification of environmental pollutants and soil remediation.
     In this study, laccase (Coriolus versicolor) mediator system was used for the drgradation ofchlorpyrifos and its hydrolysis product3,5,6-trichioro-2-pyridinol (TCP). The enzymaticproperties of laccase, analysis methods of chlorpyrifos, the degradation of chlorpyrifos and TCPby laccase or laccase mediator systems, the degradation products of chlorpyrifos were studied.The main conclutions are as follows:
     (1) The enzymatic properties of laccase were studied. The optimum temperature and pH oflaccase were60℃and5.0respectively. Laccase showed stable when temperature arranged from25℃to35℃or pH at4.5to6.0.
     (2) The methods of UV spectrophotometry, gas chromatography (GC-ECD) and highperformance liquid chromatography (HPLC) for determination of chlorpyrifos were established.HPLC performed best. The analysis conditions for HPLC were described below: mobile phase ofmethanol:water(V:V)=90:10, flow rate of1mL/min, detector of VWD, detection wavelength of293nm, column temperature of25℃, sample volume of20μL. The recovery rate of chlorpyrifoswas between93.84%and98.25%, and RSD was0.30%to1.51%, when petroleum ether was theextraction solvent.
     (3) The degradation of chlorpyrifos by laccase and laccase mediator system were researched.The results showed that laccase had little effect on the degradation of chlorpyrifos without mediator. Vanillin and guaigcol promoted the degradation of chlorpyrifos by laccase, while2,6-dimethoxyphenol (2,6-DMP),2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)(ABTS),violuric acid and1-hydroxybenzotriazole (HBT) had no obvious promotion. Vanillin performedmore effective than guaigcol. Vanillin is natural mediator which has environmental andecological advantage.The adding of manganese sulfate and Tween80promoted the degradationof chlorpyrifos by laccase/ABTS, but the degradation rate of chlorpyrifos was still insufficientideal.
     (4) Vanillin was chosen as the mediator for the degradation of chlorpyrifos by laccase.Firstly, factors affecting the degradation of chlorpyrifos such as reaction time, initial laccaseactivity, pH, temperature, mediator dosage and the initial chlorpyrifos concentration wereresearched. The results showed that when the initial chlorpyrifos concentration was25mg/L, itcould be degraded98%by laccase/vanillin system in24h with the initial laccase activity was0.05U/mL. The other conditions were as follows: the initial pH5.0, the temperature30℃, addedvanillin twice (molar rate of vanillin and chlorpyrifos was40and80respectively). Oxygen wasneeded for the degradation of chlorpyrifos by laccase/vanillin. The shaking speed and bufferconcentration had little impact on the degradation of chlorpyrifos by laccase/vanillin. Secondly,the dynamics of chlorpyrifos degradated by laccase/vanillin were studied. The half-life ofchlorpyrifos was6.6h with laccase/vanillin, while the half-life was34.6h without laccase andvanillin when the the initial concentration of chlorpyrifos was25mg/L. Finally, the products ofchlorpyrifos degradated by laccase/vanillin were studied. New peaks appeared in HPLC but nokind of degradation product of chlorpyrifos was detected by GC-MS.
     (5) The degradation of TCP by laccase and laccase mediator system were studied. First of all,HPLC analysis method for TCP was established. The analysis conditions were as follows: mobilephase of methanol:water:acetic acid(V:V:V)=80:18:2, flow rate of1mL/min, detector of VWD,detection wavelength of293nm, column temperature of25℃, sample volume of20μL. Therecovery rate of TCP was between98.25%and102.68%when methylene chlorde was theextraction solvent. Next, TCP was degradated by laccase and laccase-mediator system. Laccsehad a certain effect on the degradation of TCP without mediator. Mediators such as ABTS, HBT,violuric acid, vanillin and so on had no obvious promotion on the degradation of TCP by laccase.
引文
[1]张金花,刘亚光,任金平,等.环境中有机磷农药降解方法的研究进展[J].吉林农业科学,2009,34(4):37-40.
    [2] Horne I, Sutherland T D, Harcourt R L, et al. Identification of an opd (Organophosphate Degradation) Genein an Agrobacterium Isolate[J]. Applied and environmental microbiology,2002,68(7):3371-3376.
