基于胺基咪唑功能离子液体吸收分离CO_2性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤过程中以CO_2为主的温室气体的排放,引起全球变暖的现实正不断地向全世界敲响警钟。胺基咪唑功能离子液体在吸收分离CO_2方面具有高效、经济、环保等方面的优势,是一种极具竞争潜力的CO_2分离固定技术。然而,胺基咪唑功能型离子液体固有的高粘度特性极大地影响了其吸收分离CO_2的性能,从而阻碍了该项技术的大规模应用。因此,研究探索一种能够有效改善胺基咪唑功能型离子液体吸收分离CO_2性能的方法,对于该项技术在燃煤CO_2减排领域的应用具有十分重要的理论和应用价值。
     本文选择了具有相对较低粘度和较高CO_2吸收性能的1-(1-胺乙基)-3-甲基咪唑氟硼酸盐([NH_2e-mim][BF_4])为研究对象,重点对其合成制备方法、改善[NH_2e-mim][BF_4]在CO_2吸收分离过程中的传质性能、吸收剂物化性质的估算及其与CO_2吸收性能之间的关联预测等进行了系统研究,主要内容包括:
     运用“两步合成法”成功合成了[NH_2e-mim][BF_4],并系统全面地研究了反应温度、反应时间、溶剂种类、提纯条件、不同阴离子置换剂等对胺基咪唑功能离子液体的合成产率、产物纯度和合成成本的影响,得到了合成制备[NH2-emim][BF_4]的两步反应的最佳工艺条件和原料选取的原则。
     采用功能型离子液体与醇胺混合以及与常规离子液体混合的方法,对改善胺基咪唑功能离子液体[NH_2e-mim][BF_4]在CO_2中的吸收分离性能进行了有益的尝试,通过实验得到了基于较优CO_2吸收和解析性能的混合物配比、吸收和解析工艺条件及多次吸收-解析循环中混合物的物化性能变化。研究结果表明,[NH_2e-mim][BF_4]在与醇胺和常规离子液体混合后均极大地降低了其粘度,有效地改善了其CO_2的吸收分离性能,[NH_2e-mim][BF_4]与常规离子液体的混合较其与醇胺的混合在吸收分离CO_2的性能的改善上更具优势。
     借助已有的物化性质估算方法对基于[NH_2e-mim][BF_4]的两种混合体系的物化性质进行了估算,并研究分析了其与吸收分离CO_2性能之间的关系。研究显示,运用所估算的物化性质参数能为混合体系吸收分离CO_2的性能差异提供微观解释,同时也可以较好地预测分析温度、物质的组成等对两类混合体系吸收分离CO_2的性能的影响。
Global warming is caused by greenhouse gas emission, particularly by a large amountof CO_2released into the atmosphere from coal combustion, and this issue continues toreceive worldwide attention. Amino imidazole functional ionic liquids has high efficiency,economy, environmentally friendly and other advantages in the absorption separation ofCO_2, is a highly competitive potential CO_2emission reduction technology. However, highviscosity characteristics of amino imidazole functional ionic liquids hindered the masstransfer of CO_2absorption, greatly influenced the absorption performance, and limited thelarge-scale application of the technology. So, it is very important and necessary to explorean effective way on improving CO_2absorption and separation performance of aminoimidazole functional ionic liquids, which has important theoretical and application value forthe application in the field of CO_2emission reduction in flue gas.
     1-(1-aminoethyl)-3-methyl imidazole tetrafluoroborate ([NH_2e-mim][BF_4]) waschoosen which had lower viscosity and higher CO_2absorption performance as therepresentative of amino imidazole functional ionic liquids in this paper. Methods ofsynthesis and possible ways on improving the gas-to-liquid mass transfer between CO_2with[NH_2e-mim][BF_4] were studied. Then the absorbent physicochemical properties wereestimated, and the relationship with CO_2absorption performance were discussed. The maincontents were as follows:
     [NH_2e-mim][BF_4] was synthesized successfully by "two step synthesis" method. Andthe effect of reaction temperature,reaction time,solvent type,purification conditions anddifferent anion exchange agents on the yield、the purity and the economy were discussedsystematically and comprehensively. The optimum process conditions of two step reactionsand the principle of material selection were obtained.
