智能响应型原油电脱盐设备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于开采工况的恶化和生产工艺的约束,原油不可避免的含有水和盐类。原油含盐对炼厂生产危害巨大:增加了能耗;造成设备腐蚀,严重影响安全生产;增大了生产成本。但是送入炼厂的原油受各种不利因素的影响,越来越趋于重质化,劣质化;同时炼厂为提高效益也有原油深加工的需要,这些都对脱盐设备、工艺提出了较为苛刻的要求;
     传统设备已不能很好的满足这些实际需要。因此本课题着手研制新型电脱盐设备。作者首先研究了高压电场对原油乳化液的作用原理以及电脱盐的工艺流程,结合现场实际和实验数据进行分析研究,发现多级脱盐时,注入的淡化水和原油的混合程度直接决定了脱盐的效率。而传统的机械混合措施效率较低,不能满足当前的实际需求;所以依据电分散理论和电载响应系统中的静电混合原理提出了自己的脱盐电场调整方案。
     本课题设计的电脱盐系统分为智能响应型脱盐电源、变压器、脱盐罐三部分。作者主要是进行智能响应脱盐电源的设计:首先利用课题组在矩形波脱水电源方面积累的技术优势,进行了电源的主电路的设计。脱盐电源设有手动和自动两种模式,其中自动模式是专门针对脱盐工艺的特殊需要而设计的,即在调压控制电路中设计了智能响应控制系统。该系统的功能是:单片机智能响应用户设置参数的请求,并控制D/A转换芯片输出模拟控制电压;该控制信号输入到PWM调制芯片TL494的反馈输入端,由它控制调压电路中IGBT模块的占空比,从而实现脱盐电场的调整。此外系统为单片机配备了外存,保证掉电时参数信息不丢失;通过RS232数据接口实现了单片机与上位机的数据传输;采用VC++6.0编程语言,设计、编写了上位机界面,方便了用户的操作和控制。
     智能响应模块的软硬件调试成功后,进行了系统的实验室脱盐脱水试验。实验结果表明:在规定条件下,脱后各项指标达到了设计要求;多级脱盐时传质效果明显,脱盐效率高,脱后含盐率均在5mg/L以下,好油在3mg/L以下,完全满足实际需求。基于相同设计原理,设计的电脱盐设备进行了现场试运行,现场应用表明设备运行安全、可靠;脱盐脱水效果良好,各种油品都能保证脱后含水率在0.1~0.2%之间,含盐率在5mg/L以下;同时节能效果也十分显著,基本满足现场工艺要求,有很好推广应用前景。
Due to the constraints of the mining environment and the production process, crude oil contains water and salts inevitable. The salts of crude oil severely harm the refinery production. They can form scaling, reduce heat transfer efficiency and increase energy consumption. They can corrode equipment and affect production safety. They can cause catalyst failure, reduce product quality, increase production cost and pollute the environment. But, the crude oil into refinery is affected by various unfavorable factors of influence and increasingly becomes heavier and poorer quality. Moreover, the refinery requires in-depth processing technology of crude oil for improving efficiency and reducing the cost, and the traditional equipment has not well met these needs. So, this topic research the crude oil electrical desalting equipment with intelligent response.
     The author first studied the mechanism of high pressure field to crude oil emulsion and desalination processes. Combined with data analysis results of the field and laboratory, we found the mixing intensity of crude oil and infusing water directly determined the desalting efficiency when multistage desalination. But, the traditional mechanical mixing method can not meet this need because of low efficiency. So, the author put forward his own electric field adjustment scheme according to the theory of electrical dispersion and electrostatic mixed.
     Electrical desalting system generally includes three parts: electrical desalting power with intelligent response, transformer and desalination cans. The main work is the electrical desalting power design. First, using our accumulated technical advantages on crude oil dehyd ration power supply with alternating rectangular-wave, we design the main circuit structure of power supply. The power supply has two working mode: manual and automatic. The automatic specially is designed for desalination process, and has designed intelligent response system in the voltage control circuit. In this system, MCU intelligently responds to the user’s requirements for setting working parameters, controls D/A transition chip and output analog voltage control signal. This control signal input the feedback input of TL494, PWM control chip. Through it, we can control the IGBT module’s duty cycle of the half bridge converter, and then realize the adjustment of desalination electric field. In addition, the MCU is equipped with external data storage, which is used to ensure not losing parameters’information when the power is interrupt. The data communication between the MCU and the computer is achieved by the RS232 data interface.Using VC++6.0 programming language, we designed a computer window for the user’s operating conveniently.