    [3] Torres E, Bustos-Jaimes I, Borgne S L. Potential use of oxidative enzymes for the detoxification of organicpollutants[J]. Applied Catalysis B: Environmental,2003,46(1):1-15.
    [4]王焕民,张子明.新农药手册.见:农业部农药检定所[M].北京:中国农业出版社,1989.
    [5]刘乾开.新编农药使用手册[M].上海:上海科学技术出版社.1993,84-86.
    [6]王家文.毒死蜱市场竞争优势及发展建议[J].精细化工原料及中间体,2010,2:17-21.
    [7]汪家铭.毒死蜱市场竞争优势及发展建议[J].化工科技市场,2010,33(6):11-15.
    [8]刘占山,黄安辉,肖明山.毒死蜱的研究应用现状及产业发展前景[J].世界农药,2009,31:59-61.
    [9] Coupe R H, Manning M A, Foreman W T, et al. Occurrence of pesticides in rain and air in urban andagricultural areas of Mississippi, April-September1995[J]. Science of the Total Environment,2000,248(2~3):227-240.
    [10] Liu B, McConnell L L, Torrents A. Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay[J].Chemosphere,2001,44:1315-1323.
    [11] Hall J L W, Anderson R D. Parametric and probabilistic analysis of historical chlorpyrifos surface watermonitoring data from the San Joaquin River watershed:1991-2001[J]. Water Air﹠Soil Pollution,2003,150(1-4):275-298.
    [12]石利利,林玉锁,徐亦刚,等.毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73-74.
    [13]田芹,周志强,江树人,等.毒死蜱在环境水体中降解的研究[J].农业环境科学学报,2005,24(2):289-293.
    [14]吴慧明,朱国念.毒死蜱在灭菌和未灭菌土壤中的降解研究[J].农药学学报,2003,5(4):65-68.
    [15] Racke K D, Fontaine D D, Yoder R N, et al. Chlorpyrifos degradation in soil at termiticidal applicationrates[J]. Pesticide Science,1994,42(1):43-51.
    [16]李莹,高成仁,吴剑英,等.40%毒死蜱乳油在稻田土壤中的消解动态[J].农药,2000,39(6):25-27.
    [17]李界秋,黎晓峰,沈方科,等.毒死蜱在土壤中的环境行为研究[J].农业资源与环境,2007,123(1):168-171.
    [18]周世萍,段昌群,余泽芳,等.毒死蜱在土壤中的残留和淋溶动态[J].生态环境,2008,17(2):619-622.
    [19]翁春英,黄阳成,胡支向,等.毒死蜱在叶菜上的残留及降解动态分析[J].广西农业科学,2010,41(12):1304-1306.
    [20]赵学平,袁玉伟,胡秀卿,等.茚虫威和毒死蜱在小白菜中的残留及其膳食暴露评价[J].浙江农业学报,2010,22(6):784-789.
    [21]杜蕙,孙新纹,吕和平,等.40%毒死蜱乳油在番茄果实中的残留降解动态研究[J].甘肃农业科技,2010,7:5-7.
    [22]王道泽,宋亮,洪文英,等.毒死蜱在设施青菜上的残留动态及安全使用技术[J].浙江农业学报,2011,23(2):344-348.
    [23]赵丽娟,张洪,秦曙,等.毒死蜱在梨和土壤中的残留研究[J].农药科学与管理,2010,31(2):42-46.
    [24]宋春国,于建垒,李瑞娟,等.毒死蜱在苹果和土壤中的残留动态及安全性评价[J].山东农业科学,2011,8:84-86,89.
    [25]丁建,周洪波,崔永亮,等.毒死蜱在猕猴桃上的残留动态研究[J].西南农业学报,2011,24(1):373-375.
    [26]《主要贸易国家和地区食品中农兽药残留限量标准》编委会.主要贸易国家和地区食品中农兽药残留限量标准(食品卷)[M].北京:中国标准出版社,2006:447.
    [27]李霖,刘俊,顾庆龙,等.毒死蜱农药对草履虫的毒性研究[J].河南农业科学,2009(12):82-85.