     An useful attempt were be carried out to improve CO_2absorption and separationperformance of [NH_2e-mim][BF_4] by mixing with alcohol amine and conventional ionicliquid. Suitable ratio and optimal conditions of CO_2absorption and regeneration, and thechanges of physical and chemical properties of mixtures after multiple absorption- desorption were obtained by experiment. The results showed that the viscosity of two kindof mixtures were reduced dramatically, and the CO_2absorption and separation performancewere improved effectively comparing with [NH_2e-mim][BF_4]. It had more advantage that[NH_2e-mim][BF_4] blended with conventional ionic liquids than mixed with alcohol aminefor achieving better CO_2absorption and separation performance.
     Physical and chemical properties of two kinds of hybrid system based on[NH_2e-mim][BF_4] were estimated using existing methods, and the relationship betweenphysicochemical properties and CO_2absorption and separation performance were discussed.Studies have shown that the use of the estimated parameters of the physical and chemicalproperties can provide a microscopic explanation on the CO_2absorption and desorptionperformance difference for the mixed systems. At the same time, it also can be used topredict the effects of temperature and material composition of two kind of hybrid system onCO_2absorption and separation performance.
引文
[1]郑楚光.温室效应及其控制对策[M].北京:中国电力出版社,2001:16-26.
    [2] Feron P H M. Exploring the potential for improvement of the energy performance ofcoal fired power plants with post-combustion capture of carbon dioxide [J]. In. J.Greenh. Gas Con.2010,4:152-160.
    [3] Karadas F, Atilhan M, Aparicio S. Review on the use of ionic liquids (ILs) asalternative fluids for CO2capture and natural gas sweetening[J]. Energy Fuels.2010,24:5817-5828.
    [4]姚淑梅,王晓刚,张辉等.离子液体固定化利用CO2研究进展[J].化工进展,2008,27(5):640-641.
    [5]彭慧芳,许学工.中国温室气体减排适宜方案的选择[J].环境污染与防治,2005,27(2):25-29.
    [6] Heintz Y J, Sehabiague L, Morsi B I et al. Hydrogen sulfide and carbon dioxideremoval from dry fuel gas streams using an ionic liquid as a physical solvent [J].Energy Fuels,2009,23:4822-4830.
    [7] Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2capture technology-The U.S. Department of Energy’s Carbon Sequestration Program [J]. In. J. Greenh. Gas Con.2008,2:9-20.
    [8]吴克明,黄松荣, CONCHAF.温室气体CO2的分离回收及其资源化[J].武汉科技大学学报(自然科学版),2001,24(4):365-369.
    [9] Michlo I, Hirom I, Nobuo A.Technology for removing carbon dioxide from powerplant flue gas by the physical adsorption method. Energy convers. Mgmt,1996,37(6-8):929-933.
    [10] Ilconich J, Myers C, Pennline H, et al. Experimental investigation of the permeabilityand selectivity of supported ionic liquid membranes for CO2/He separation attemperatures up to125℃[J]. Journal of Membrane Science,2007,298(1-2):41-47.
    [11] Dean C, Jason E B, Douglas L G, et al. Room-temperature ionic liquid-aminesolutions: tunable solvents for efficient and reversible capture of CO2[J]. Ind. Eng.Chem. Res.2008,47:8496-8498.
    [12] Plaza J M, Wagner D W, Rochelle G T. Modeling CO2capture with aqueousmonoethanolamine [J]. Energy Procedia,2009,1:1171-1178.
    [13] Yeh A C, Bai H. Comparison of ammonia and monoethanolamine solvents to reduceCO2greenhouse gas emissions [J]. The Science of the Total Environment,1999,228:121-133.
    [14] Wong S. CO2Capture, Compression and Transport [J].中国石油CO2捕获和埋存技术研会,2006,10,北京.
    [15] Puxty G, Rowland R, AllportA, et al. Carbon dioxide post combustion capture: Anovel screening study of the carbon dioxide absorption performance of76amines [J].Environ. Sci. Technol.2009,43:6427-6433.
