分数阶Fourier变换在水声通信中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声信道因其特殊时空频变特性,严重的信道衰落效应和复杂的水下环境噪声而成为最为复杂的无线信道。因此,追求一种可靠有效高速的水下信息传播的调制解调方法成为水声通信的主要内容。分数阶Fourier变换是近年来兴起的一种针对chirp类信号的处理算法,可以理解成为基于chirp基分解或者是时频面的旋转过程,在合适的分数阶域能够实现chirp类信号的能量聚集出现峰值的现象。因而将分数阶Fourier变换技术引入到水声通信中,发展基于分数阶Fourier变换的水声通信方案能够在应对复杂水下噪声环境和抑制水声信道衰落效应方面具有积极的意义。
     传统的正交多载波(OFDM)技术具有通信速率和频带利用率高的特点,且借助于FFT技术可以实现快速的调制解调,简化系统复杂度,成为未来第四代无线通信技术的基础。但是OFDM技术引入到水声领域之后,水声信道较窄的可利用频带范围和梳状的幅频响应特性不仅使得OFDM的优点没有得到充分的发挥,还受到频率选择性衰落的影响而降低性能。针对这些问题,本文提出基于分数阶Fourier变换的正交多载波(FRFT-OFDM)水声通信方案,采用正交的LFM信号作为子载波信号,利用分数阶Fourier变换作为信息的调制解调方法。宽带的LFM子载波相比于基于正弦信号子载波,不易于被信道所形成的深陷频率零点所衰落,因而可以可靠的传输信息。且LFM信号具有较大的多普勒容限,相比OFDM技术,FRFT-OFDM具有一定的抗多普勒效应的能力。
     分数阶Fourier变换的chirp基分解特性说明,一个LFM信号在其对应的阶次的分数阶域上会出现能量聚焦而形成冲激函数,在除此之外的分数阶域均不会产生这种效果。外界干扰只有在具有与LFM信号近似的时频分布特性时才会产生干扰作用,且噪声可以认为均匀散布在整个时频面中,任何阶次的分数阶域均不会形成干扰,因此本文提出基于分数阶Fourier变换的脉冲位置调制(FRFT-PPM)技术,将要传输的信息调制到分数阶域的峰值位置当中,具有较强的抗噪声和抗干扰性能。在此基础上,根据正负斜率的LFM信号只会聚焦于相对应的正负阶次分数阶域而不会产生相互之间的干扰,提出正负斜率LFM信号作为载波的分数阶域脉冲位置调制技术,在不额外占用系统带宽的前提下倍增FRFT-PPM系统通信速率,在保证了系统稳健性的前提下提高了系统有效性能。
     水声信道严重的多途扩展效应是通信系统产生码间干扰(ISI)的主要原因,因此采用接收均衡技术能够有效的抑制多途效应,减少误码的产生。多途效应对信号实际上是增加了时间延迟,根据分数阶Fourier变换的时移特性,当信号在时间域上发生移动时,信号变换的象函数在分数阶域上也会发生移动。为了减少干扰,本文提出了在系统中添加时域保护间隔和分数阶域保护间隔,以减少这种码间干扰的影响。然而这种方法在一定程度上降低了系统的效率,且水声信道多途扩展十分严重,完全依靠保护间隔抑制ISI将使系统性能变得不可接受,因此本文提出采用Rake接收机和时间反转镜技术来抑制水声信道的多途影响。Rake接收机是一种特殊的路径分集技术,而分数阶Fourier变换的时间移动特性完全能够在分数阶域分离出信号的独立衰落路径,因此将Rake接收机应用于基于分数阶Fourier变换的水声通信系统具有理论基础,并且本文讨论了各种合并方式的性能。相对于Rake接收机,时间反转镜技术无需知道信道的确切信息,通过探测信号估计出大致的时反信道和接收信号进行卷积,达到去除多途信道影响,突出主要路径的能量,提高接收信号的信干噪比,从而实现减小误码的产生。
     通信平台的相对运动产生了多普勒效应,使得接收信号在时间尺度上产生压扩效应,在频域上出现频率弥散。根据分数阶Fourier变换的尺度变换特性,信号在时间尺度的变换造成其在分数阶域的尺度的变换,根据这个性质可以得知,多普勒效应并不改变LFM载波在分数阶域正交特性,只是产生统一的分数阶域偏移和尺度变换,因此本文提出分数阶域的多普勒效应补偿方法,通过测定多普勒因子,从而在分数阶域实现多普勒效应的补偿。
     通过大量的仿真实验和湖试试验验证基于分数阶Fourier变换的水声通信方案的有效性与可行性,具有较为广阔的应用前景。
The underwater acoustic channel has spatial-temporal-frequency dependent characteristic,severe channel fading effect and complex ambient noise, which makes it become the mostcomplex wireless channel. Therefore, the pursuit of a reliable and effective high speedunderwater acoustic modulation and demodulation method is becoming the main content ofunderwater acoustic communication. The fractional Fourier transform (FRFT) is a recentdevelopment algorithm for chirp signal, which can be interpreted as chirp basisdecomposition or time-frequency plane rotation and chirp signal energy accumulation peakformation in the appropriate fractional domain. Hence, there is positive significance inintroduction of FRFT to underwater acoustic communication and developing a novelcommunication method based on FRFT to deal with complex underwater ambient noise andsuppression fading channel effects.