    [28]赵华,李康,吴声敢,等.毒死蜱对环境生物的毒性与安全性评价[J].浙江农业学报,2004,16(5):292-298.
    [29]陈舜华,钟创光,赵小奎.几种淡水动植物14C-毒死蜱的吸收分布和消长的研究[J].核农学报,1998,12(5):286-292.
    [30] Zhao Q Y, Dourson M, Gadagbui B. A review of the reference dose for chlorpyrifos[J]. RegulatoryToxicology and Pharmacology,2006,44(2):111-124.
    [31] Shermaa J D. Cholorpyrifos (dursban)-associated birth defects: reports of four cases[J]. Archives ofEnvironmental Health,1996,51(1):5-8.
    [32] Whintey K D, Seidler F L, Slotkin T A. Development of neurotoxieity of cholopyrifos: cellularmechanism[J]. Toxieology and Applied Phannaeology,1995,134(1):53-62.
    [33] Alavanja M C R, Dosemeci M, Samanic C, et al. Pesticides and lung cancer risk inthe agricultural healthstudy cohort[J]. American Journal of Epidemiology,2004,160(9):876-885.
    [34] Meeker J D, Singh N P, Ryan L, et al. Urinary levels of insecticide metabolites and DNA damage in humansperm[J]. Human Reproduction,2004,19(11):2573-2580.
    [35] Perera F P, Rauh V, Whyatt R M, et al. A summary of recent findings on birth outcomes and developmentaleffects of prenatal ETS, PAH, and pesticide exposures[J]. Neurotoxicology,2005,26(4):573-587.
    [36]秦钰惠,王以燕.美国关于毒死蜱的最新决定[J].农药,2000,39(8):45.
    [37] Hebert V R, Hoonhout C, Miller G C. Use of stable tracer studies to evaluate pesticide photolysis atelevated temperatures[J]. Journal of Agricultural and Food Chemistry,2000,48:1916-1921.
    [38]王金花.毒死蜱降解微生物的筛选及其降解特性研究[D].山东:山东农业大学硕士学位论文,2004,24-30.
    [39]张霞,曹艳平,季萍.水中毒死蜱和甲基毒死蜱的GC-ECD测定方法[J].中国卫生检验杂志,2010,20(7):1656-1658.
    [40]尹君,马琳,赵莉,等.毒死蜱在稻田水中残留的测定方法研究[J].农药科学与管理,2011,32(7):33-35.
    [41]唐鹏,胡宗严,钢绍余,等.毒死蜱的残留分析[J].农业科技与装备,2008,178(4):39-40.
    [42]韩畅,朱鲁生,王军,等. HPLC测定水体中毒死蜱及其有毒降解产物TCP[J].农业环境科学学报,2009,28(7):1552-1556.
    [43] Manclfis J J. Development of ELISA for insecticide chlorpyrifos[J]. Journal of Agricultural and FoodChemistry,1996,44(12):4052-4062.
    [44]韩丽君,钱传范,李文明,等.酶联免疫吸附分析法测定水体中的毒死蜱[J].环境科学与技术,2006,29(3):35-37.
    [45]刘贤进,颜春荣,刘媛,等.有机磷杀虫剂通用结构半抗原的设计及广谱特异性抗体的制备[J].中国农药科学,2008,41(3):727-733.
    [46]魏松红,刘冰,纪明山,等.毒死蜱残留检测间接竞争ELISA试剂盒的研制[J].食品科学,2010,31(04):246-249.
    [47]吴祥为,花日茂,汤锋,等.毒死蜱在水溶液中的光化学降解[J].应用生态学报,2006,17(7):1301-1304.
    [48]文少白,李勤奋,邓晓,等.两种催化剂降解水中毒死蜱的研究[J].水处理技术,2010,36(11):25-27.
    [49]李培国,姜莉英,等.毒死蜱废水处理技术研究[J].浙江化工,2004,35(10):25-26.
    [50]刘立芬,茅佩卿,徐德志,等.常温常压水解预处理高盐度高质量浓度有机磷农药废水[J].浙江工业大学学报,2011,39(2):127-130,137.
    [51]钱佳燕,王玲,薛建军,等.超声-电凝聚技术处理毒死蜱废水研究及其降解途径分析[J].化学工程师,2012,197(02):27-32.