    [16] Pennline H W, Luebke D R, Jones K L, et al. Progress in carbon dioxide capture andseparation research for gasification-based power generation point sources [J]. FuelProcess. Technol.2008,89:897-907.
    [17] Zhou S, Chen X, Nguyen T, et al. Aqueous ethylenediamine for CO2capture [J].Chem-SusChem.2010,3:913-918.
    [18] Rochelle G T. Amine scrubbing of CO2capture [J]. Science,2009,325:1652-1654.
    [19] Himanshu G, Fan L S. Carbonation-calcination cycle using high reactivity calciumoxide for carbon oxide separation from flue gas [J]. Ind. Eng. Chem. Res.,2002,41:4035-4042.
    [20] Schach M O, Schneider R, Schramm H, et al. Techno-economic analysis ofpost-combustion processes for the capture of carbon dioxide from power plant fluegas[J]. Ind. Eng. Chem. Res.2010,49:2363-2370.
    [21]李汝雄.绿色溶剂——离子液体的合成与应用[M].北京:化学工业出版社,2004,5.
    [22]张锁江,吕兴梅.离子液体——从基础研究到工业应用[M].北京:科学出版社,2006,6.
    [23] Zhang S J, Chen Y H, Li F W, et al. Fixation and conversion of CO2using ionicliquids[J]. Catalysis Today,2006,115:61-69
    [24]魏文英.离子液体作为CO2吸附剂的研究进展[J].化学工程师,2010,174(3):41-44.
    [25] Jacek K, Pe′rez-Salado K A, Dirk T, et al. Solubility of CO2in the ionic liquid
    [hmim][Tf2N][J]. J. Chem. Thermodynamics,2006,38(11):1396-1401.
    [26] Lim B H, Choe W H, Shim J J, et al. High-pressure solubility of carbon dioxide inimidazolium-based ionic liquids with anions [PF6] and [BF4][J]. The Korean Journalof Chemical Enginering,2009,26(4):1130-113.
    [27] Zhu X, Lu Y X, Peng C J, et al. Halogen bonding interactions between brominatedion pairs and CO2molecules: implications for design of new and efficient ionicliquids for CO2absorption [J]. J. Phys. Chem. B,2011,115:3949-3958.
    [28] Chen Y, Han J, Wang T, et al. Determination of absorption rate and capacity of CO2in ionic liquids at atmospheric pressure by thermogravimetric analysis[J]. EnergyFuels2011,25:5810-5815.
    [29]孔庆华,王莉,李天成等.低压下[C6mim][PF6]用于二氧化碳吸收及解析性能研究[J].现代化工,2011,31(1):90-95.
    [30] Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquidsand CO2[J]. Nature,1999,399:28-29.
    [31]吴永良,焦真,王冠楠等.用于CO2吸收的离子液体的合成、表征及吸收性能[J].精细化工,2007,24(4):324-340.
    [32]关卫省,李宇亮,茹静等.1-丁基-3-甲基咪唑六氟磷酸盐离子液体合成[J].应用化工,2010,39(6),818-826.
    [33]蔡月琴,彭延庆,宋恭华等.室温离子液体1-丁基-3-甲基咪哇六氟磷酸盐的合成研究[R].化学试剂,2005,27(1),1-2.
    [34] Wilkes J S, Zaworotko M J. Air and water stable1-ethyl-3-methylimidazolium basedionic liquids [J]. Chem.Commun,1992,13:965-967.
    [35]方东,施群荣,巩凯等.咪唑型室温离子液体的绿色合成研究[J].化学试剂,2007,29(1):4-6.
    [36] Jastorff B, Sttirmann R, Ranke J, et a1. How hazardous are ionic liquids?Structure—activity relationships and biological testing as important elements forsustainability evaluation [J]. Green Chem.,2003,5(2):136-142.
    [37] Rajender S V, Vasudevan V N. An expeditious solvent free route to ionic liquids usingmicrowaves [J]. Chem. Commun.,2001,(7):643-644.
    [38] Khakil K B M, Rebeiro G L. Microwave assisted synthesis of room temperature ionicliquid precursor in close dvessel [J]. Org. Process Res. Dev.,2002,6(6):826-828.
    [39] Deetlefs M, Seddon K R. Improved preparations of ionic liquids using microwaveirradiation [J]. Green Chem.,2003,5:181-186.