     The traditional orthogonal frequency division multiplexing (OFDM) technology has highspeed communication rate and bandwidth efficiency, by means of FFT technique OFDM caneasily achieve fast modulation and becomes foundation of the4G wireless communicationtechnology. However, when OFDM was introduced to underwater acoustic field, the narrowbandwidth, comb frequency-amplitude response and frequency selective fading of underwaterchannel makes its performance degradation. For these problems, this paper presented a novelorthogonal multi-carrier modulation based on FRFT, which used orthogonal LFM signals assub-carriers and used FRFT as modulation and demodulation method. Comparing tosinusoidal sub-carrier, the LFM sub-carrier can not be faded by null steering of underwaterchannel, thus this method can reliably transmit information. And comparing to OFDM system,the FRFT-OFDM system has a better anti-Doppler effect because of the large Dopplertolerance of LFM signal.
     The chirp decomposition characteristic of FRFT shows that the LFM signal’s energy willfocus and form an impulse function in corresponding fractional domain but will not in theother order fractional domain. Interference signal only has the time-frequency distributionapproximately like LFM signal will produce interfering effect and the ambient noise can beseem as evenly spread in the whole time-frequency plane, any order FRFT of ambient noisewill not produce interference. Therefore, in this paper, the pulse position modulation based onFRFT (FRFT-PPM) was presented, and the transmitted information was modulated in thepeak position in fractional domain, which can have a strong ability of anti-noise andanti-interference. On this basis, according to the positive and negative slope LFM signalenergy focused on corresponding order of fractional domain without mutual interference, this paper presented the positive and negative slope LFM signal FRFT-PPM communicationsystem, doubled FRFT-PPM communication rate without doubled the system bandwidth,which enhanced the robustness and performance of the system.
     Severe multi-path spread of underwater acoustic channel causes inter-symbolinterference (ISI), thus the equalizer at receiving end can effectively suppress multi-patheffect and reduce error. Actually the multi-path effect is to increase the signal time delay, andaccording to time delay shift of FRFT, the shift of signal in time domain causes transformedsignal shift in fractional domain. In order to reduce interference, this paper presented time andfractional domain guard interval (GI) to reduce ISI. However, this method reduced systemefficiency, and because of the underwater channel severe multi-path spread, completelyreducing ISI with GI will be unacceptable. In this paper, the Rake receiver and the timereverse mirror (TRM) technique was presented to suppression the impact of multi-pathchannel. Rake receiver is a special path diversity technique, and time delay shift of FRFT cancompletely isolate independent fading channel path in fractional domain, thus the Rakereceiver used in FRFT communication system has theoretical basis, and the combiningmethods were discussed in this paper. Comparing to Rake receiver, the TRM dose not needthe exact channel information and suppresses the channel effect, enhances main path energyand signal to interference and noise ratio (SINR) and reduces error by the probe signal’sapproximate reverse channel impulse function convolution with receiving signal.
     Relative motion of communication platform generates Doppler effect, which makesreceiving signal compression and expansion in time domain, and frequency dispersion infrequency domain. According to scale transformation of FRFT, the change of signal time scalemakes its FRFT fractional domain scale change. So the Doppler effect just causes unifiedoffset and scale of fractional domain change rather than change the LFM signal orthogonalproperty, in this paper, the novel fractional domain Doppler effect compensation method waspresented to suppress Doppler effect by estimating Doppler factor and change the scale andresample in fractional domain.
     By a large number of simulation and lake experiment to verify the effectiveness andfeasibility of the underwater acoustic communication scheme based on the fractional Fouriertransform, which has broad application prospects.