    [52] Mallick K, Bharati K, Banerji A, et al. Bacterial degradation of chlorpyrifos in pure culture and in soil[J].Bulletin of Environmental Contamination and Toxicology,1999,62:48-55.
    [53] Lakshmi C V, Kumar M, Khanna S. Biodegradation of chlorpyrifos in soil by enriched cultures[J]. CurrentMicrobiology,2009,58:35-38.
    [54] Maya K, Singh R S, Upadhyay S N, et al. Kinetic analysis reveals bacterial efficacy for biodegradation ofchlorpyrifos and its hydrolyzing metabolite TCP[J]. Process Biochemistry,2011,46(11):2130-2136.
    [55] Anwar S, Liaquat F, Khan Q M, et al. Biodegradation of chlorpyrifos and its hydrolysis product3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1[J]. Journal of Hazardous Materials,2009,168(1):400-405.
    [56]王金花,朱鲁生,王军,等.3株真菌对毒死蜱的降解特性[J].应用与环境生物学报,2005,11(2):211-214.
    [57]李晓慧,贾开志,何健,等.一株毒死蜱降解菌株Sphingomonas sp. Dsp-2的分离鉴定及降解特性[J].土壤学报,2007,44(4):735-739.
    [58]钱博,朱鲁生,谢慧,等.毒死蜱降解细菌XZ-3的分离及降解特性研究[J].环境科学,2007,28(12):2827-2832.
    [59]张利,刘红玉,曾光明,等.一株毒死蜱降解菌的分离鉴定及降解性能研究[J].环境工程学报,2008,2(10):1421-1424.
    [60]杨丽,赵宇华,张炳欣,等.一株毒死蜱降解细菌的分离鉴定及其在土壤修复中的应用[J].微生物学报,2005,45(6):905-909.
    [61]陶玉贵,王其进,谷浩,等.哈夫尼菌降解毒死蜱条件的优化及动力学模型建立[J].农业环境科学学报,2011,30(3):449-454.
    [62]李瑞雪,花日茂,唐欣昀,等.一株毒死蜱降解新菌株Sphingopyxis terrae R17的分离鉴定及降解特性[J].激光生物学报,2011,20(2):261-268.
    [63]段海明,王开运,王冕,等.蜡状芽孢杆菌HY-1降解甲基对硫磷和毒死蜱的影响因素研究[J].农业环境科学学报,2010,29(3):437-443.
    [64]金鑫,冉雪琴,王嘉福.农田土壤中毒死蜱降解菌的分离与鉴定[J].贵州农业科学,2010,38(4):103-106.
    [65] Cho C M H, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase forenhanced hydrolysis of chlorpyrifos[J]. Applied and Environmental Microbiology,2004,70(8):4681-4685.
    [66]谢慧,朱鲁生,王军,等.真菌WZ-Ⅰ对有机磷杀虫剂毒死蜱的酶促降解[J].环境科学,2005,26(6):164-168.
    [67]兰亚红,谢明,陈福良,等.施氏假单胞菌JHY01菌株毒死蜱降解酶的定位及其提取条件的优化[J].中国生物防治,2008,24(4):349-353.
    [68]王利,余贤美,贺春萍,等.毒死蜱降解细菌WJI-063的鉴定及酶促降解特性[J].热带作物学报,2009,30(3):357-361.
    [69]段海明,王开运,朱玉坤.蜡状芽孢杆菌HY-1的生长及对毒死蜱的酶促降解特性[J].微生物学通报,2011,38(5):668-676.
    [70]唐莹.白腐真菌生物降解毒死蜱及其应用的初步研究[D].江苏:南京林业大学硕士学位论文,2008.
    [71]塔娜,孙成.毒死蜱的微波辅助无极汞灯光降解机理研究[J].环境科学与技术,2011,34(1):8-11,40.
    [72]张庆芳,王锋,哈益明.毒死蜱和氯氰菊酯的辐射降解及产物特性研究[J].中国农业科学,2010,43(5):1041-1049.
    [73] Singh B K, Walker A. Microbial degradation of organophosphosphorus compounds. Federation ofEuropean Microbiological Societies Microbiology Reviews,2006,30(3):428-471.