     The system’s hardware and software were completed, then we did desalination experiment. the effect of multistage desalting is good and the efficiency is high, after desalination, the salt rate is below 5mg/L and good crude oil is below 3mg/L, the system can satisfy the customer’s requirement. Based on the same design principle, the writer designed high-power electrical desalting equipment and have did field experiment. Field experiment indicates that the equipment can work stably and reliably, the effect of desalting and dehydration is good, water content can decline to 0.1~0.2% and the salt rate fall below 5mg/L. It meets the requirement of the design and has a significant effect on energy saving. There is a good application prospect.
引文
[1] http://info.finance.hc360.com/2010/10/221013174137-4.shtml.
    [2] http://www.i618.com.cn/news/NewsContent.jsp?docId=1701256.
    [3] Eaton,Paul.Method for Pretreatment of Refinery Feed for Desalting the Feedstock and Related Additive[J],US6,086,750,2000.
    [4]张其耀.原油脱盐与蒸馏防腐[M].北京:中国石化出版,1992,1-169.
    [5]赵天波,祁鲁梁,汪燮卿.我国一些原油中盐类的组成及脱盐效果的研究[J].石油学报,1988,4(3):76-81.
    [6]刘桂玲.石油精细化学品在原油预处理过程中的应用研究[D].华东理工大学,2004.
    [7]赵福麟.采油用剂与采油用液[M].华东石油学院,1987:2.
    [8]刘长久,张广林.石油和石油产品中非烃化合物[J].中国石化出版社.北京,1991:35,50-52,339.
    [9]徐海,于道永,王宁贤等.金属卟啉的热稳定性及热分解动力学研究[J].应用化学,2001,18(6):447-449.
    [10]徐海,于道永,王宁贤等.金属卟啉催化加氢脱金属的初步研究[J].石油学报(石油加工),2001,17(4):18-23.
    [11] Bartley D.Heavy Crudes,Stocks Pose Desalting Problems[J].Oil&Gas,1982,80(95): 117 -124.
    [12]王冠春,殷钟,等.高速电脱盐技术在炼制俄罗斯原油中的应用[J].中外能源,2009,5(14):81-84.
    [13]张建芳,山红红,凃永善.炼油工艺基础知识(第二版)[M].北京:中国石化出版社,2006:58-61.
    [14]张鸿仁.油田原油脱水[M].第一版.北京:石油工业出版社,1990:1-195.
    [15] Singh BP.Ultrasonication for breaking water in oil emulsions Proc Indian Nat’l Sci Aced,Part A 1992,58(3):181-194.
    [16]任卓琳,牟英华,崔付义.原油破乳剂机理与发展趋势[J].油气田地面工程,2005,24(7):16-17.
    [17]徐进,张涛.关于直流电型水力旋流器脱水效率的讨论[J].华北石油设计,2001,63(1):46-48.
    [18] HuangPinY,Tsao Yuh hwang.Acousticse parathion of liquid hrdrocarbon from waste water US 1568[J],1996, 12.
    [19]赵建兴,刘艳等.磁处理原油脱水技术应用原理的研究[J].华北石油设计,2001(4):8-9.
    [20]黄莉,宗明,华义.微波作用下原油脱水规律的实验研究[J].吉林化工学院学报.2005,3(3):14-15.
    [21]刘惠玲.微波脱水技术[J].油田地面工程,1992,11(4):22-25.
    [22]冯叔初,郭揆常,王学敏.油气集输[M].第一版.东营:石油大学出版社,2002:186-210.
    [23]陈家庆,李汉勇,常俊英,等.原油电脱水(脱盐)的电场设计及关键技术[J].石油机械,2007,35(1):53-58.
    [24]张钧.海上采油工程手册[M].北京:石油工业出版社,2001:689.
    [25] J.H.加里,G.E.汉德韦克(著),王加玮,胡德铭(译),沙展世(校对).石油炼制技术与经济[M].第二版.北京:中国石化出版社,1991:20-22.
    [26]杨守国.电脑脉冲式原油脱水系统在中原油田的应用[J].石油工程建设,2002,28(3):54-56.
    [27]孟庆萍.一种新型的稠油电脱水技术[J].石油工程建设,2008,34(2):38-40.
    [28]惠广宇,杨建展.新型破乳药剂在原油脱水中的应用[J].油田节能,2005,16(1):16-17.
    [29]李恩芽,马占芳,褚莹等.原油电破乳新技术[J].油气田地面工程,1995,14(3):21-22.