引文
[1] Shannon C E. A mathematical theory of communicatin. Bell System Tech J,1948,27(6):379-423P
    [2]喻敏,惠俊英,冯海泓,张晓亮.超短基线系统定位精度改进方法.海洋工程,2006,24(1):86-91P
    [3]莫军,徐剑锋,王光辉. AUV水下导航信息融合方法研究.海军工程大学学报,2009,21(1):54-58P
    [4]邓跃红,聂双双.基于小波变换的水下超声波测距方法研究.郑州大学学报(工学版),2007,28(4):75-79P
    [5]陆丹,李海森,魏玉阔,邓平.多波束测深系统中的海底地形可视化技术研究.仪器仪表学报,2012,33(2):450-456P
    [6]朱维庆,朱敏,王军伟,等.水声高速图像传输信号处理方法.声学学报,2007,32(5):385-397P
    [7]郭中源,陈岩,贾宁,等.水下数字语音通信系统的研究和实现.声学学报,2008,33(5):409-417P
    [8]徐肖梅.浅海水声数据传输技术研究.厦门大学博士学位论文,2002
    [9]武全萍,王桂娟.世界海洋发电状况探析.浙江电力,2002,5:65-67P
    [10]徐文,汪玉玲,朱维庆.无缆水下机器人水声图象处理系统设计.高技术通讯,1995,5:19-23P
    [11]周琳.深海环境监测水声通信仿真方法与信道估计研究.中国海洋大学博士学位论文,2012
    [12]Stojanovic M and Preisig J. Underwater Acoustic Communication Channels: PropagationModels and Statistical Characterization. IEEE Communications Magazine,2009(1):84-89P
    [13]孙博,程恩,欧晓丽.浅海水声信道研究与仿真.无线通信技术,2006,15(3):11-15P
    [14]Lanbo Liu, Shengli Zhou, Junhong Cui. Prospects and problems of wirelesscommunication for underwater sensor network. Wireless Communications&MobileComputing, Volume8, Issue8,2008,10:977-994P
    [15]Vuran M C, Akyildiz I F. Cross-Layer Analysis of Error Control in Wireless SensorNetworks. Sensor and Ad Hoc Communication and Networks,2006. SECON’06.20063rd Annual IEEE Communications Society on, vol2,2006:585-594P
    [16]D Lucani, M Medard, M Stojanovic. Underwater Acoustic Networks: Channel Modelsand Network Coding based on Lower Bound on Transmission Power for Multicast. IEEEJoural on Seclected Areas in Communications (JASA), Special Issue on UnderwaterWireless Communications and Network, December2008:1708-1719P
    [17]D Pompili. Efficient Communication protocols for underwater acoustic sensor networks.Geogia Institute of Technology, August,2007
    [18]M Stojanovic. Design and Capacity Analaysis of Cellular Type Underwater AcousticNetworks. IEEE Jouranl of Oceanic Engineering, Vol.33, No.2, April2008,171-181P
    [19]Owen M W, Klamer D M, Dean B. Evolutionary control of an autonomous field.Information Fusion,2000. Proceeding of the Third International Conference on, Vol.1,July2000: MOD1/3-MOD1/9
    [20]V A Narayanan, K M M Prabhu. The Fractional Fourier Transform: Theory,Implementtation and Error Analysis. Microprocessors and Mircosystems,2003,27:511-521P
    [21]Tao Ran, DENG Bing, WANG Yue. Research Prosess of the Fractional Fourier Transformin Signal Processing. Science in China (Ser. F, Information Science).2006,49(1):1-25P
    [22]E U Condon. Immersion of Fourier Transform in a Continuous Group of FunctionalTransformations. Proc. National Academy of Science,1937,23:158-164P
    [23]V Burgmann. On a Hilbert Space of Analytic Functions and Associated IntegralTransform, Part I. Comm. Pure. Appl. Math.1961,14:187-214P
    [24]V Namias. The Fractional Order Fourier Transform and its Application to QuantuamMechanics. J. Inst. Math. Appl,1980,25:241-265P
    [25]A C McBride, F H Kerr. On Namias Fractional Fourier Trasform. IMA J. Appl. Math,1987,39:159-175P
    [26]D Mendlovic, H M Ozaktas. Fractional Fourier Transform and Their OpticalImplementation (I). J. Opt. Sco. Am. A,1993,10(10):1875-1881P
    [27]H M Ozaktas, D Mendlovic. Fractional Fourier Transform and Their OpticalImplementation (II). J. Opt. Sco. Am. A,1993,10(10):2522-2531P
    [28]L B Almeida. The Fractional Fourier Transform and Time-Frequency Representations.IEEE Trans. Signal Prosessing,1994,42(11):3084-3091P
    [29]H M Ozaktas, O Arikan, et al. Digital Computation of the Fractional Fourier Transform.IEEE Trans. Signal Prosessing,1996,44(9):2414-2150P
    [30]董永强,陶然等.含未知参数的多分量chirp信号的分数阶傅里叶分析.北京理工大学学报,1999,19(5):612-616P
    [31]QI Lin, TAO Ran, ZHOU Siyong, et al. Detection and Paramter Estimation ofMulticonponent LFM Signal based on the Fractional Fourier Transform. Science in China(Ser. F, Information Science),2004,47(2):184-198P
    [32]O Akay, G F Boudreaux-Bartels. Fractional Convolution and Correlation via OperatorMethod and an Application to Detection of Linear FM Signals. IEEE Trans. SignalProcessing,2001,49(5):979-993P
    [33]周刚毅,叶中付.线性调频信号的调频斜率估计方法.中国科学技术大学学报,2003,33(1):34-38P
    [34]邓兵,陶然等.分数阶Fourier变换与时频滤波.系统工程与电子技术,2004,26(10):1357-1359,1405P
    [35]M F Erden, M A Kutay, H M Ozaktas. Repeated Filtering in Consecutive FractionalFourier Domains and its Application to Signal Restoration. IEEE Trans, SignalProcessing,1999,47(5):1458-1462P
    [36]M A Kutay, H M Ozaktas, et al. Optimal Filtering in Fractional Fourier Domains. IEEETrans. Signal Processing,1997,45(5):1129-1143P
    [37]齐林,陶然等. LFM信号的一种最优滤波算法.电子学报,2004,32(9):1464-1467P