    [74]武春媛,陈楠,李勤奋,等.毒死蜱降解菌及其降解机理研究进展[J].热带作物学报,2011,32(10):1989-1994.
    [75] Getzin L W. Degradation of chlorpyrifos in soil: influence of autoclaving, soil moisture, and temperature[J]. Journal of Economic Entomology,1981,74:158-162.
    [76] Racke K D. Environmental fate of chlorpyrifos[J]. Reviews of Environmental Contamnation andtoxicology,1993,131:1-154.
    [77] Dingman D W. Inhibitory effects of turf pesticides on Bacillus popilliae and the prevalence of milkydisease[J]. Applied and Environmental Microbiology,1994,60(7):2343-2349.
    [78]王平.杂色云芝液体发酵制备高活力漆酶的研究[D].江苏:南京林业大学硕士学位论文,2009.
    [79]季立才,胡培植.漆酶催化氧化反应研究进展[J].林产化学与工业,1997,17(1):79-84.
    [80] Christopher F. The structure and function of fungal laccase. Microbiology,1994,140(1):19.
    [81] Palmieri G, Giardina P, Bianeo C, et al. A novel white laccase from Pleurotus ostreatus[J]. Journal ofBiological Chemistry,1997,272(50):31301-31307.
    [82]高恩丽.云芝漆酶的生产及其应用基础研究[D].浙江:浙江大学博士学位论文,2007.
    [83] Yaropolov A I, Skorobogatko O V, Vartanov S S, et al. Laccase: Properties, catalytic mechanism, andapplicability[J]. Applied Biotechnology,1994,49:257-280.
    [84] Bourbonnais R, Paice M G. Demethylation and delignification of Kraft pulp by Trametes versicolorlaccase in the presence of ABTS[J]. Applied Microbiology and Biotechnology,1992,36(6):823-827.
    [85] Couto S R, Sanromán M, Gübitz G M. Influence of redox mediators and metal ions on synthetic acid dyedecolourization by crude laccase from Trametes hirsute[J]. Chemosphere,2005,58(4):417-422.
    [86] Bibii, Bhatti H N, Aagher M. Comparative study of natural and synthetic phenolic compounds as efficientlaccase mediators for the transformation of cationic dye[J]. Biochemical Engineering Journal,2011,56(3):225-231.
    [87] Camarero S, Ibarra D, Martínez M J, et al. Lignin-derived compounds as efficient laccase mediators fordecolorization of defferent types of recalcitrant dyes[J]. Applied and Environmental Microbiology,2005,71(4):1775-1784.
    [88]高千千,朱启忠.漆酶-介体体系(LMS)及其应用[J].环境工程,2009,27:598-602.
    [89] Fabbrini M, Galli C, Gentili P. Comparing the catalytic efficiency of some mediators of laccase[J]. Journalof Molecular Catalysis B: Enzymatic,2002,16(5-6):231-240.
    [90] Valls C, Vidal T, Roncero M B. Boosting the effect of a laccase-mediator system by using a xylanase stagein pulp bleaching[J]. Journal of Hazardous Materials,2010,177(1-3):586-592.
    [91] Moldes D, Vidal T. Reutilization of effluents from laccase-mediator treatments of kraft pulp forbiobleaching[J]. Bioresource Technology,2011,102(3):3603-3606.
    [92] Chen Y M, Wan J Q, Ma Y W, et al. Modification of old corrugated container pulp with laccase andlaccase-mediator system[J]. Bioresource Technology,2012,110:297-301.
    [93] Minussi R C, Pastore G M, Durán N. Laccase induction in fungi and laccase/N–OH mediator systemsapplied in paper mill effluent[J]. Bioresource Technology,2007,98(1):158-164.
    [94] Chhabra M, Mishra S, Sreekrishnan T R. Laccase/mediator assisted degradation of triarylmethane dyes ina continuous membrane reactor[J]. Journal of Biotechnology,2009,143(1):69-78.
    [95] Mendoza L, Jonstrup M, Hatti-Kaul R, et al. Azo dye decolorization by a laccase/mediator system in amembrane reactor: Enzyme and mediator reusability[J]. Enzyme and Microbial Technology,2011,49(5):478-484.