    [30]林世雄.石油炼制工程[M].第二版.北京:石油工业出版社,1988:346-352.
    [31]刘吉良.实验室原油电脱水试验研究[J].特种油气藏,1998,5(3):65.
    [32] ICHJKAWA Tsuneki , KEISUKE Itoh , YAMAMOTO Shigeki,et a1 . Rapid demulsification of dense oil-in-water emulsion by low external electric field I:experimental evidence[J].Colloids and Surfaces A:Physico—chem Engineering Aspects,2004,242:21-26.
    [33]朱岳麟,黄欣,熊常健等.航空油品高频/高压电脱水微观机理[J].石油炼制与化工,2005,36(4):19-22.
    [34] Noik Christine,Chen Jiaqing,Dalmazzone Christine.Electrostatic demulsification oncrude oil:A state-of-the-art review [J].SPE 103808:1-12.
    [35]江加福,刘小宁,许留伟.大电流系统控制器的设计及其稳定性分析[J].高电压技术,2007,33(3):96-98.
    [36]朱岳麟,冯利利,张艳丽等.原油高频电脱盐机理研究[J].石油学报(石油加工),2006,4:61-65.
    [37]赵磊.矩形波交流原油脱水电源的优化设计[D].山东:中国石油大学(华东),2009.
    [38]牛俊邦,刘强远.新型IGBT逆变式恒电位仪的设计与实现[J].电力电子技术,1999, (2):37—38.
    [39]肖蕴,赵军凯,徐涛等.原油电脱水器技术进展[J].石油化工设备(工程).2009(6):49-53.
    [40]尹克宁.变压器设计原理[M].第一版.北京:中国电力出版社,2003:1-194.
    [41]林萍萍.矩形波交流原油脱水电源的研制[D].山东:中国石油大学(华东),2007.
    [42]赵彩凤,于志,王志勇.高频功率脉冲变压器的设计[J].变压器,2003,40(10):6-9.
    [43]官志远,刘铮,丁富新等.界面相及其特征、表征与应用[J].化工学报,1999,50(3):149-153.
    [44]杨品钊,沈力人,冯海慧.乳状液膜处理硝基酚废水及传质动力学研究[J].膜科学与技术,1992,12(2):39-42.
    [45]谢天敏,王恒岐,电脱水和脱盐合二为一技术在流花油田的应用,中国海上油气(工程),1999(4):44-48.
    [46] Motorola Company.Switchmode Pulse Width Modulation Control Circuit [Z].Motorola Inc.1996.
    [47]文亚凤,刘向军,薛礼妮等.用TL494构成的恒流恒压双闭环系统[J].华北电力大学学报,2002,29(1):63-64.
    [48] Taxas Instroments Company.TL494 Pulse Width Modulation Control Circuit[Z].Taxas Instroments,Feb,2005.
    [49] Toshiba Company.Toshiba photocoupler GaAlAs Ired & Photo-Ic TLP250(INV) [Z].Toshiba Company,June,2002.
    [50]张迎新,雷道振,陈胜等.单片微型计算机原理、应用及接口技术[M].第二版.北京:国防工业出版社,2004:1-361.
    [51]张蓬鹤.AT93C46/56/55串行EEPROM及其在单片机中的应用程序[J].国外电子元器件,2003,12(1):66-68.
    [52] Burr-Brown Company.12-Bit Serial Input Didital-to-Analog Converter [Z].Burr-Brown Corporation,April,1998.
    [53] Taxas Instroments Company.MAX232,MAX232I Dual EIA-232 Driver/Receiver [Z].Taxas Instroments,August,1998.
    [54] National Semiconductor Corporation.ADC0808/ADC0809 8-Bit P Compatible A/D Converters with 8-Channel Multiplexer [Z].National Semiconductor Corporation,October,1999.
    [55] Eugene Olafsen,Kenn Scribner,K.David White.MFC Programming with Visual C++6.0 Unleashed[M].机械工业出版社,2000:40-163.
    [56]侯俊杰.深入浅出MFC(第二版)[M].武汉:华中科技大学出版社,2001:39-385.
    [57]詹红霞.Visual C++6.0程序设计[M].西安:西安电子科技大学出版社,2009:1-200.
    [58]金有海,胡佳宁,孙治谦等.高压高频脉冲电脱水性能影响因素的实验研究[J].高校化学工程学报,2010(12):918-922.
    [59]蒋惠仁.南海流花11-1油田原油脱水技术参数的选择[J].油气地面工程,1992, (06):66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700