    [38]S G Shin, S I Jin, et al. Optical Neural Network using Fractional Fourier Transform,Log-likelihood, and Parallelism. Optics Communications,1998,153:218-222P
    [39]B Barshan, B Ayrulu. Fractional Fourier Transform Pre-processing for Neural Networksand its Application to Object Recognition. Neural Networks,2002,15:131-140P
    [40]I S Yetik, A Nehorai. Beamforming using the Fractional Fourier Transform. IEEE Trans.Signal Processing,2003,51(6):1663-1668P
    [41]陶然,周云松.基于分数阶傅里叶变换的宽带线性调频信号波达方向估计新算法.北京理工大学学报,2005,25(10):895-899P
    [42]S Jang, W Choi, T K Sarkar, et al. Exploiting Early Time Response using the FractionalFourier Transform for Analyzing Transient Radar Returns. IEEE Trans. Antennas andPropagation,2004,52(11):3109-3121P
    [43]I I Jouny, Radar Backscatter Analysis using Fractional Fourier Transform. In: IEEEAntennas and Propagation Society Symposium. NJ, USA: IEEE,2004.2115-2119P
    [44]董永强,陶然等.基于分数阶傅里叶变换的SAR运动目标检测与成像.兵工学报,1999,20(2):132-136P
    [45]Hong-Bo Sun, Guo-Sui Liu, et al. Application of the Fractional Fourier Transform toMoving Target Detection in Airborne SAR. IEEE Trans. Aerospace and ElectronicSystem,2002,38(4):1416-1424P
    [46]赵兴浩,陶然等.基于分数阶相关的无源雷达运动目标检测新算法.电子学报,2005,33(9):1567-1570P
    [47]T Musha, H Uchida, M Nagashima. Self-monitoring Sonar Transducer Array withInternel Accelerometers. IEEE Journal of Oceanic Engineering,2002,27(1):28-34P
    [48]赵羽,蔡平,周敏东.分数阶Fourier变换的数值计算.哈尔滨工程大学学报,2002,23(6):1-3P
    [49]陈文剑,孙辉,朱建军,等.基于分数阶傅里叶变换混响抑制的目标回波检测方法.声学学报,2009,34(5):408-415P
    [50]殷敬伟,惠俊英,蔡平,等.分数阶Fourier变换在深海远程水声通信中的应用.电子学报,2007,35(8):1499-1504P
    [51]Aleksandar Dogandzic, Arye Nihorai. Space-time fading channel estimation and symboldetection in unknown spatially correlated noise. IEEE Transactions on Signal Processing,2002,50(3):457-474P
    [52]Bjerrum Niese, C Bjorno L, et al. A simulation tool for high data-rate acousticcommunication in a shallow-water, time-varying channel.IEEE J. Oceanic Eng.,1996,21(2):143-149P
    [53]LeBlanc L R, Beaujean P J. Spatio-temporal processing of coherent acousticcommunication data in shallow water. IEEE J. Oceanic Eng.,2000,25(1):40-51P
    [54]A Quazi, W Konrad. Underwater acoustic communications. IEEE Commun. Mag.,1982,20(2):24-29P
    [55]张歆,张小蓟.浅海信道水声数字通信系统的性能分析.西北工业大学学报,2000,18(4):612-615P
    [56]L Berkhovskikh, Y. Lysanov. Fundamentals of Ocean Acoustics, Springer,1982
    [57]惠俊英,生雪莉.水下声信道(第二版).国防工业出版社.2007
    [58]M Stojanovic. Underwater Acoustic Communications. Entry in Encyclopedia ofElectrical and Electronics Engineering, John G. Webster, Ed., John Wiley&Sons,1999:688-698P
    [59]D Kilfoyle, J Preisig, A Baggeroer, Spatial Modulation Experiments in the UnderwaterAcoustic Channel. IEEE J. Oceanic Eng., vol.30, no.2, Apr.2005:406-415P
    [60]S Roy et al. High-Rate Communication for Underwater Acoustic Channels UsingMultiple Transmitters and Spacetime Coding: Receiver Structures and ExperimentalResults. IEEE J. Oceanic Eng., vol.32, no.3, July2007:663-688P
    [61]程恩.水声电子邮件传输研究.厦门大学博士学位论文,2006
    [62]Baggeroer A. Acoustic telemetry--Anoverview. IEEE J Ocean Eng.1984,9(4):229-235P
    [63]Catipovic J A. Performance limitations in underwater acoustic telemetry. IEEE J OceanEng.,1990,15(3):205-216P
    [64]Stojanovic M. Recent advances in high-speed underwater acoustic communications.IEEE J Ocean Eng.,1996,21(2):125-136P
    [65]Kilfoyle D B, A B Baggeroer. The state of the art in underwater acoustic telemetry. IEEEJ Ocean Eng.,2000,25(1):4-27P
    [66]Stojanovic M, J Catipovic, J G Proakis. Adaptive multichannel combining andequalization for underwater acoustic communications. J Acoust Soc Am.,1993,94(3):1621-1631P
    [67]Stojanovic M, L Freitag, M Johnson. Channel-estimation-based adaptive equalization ofunderwater acoustic signals. OCEANS ‘99MTS/IEEE.,1999
    [68]Lopez M J, A C Singer. A DFE coefficient placement algorithm for sparse reverberantchannels. IEEE Trans Commun.2001,49(8):1334-1338P
    [69]Weichang L, J C Preisig. Estimation of Rapidly Time-Varying Sparse Channels. IEEE JOcean Eng.,2007,32(4):927-939P
    [70]Labat J, G. Lapierre, J Trubuil.. Iterative equalization for underwater acoustic channelspotentiality for the TRIDENT system. OCEANS2003, Proceedings.2003
    [71]Sozer E M, J G Proakis, F Blackmon. Iterative equalization and decoding techniques forshallow water acoustic channels. OCEANS,2001MTS/IEEE.2001
    [72]Blackmon F, E Sozer, J Proakis. Iterative equalization, decoding, and soft diversitycombining for underwater acoustic channels. Oceans ‘02MTS/IEEE.2002
    [73]Oberg T, B Nilsson, N Olofsson, M L Nordenvaad, E Sangfelt. Underwatercommunication link with iterative equalization. OCEANS2006.