    [96] Khlifi R, Belbahri L, Woodward S, et al. Decolourization and detoxification of textile industry wastewaterby the laccase-mediator system[J]. Journal of Hazardous Materials,2010,175(1-3):802-808.
    [97] Pozdnyakova N N, Rodakiewicz-Nowak J, Turkovskaya O V. Oxidative degradation of polyaromatichydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1in the presence of syntheticmediators[J]. Enzyme and Microbial Technology,2006,39(6):1242-1249.
    [98] Wu Y C, Teng Y, Li Z G, et al. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation byfungal laccase in the remediation of an aged contaminated soil[J]. Soil Biology and Biochemistry,2008,40(3):789-796.
    [99] Lloret L, Eibes G, Lú-Chau T A, et al. Laccase-catalyzed degradation of anti-inflammatories and estrogens[J]. Biochemical Engineering Journal,2010,51(3):124-131.
    [100] Weng S S, Ku K L, Lai H T. The implication of mediators for enhancement of laccase oxidation ofsulfonamide antibiotics[J]. Bioresource Technology,2012,113(1):259-264.
    [101] Amitai G, Adani R, Sod-moriah G., et al. Oxidative biodegradation of phosphorothiolates by fungallaccase[J]. FEBS Letters,1998,438(3):195-200.
    [102] Trovaslet-Leroy M, Jolivalt C, Froment M T, et al. Application of laccase-mediator system (LMS) for thedegradation of organophosphorus compounds[J]. Chemico-Biological Interactions,2010,187(1-3):393-396.
    [103] Hirai H, Nakanishi S, Nishida T. Oxidative dechlorination of methoxychlor by ligninolytic enzymes fromwhite-rot fungi[J]. Chemosphere,2004,55:641-645.
    [104] Cristina T D, Rosa R, Raunel T, et al. Halogenated pesticide transformation by a laccase-mediatorsystem[J]. Chemosphere,2009,77(5):687-692.
    [105] Pizzul L, Castillo M P, Stenstrm J. Degradation of glyphosate and other pesticides by ligninolyticenzymes[J]. Biodegradation,2009,20(6):751-759.
    [106] Kang K H, Dec J, Park H, et al. Transformation of the fungicide cyprodinil by a laccase of Trametesvillosa in the presence of phenolic mediators and humic acid[J]. Water Research,2002,36(19):4907-4915.
    [107] Murugesan K, Chang Y Y, Kim Y M, et al. Enhanced transformation of triclosan by laccase in thepresence of redox mediators[J]. Water Research,2010,44(1):298-308.
    [108]王习文,詹怀宇,何为.金属离子对漆酶活性的影响[J].中华造纸,2003,24(6):33-35.
    [109]申丽,闵顺耕,侯圣军,等.水溶液中毒死蜱在紫外激发态下的快速降解[J].现代科学仪器,2006,1:91-93.
    [110]国家环境保护局.化学农药环境安全评价试验准则[R].北京:国家环境保护局,1989.
    [111] Xu G M, Zheng W, Li Y Y, et al. Biodegradation of chlorpyrifos and3,5,6-trichloro-2-pyridinol by anewly isolated Paracoccus sp. strain TRP[J]. International Biodeterioration&Biodegradation,2008,62(1):51–56.
    [112] He L Y, Wang G B, Cao F L, et al. Cloning of laccase gene from Coriolus versicolor and optimization ofculture conditions for lcc1expression in Pichia pastoris[J]. Advanced Materials Research,2011,236-238(pp):1039-1044.
    [113] Kurniawati S, Nicell J A. Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueousphenol[J]. Enzyme and Microbial Technology,2007,41(3):353-361.
    [114]李阳,蒋国祥,牛军峰,等.漆酶催化氧化水中有机污染物[J].化学进展,2009,21(10):2028-2036.
    [115]贺立燕.杂色云芝漆酶同工酶基因的克隆及高效表达[D].江苏:南京林业大学硕士学位论文,2011.
    [116]凌云,王菡,雍伟,等.气相色谱-质谱/质谱法检测蔬菜中的毒死蜱及其代谢物[J].色谱,2009,27(2):78-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700