    [74]Eggen T H, A B Baggeroer, J C Preisig. Communication over Doppler spread channels.Part I: Channel and receiver presentation. IEEE J Ocean Eng.,2000,25(1):62-71P
    [75]Eggen T H, J C Preisig, A B Baggeroer. Communication over Doppler spread channels. II.Receiver characterization and practical results. IEEE J Ocean Eng.2001,26(4):612-621P
    [76]Stojanovic M. Low Complexity OFDM Detector for Underwater Acoustic Channels.OCEANS2006.
    [77]Preisig J C. Performance analysis of adaptive equalization for coherent acousticcommunications in the time-varying ocean environment. J Acoust Soc Am.,2005,118(1):263-278P
    [78]Edelmann G F, T Akal, W S Hodgkiss, K Seongil, W A Kuperman, S Hee Chun. Aninitial demonstration of underwater acoustic communication using time reversal. IEEE JOcean Eng.,2002,27(3):602-609P
    [79]Edelmann G F, H C Song, S Kim, W S Hodgkiss, W A Kuperman, T Akal. Underwateracoustic communications using time reversal. IEEE J Ocean Eng.,2005,30(4):852-864P
    [80]Hursky P, M B Porter, J A Rice, V K McDonald. Passive phase-conjugate signaling usingpulse-position modulation. OCEANS,2001MTS/IEEE.,2001.
    [81]Hursky P, M B Porter, J A Rice, V K McDonald. Passive phase-conjugate signaling usingpulse-position modulation. OCEANS,2001MTS/IEEE.,2001.
    [82]Rouseff D, D R Jackson, W L J Fox, C D Jones, J A Ritcey, D R Dowling. Underwateracoustic communication by passive-phase conjugation: theory and experimental results.IEEE J Ocean Eng.,2001,26(4):821-831P
    [83]Gomes J, A Silva, S Jesus. Joint Passive Time Reversal and Multichannel Equalizationfor Underwater Communications. OCEANS2006.2006
    [84]Song A, M Badiey, H C Song, W S Hodgkiss, M B Porter, KauaiEx-Group. Impact ofocean variability on coherent underwater acoustic communications during the Kauaiexperiment (KauaiEx). J Acoust Soc Am.,2008,123(2):856-865P
    [85]Frassati F, C Lafon, P A Laurent, J M Passerieux. Experimental assessment of OFDM andDSSS modulations for use in littoral waters underwater acoustic communications. Oceans2005-Europe,2005
    [86]Morozov A K, J C Preisig. Underwater Acoustic Communications with Multi-CarrierModulation. OCEANS2006,2006
    [87]Li B, S Zhou, M Stojanovic, L Freitag. Pilot-tone based ZP-OFDM Demodulation for anUnderwater Acoustic Channel. OCEANS2006,2006
    [88]Chitre M, S H Ong, J Potter. Performance of coded OFDM in very shallow waterchannels and snapping shrimp noise. OCEANS,2005MTS/IEEE.,2005
    [89]Stojanovic M. Low Complexity OFDM Detector for Underwater Acoustic Channels.OCEANS2006,2006
    [90]Sharif B. S, J Neasham, O R Hinton, A E Adams. A computationally efficient Dopplercompensation system for underwater acoustic communications. IEEE J Ocean Eng.,2000,25(1):52-61P
    [91]Roy S, T Duman, L Ghazikhanian, V McDonald, J Proakis, J Zeidler. Enhancedunderwater acoustic communication performance using space-time coding and processing.OCEANS ‘04MTS/IEEE.,2004
    [92]Kilfoyle D B, J C Preisig, A B Baggeroer. Spatial modulation experiments in theunderwater acoustic channel. IEEE J Ocean Eng.,2005,30(2):406-415P
    [93]Li B, S Zhou, M Stojanovic, L Freitag, J Huang, P. Willett. MIMO-OFDM Over AnUnderwater Acoustic Channel. OCEANS’07. Vancouver, Canada,2007
    [94]Nordenvaad M L, T Oberg. Terative Reception for Acoustic Underwater MIMOCommunications. OCEANS2006,2006.
    [95]Yang T C. A Study of Spatial Processing Gain in Underwater Acoustic Communications.IEEE J Ocean Eng.2007,32(3):689-709P
    [96]Feng Zhang, Guoan Bi, Yan Qiu Chen. Tomography Time-frequency Transform. IEEETrans. Signal Processing,2002,50(6):1289-1297P
    [97]A W Lohmann. Relationship between the Radon-Wigner and Fractional FourierTransform. J. Opt. Soc. Am. A,1994,11(6):1398-1801P
    [98]Lee S Y, Szu H H. Fractional Fourier Transforms, Wavelet Transforms, and AdaptiveNeural Networks. Opt. Engineering,1994,33:2326-2330P
    [99]H M Ozaktas, N Erkaya, M A Kutay. Effect of Fractional Fourier Transformation onTime-Frequency Distributions Belonging to the Cohen Class. IEEE Signal ProcessingLetters,1996,3(2):40-41P
    [100]G Cariolaro, T Erseghe, P Kraniauskas, N Laurenti. Multiplicity of Fractional FourierTransforms and Their Relationships. IEEE Trans. Signal Processing,2000,48(1):227-241P
    [101]H M Ozaktas, M A Kutay, Z Zalevsky. The Fractional Fourier Transform withApplications in Optics and Signal Processing. John Wiley&Sons,2000
    [102]张贤达.现代信号处理.清华大学出版社,1995
    [103]D Mendlovic, H M Ozaktas, A W Lohmann. Slef Fourier Functions and FractioanlFourier Transforms. Optical Communication,1994,105:36-38P
    [104]L B Almeida. Product and Convolution Theorems for the Fractional Fourier Transform.IEEE SIGNAL PROCESSING LETTERS,1997,4(1):15-17P
    [105]A I Zayed. A Convolution and Product Theorem for the Fractional Fourier Transform.IEEE SIGNAL PROCESSING LETTERS,1998,5(4):101-103P
    [106]M H Yeh, S C Pei. A Method for Discrete Fractional Fourier Transform Computation.IEEE Trans. Signal Processing,2003,51(3):889-891P
    [107]S C Pei, M H Yeh, C C Tseng. Discrete Fractional Fourier Transform based onOrthogonal Projections. IEEE Trans. Signal Processing,1999,47(5):1335-1347P
    [108]B Santhanam, J H McClellan. The Discrete Rotational Fourier Transform. IEEE Trans.Signal Processing,1996,42(4):994-998P
    [109]S C Pei, M H Yeh. Discrete Fractional Fourier Transform. Proc. IEEE Int. Symp.Circuits Syst.,536-539P,1996
    [110]S C Pei, M H Yeh. Improved Discrete Fractional Fourier Transform. Opt. Lett.,1997,22:1047-1049P
    [111]S C Pei, C C Tseng, M H Yeh. A New Discrete Fractional Fourier Transform based onConstrained Eigendecomposition of DFT Matrix by Largrange Multiplier Method. IEEETrans. Circuits Syst. II,1999,46:1240-1245P
    [112]H M Ozaktas, Orhan Arikan, et al. Digital Computation of the Fractional FourierTransform. IEEE Trans. Signal Processing,1996,44(9):2141-2150P
    [113]赵兴浩,邓兵,陶然.分数阶Fourier变换数值计算中的量纲归一化,北京理工大学学报,2005,25(4):360-364P
    [114]R E Crochiere, L R Rabiner. Interpolation and Decimation of Digital Signal—A TutorialReview. Proc. IEEE,1981,69(3):300-331P
    [115]赵兴浩,陶然,邓兵,王越.分数阶傅里叶变换快速计算新方法,电子学报,2007,35(6):1089-1093P
    [116]Sophocles J Orfanidis.信号处理导论,清华大学出版社. Prentice Hall,1998
    [117]S C Pei, J J Ding. Closed-form Discrete Fractional and Affine Fourier Transforms. IEEETrans. Signal Processing,2000,48(5):1338-1353P
    [118]于云华,刘扬,石寅.带内同频道数字音频广播关键技术进展,电子与信息学报,2003,25(11):1548-1556P
    [119]包涛,张会生,许哲,吴倩倩.正交频分复用技术在地面数字视频广播中的应用,无线通讯技术,2007:49-52P
    [120]韩庆文.应急无线局域网OFDM关键技术研究,重庆大学博士学位论文,2010
    [121]S F Mason, C R Berger, S L Zhou, P Willett. Detection, Synchronization, and DopplerScale Estimation with Multicarrier Waveforms in Underwater Acoustic Communication.IEEE Journal on Selected Areas in Communications, Vol.26, No.9, December2008:1638-1649P
    [122]X L Ma, C Tepedelenlioglu, G B Giannakis, S Barbarossa. Non-Data-Aided CarrierOffset Estimators for OFDM With Null Subcarriers: Identifiability, Algorithms, andPerformance. IEEE Journal on Selected Areas in Communications, Vol.19, No.12,December2001:2504-2515P
    [123]B S Li, S L Zhou, M Stojanovic, L Freitag, P Willett. Multicarrier Communication OverUnderwater Acoustic Channels With Nonuniform Doppler Shifts. IEEE Journal ofOceanic Engineering, Vol.33, No.2, April2008:198-209P
    [124]Josso N F, Zhang J J, Fertonani D, Papandreou-Suppappola A, Duman T M.Time-varying wideband underwater acoustic channel estimation for OFDMcommunications. IEEE International Conference on Acoustics, Speech and SignalProcessing-Proceedings,2010:5626-5629P
    [125]A Sadia, A Huseyin. Evaluation of frequency offset and Doppler effect in terrestrial RFand in underwater acoustic OFDM systems. IEEE Military Communications ConferenceMILCOM,2008
    [126]H S Javaher, P Serguei, X B Wang. Effects of side information on complexity reductionin superimposed pilot channel estimation in OFDM systems. IEEE VehicularTechnology Conference,2010
    [127]L C Yang, R C Tian, M Jia, F Li.2012International Workshop on Information andElectronics Engineering, Procedia Engineering, Vol.29,2012:2732-2736P
    [128]X L Hou, J P Chen, E Zhou, Z Zhang, H Kayama. Doubly-selective channel estimationfor MIMO-OFDM systems with experimental verification. IEICE Transactions onCommunications, v E92-B, n1,2009:254-267P
    [129]J Meng, W T Yin, Y Y Li, N T Nguyen, Z Han. Compressive sensing basedhigh-resolution channel estimation for OFDM system. IEEE Journal on Selected Topicsin Signal Processing, v6, n1, February2012:15-25P
    [130]陶然,邓兵,王越.分数阶傅里叶变换极其应用.清华大学出版社.2009
    [131]Ranjan Bose.信息论、编码与密码学.第2版.机械工业出版社.2010
    [132]温周斌,冯海泓,惠俊英.一种新的水声通信体制.声学学报,1993,18(5):345-351P
    [133]惠俊英,刘丽,刘宏,等. Pattern——时延差编码水声通信研究,声学学报,1999,25(6):561-572P
    [134]殷敬伟,惠俊英,韦志恒,等.基于Pattern时延差编码体制的4信道水声通信,声学技术,2006,25(1):10-15P
    [135]殷敬伟,惠俊英,王逸林,等. M元混沌扩频多通道Pattern时延差编码水声通信,物理学报,2007,56(10):5915-5921P
    [136]惠俊英,王蕾,殷敬伟.分组M元扩频Pattern时延差编码水声通信,华中科技大学学报(自然科学版),2008,36(7):30-33P
    [137]韩晶,黄建国,张群飞,等.正交M-ary/DS扩频极其在水声远程通信中的应用,西北工业大学学报,2006,24(4):463-467P
    [138]何成兵,黄建国,韩晶,等.循环移位扩频水声通信,物理学报,2009,58(12):8379-8385P
    [139]殷敬伟,王蕾,张晓.并行组合扩频技术在水声通信中的应用,哈尔滨工程大学学报,2010,31(7):958-962P
    [140]仇佩亮,陈恵芳,谢磊.数字通信基础.电子工业出版社.2007.
    [141]K Usuda, H G Zhang, M Nakagawa. Pre-Rake performance for pulse based UWBsystem in a standardized UWB short-range channel.2004IEEE WirelessCommunications and Networking Conference, WCNC2004, v2,2004:920-925P
    [142]C Brunner, M Haardt, J A Nossek. On space-time rake receiver structures for WCDMA.Conference Record of the Asilomar Conference on Signals, Systems and Computers, v2,1999:1546-1551P
    [143]R Esmailzadeh, M Nakagawa. Pre-Rake diversity combination for direct sequencespread spectrum communications systems. Proceedings of the1993IEEE InternationalConference on Communications,1993:463-467P
    [144]W Q Malik, C J Stevens, D J Edwards. Multipath effects in ultrawideband rakereception. IEEE Transactions on Antennas and Propagation, v56, n2, February2008:507-514P
    [145]Konstantinos B Baltzis. The rake receiver principle: Past, present and future. RecentPatents on Electrical Engineering, v5, n1, April2012:55-71P
    [146]王彦令. RAKE接收机关键算法研究与优化.哈尔滨工业大学硕士学位论文,2009
    [147]胡春华,杨大成,张平. CDMA系统中数字化RAKE接收机的合并方案.北京邮电大学学报,第21卷增刊,1998:41-45P
    [148]赵荣黎.数字蜂房移动通信系统.电子工业出版社.1997
    [149]W A Kuperman, W S Hodgkiss, C S Hee, et al. Phase conjugation in the ocean:Experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc. Am.,1998,103(1):25-40P
    [150]M Fink. Time reversed acoustics. Scientific American,1999,281(1):91-97P
    [151]W S Hodgkiss, C S Hee, W A Kuperman, et al. A long-range and variable fouce phaseconjugation experiment in shallow water. J. Acoust. Soc. Am.,1998,105(3):1597-1604P
    [152]G F Edelman, T Akal, W S Hodgkiss,et al. An initial demonstration of underwateracoustic communication using time reversal. IEEE J. Oceanic Eng.,2002,27(3):602-609P
    [153]殷敬伟,惠俊英,郭龙祥.点对点移动水声通信技术研究,物理学报,2008,57(3):1753-1758P
    [154]殷敬伟,惠俊英.基于MSS-PDS和单阵元PTRM信道均衡的深海远程水声通信方案,高技术通讯,2008,18:382-386P
    [155]殷敬伟,王逸林,孙立强.基于时间反转镜的水声通信方案分析,华中科技大学学报(自然科学版),2009,37(9):16-20P
    [156]殷敬伟.多途信道中Pattern时延差编码水声通信研究.哈尔滨工程大学博士学位论文,2007
    [157]D R Dowling. Acoustic pulse compression using passive phase-conjugate processing. J.Acoust. Soc. Am.,1994,95(3):1450-1458P
    [158]D Rouseff, D R Jackson, W L J Fox, et al. Underwater acoustic communication bypassive-phase conjugation: Theroy and experimental results. IEEE J. Oceanic Eng.,2001,26(4):821-831P
    [159]T C Yang. Temporal resolutions of time-reserval and passive-phase conjugation forunderwater acoustic communications. IEEE J. Oceanic Eng.,2003,28(2):229-245P
    [160]T C Yang. Differences between passive-phase conjugation and decision-feedbackequalizer for underwater acoustic communications. IEEE J. Oceanic Eng.,2004,29(2):472-487P
    [161]J A Flynn, J A Ritcey, D Rouseff, W L J Fox. Multichannel equalization bydecition-directed passive phase conjugation: experimental results. IEEE J. Oceanic Eng.,2004,29(3):824-836P
    [162]P Hursky, M B Porter, J A Rice, et al. Passive phase-conjugate signaling using pulse-position modulation. OCEANS2001MTS/IEEE Conference and Exhibition,2001,4:2244-2249P
    [163]P Hursky, M B Porter, M Siderius. Point-to-point underwater acoustic communicationsusing spread-spectrum passive phase conjugation. J. Acoust. Soc. Am.,2006,120(1):247-257P
    [164]殷敬伟,惠俊英,王燕,等.虚拟时间反转镜Pattern时延差编码水声通信,系统仿真学报,2007,19(17):4033-4036P
    [165]马敬广,殷敬伟,惠俊英.虚拟时间反转镜在被动测距中的应用,应用声学,2007,26(3):135-142P
    [166]殷敬伟,惠俊英.时间反转镜分类研究及其在水声通信中的应用,系统仿真学报,2008,20:2449-2453P
    [167]Yin Jingwei, Wang Yilin, Wang Lei, et al. Multiuser Underwater AcousticCommunication Using Single-element Virtual Time Resveral Mirror. Chinese ScienceBulletin,2009,54(8):1302-1310P
    [168]T Pollet, M V Bladel, M Moeneclaey. BER sensitivtiy of OFDM systems to carrierfrequency offset and wiener phase noise. IEEE Trans. on comm.1995,43(2):191-193P
    [169]K Sathananthan, C Tellambura. Probability of Error calculation of OFDM systems withfrequency offset. IEEE Trans. on comm.2001,49(11):1884-1888P
    [170]J Heiskala, J Terry. OFDM Wireless LANs: A theoretical and practical guide. PersonEducation, Inc.2002
    [171]M H Hsieh, C H Wei. A low-complexity frame synchronization and frequency offsetcompensation scheme for OFDM systems over fading channels. Vehicular Technology,IEEE Transactions on Volume48, Issue5, Sept1999:1596-1609P
    [172]I R Capoglu, Ye Li, A Swami. Effect of Doppler spread in OFDM-based UWB systems.IEEE Transactions on Wireless Communications,2005,4(5):2559-2567P
    [173]A B Salberg, A Swami. Doppler and frequency-offset synchronization in widebandOFDM. IEEE Transactions on Wireless Communications,2005,4(6):2870-2881P
    [174]徐小卡.基于OFDM的浅海高速水声通信关键技术研究.哈尔滨工程大学博士学位论文,2009
    [175]P H Moose. A technique for othogonal frequency division multiplexing frequency offsetcorrection. IEEE Transactions on Communications,1994,42(10):2908-2914P
    [176]Van de Beek, M Sandell, P O Borjesson. ML estimation of time and frequency offset inOFDM systems. IEEE Transactions on Signal Processing,1997,45(7):1800-1805P
    [177]Jing Zheng, Zulin Wang. ICI Analysis for FRFT-OFDM Systems to Frequency Offset inTime-Frequency Selective Fading Channels. IEEE Communications Letters,2010,14(10):888-890P
    [178]Z B Lin. Wideband ambiguity function of broadband signals. J. Acoust. Soc. Am.,Volume83, Issue6,1988:2108-2116P
    [179]岳玲,樊书宏,王明洲,等.高速移动水声通信中的多普勒频移估计方法研究.系统仿真学报,2011,23(11):2366-2370P
    [180]Elias Aboutanios, Bernard Mulgrew. Iterative Frequency Estimation by Interpolation onFourier Coefficients. IEEE Transactions on Singal Processing,2005,53(4):1237-1242P
    [181]胡广书.数字信号处理.清华大学出版社,2003
    [182]John G Prokis,方艳梅等译.数字信号处理.电子工业出版社,2007
    [183]魏丽英.空间激光通信系统PPM调制技术的研究.长春理工大学硕士学位论文,2007
    [184]蒋炜.激光通信调制方式的研究.空间电子技术,2009,3:1-5P
    [185]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社,2000
    [186]陈韵,王逸林,蔡平,等.基于分数阶Fourier变换的远程水声通信技术研究.兵工学报,2011,32(9):1159-1164P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700