    [40] Shiflett M B, Yokozeki A. Phase behavior of carbon dioxide in ionic liquids:
    [emim][Acetate],[emim][Trifluoroacetate], and [emim][Acetate] plus [emim]
    [Trifluoroacetate] mixtures[J]. J. Chem. Eng. Data.2009,54:108-114.
    [41] Dong K, Zhang S J, Wang D X, et a1. Hydrogen bonds in imidazolium ionic liquids[J]. J. phys. Chem. A,2006,110:9775-9782.
    [42] Blanchard L A, Gu Z Y, Brennecke J F. High-pressure phase behavior of ionicliquids/CO2systems [J]. J. Phys. Chem. B.,2001,105:2437-2444.
    [43] Blanchard L A, Brennecke J F. Recovery of organic products from ionic liquids usingsupercritical carbon dioxide [J]. Ind. Eng.Chem. Res.,2001,40:287-292.
    [44] Yuan X L, Liu J, Zhang S J, et a1. Solubilities of CO2in hydroxyl ammonium ionicliquids at elevated pressures [J]. Fluid Phase Equilib,2007,257(2):195-200.
    [45] Anthony J L, Anderson J L, Maginn E J, et al. Aion effects on gas solubility on ionicliquids[J]. J. Phys. Chem. B,2005,109:6366-6374.
    [46] Schilderman A M, Raeissi S, Peters C J. Solubility of carbon dioxide in the ionicliquid1-ethy-3-methylimidazolium bis (trifluo-romethylsulfonyl)imide[J]. FluidPhase Equilib,2007,260(1):19-22.
    [47] Muldoon M J, Aki S N V K, Anderson J L, et al. Improving carbon dioxide solubilityin ionic liquids[J]. J. Phys. Chem. B.2007,111,9001-9009.
    [48] Zhang J M, Yang C H, Hou Z S, et al. Effect of dissolved CO2on the conductivity ofthe ionic liquid [bmim][PF6][J]. New J. Chem.,2003,27:333-336.
    [49] Mark J M, Sudhir N V K A, Jessica L A. Improving carbon dioxide solubility in ionicliquids, the journal of physical chemistry [J]. B, Condensed matter, materials,surfaces, interfaces&bio-physical,2007,111(30):9001-9009.
    [50] Cadena C, Anthony J L, Shah J K, et al. Why is CO2so souble in imidazolium-basedionic liquid?[J]. J. Am. Chem. Soc.,2004,126(16):5300-5308.
    [51] Bhargava B L, Balasubramanian S. Probing anion-carbon dioxide interactions inroom temperature ionic liquids: Gas phase cluster calculation [J]. Chemical PhysicsLetters,2007,444(4-6):242-246.
    [52] Gala’n Sa’nchez L M, Meindersmal G W, deHaan A B. Solvent properties offonctional ionic liquids for CO2absorption [J]. J Chem Eng Data,2007,85:31-39.
    [53] Honga G, Jacquemin J, Deetlefs M, et al. Solubility of carbon dioxide and ethane inthree ionic liquids based on the bis[(trifluoromethyl) sulfonyl]imide anion[J]. FluidPhase Equilibria,2007,257(1):27-34.
    [54] Anthony J L, Crosthwaite J M, Hert D G, et al. Phase equilibria of gases and liqulidswith1-n-butyl-methylimidazolium tetrafluoroborate [J]. ACS Symp. Ser,2003,856:110-120.
    [55] Zhang S J, Chen Y H, Ren X F, et al. Solubility of CO2in sulfonate ionic liquids athigh pressure [J]. J. Chem. Eng. Data,2005,50(1):230-233.
    [56]袁晓亮,张延强,兰玲等.离子液体固定CO2及其转化利用的研究进展[J].过程工程学报,2008,8(2):409-416.
    [57] Bates E D, Mayton R D, Ntai I, et a1. CO2capture by a task-specific ionic liquid [J]. J.Am. Chem. Soc.,2002,124(6):926-927.
    [58] Zhang S J, Yuan X L, Chen Y H, et al. Souubility of CO2in1-butyl-methylimidazolium hexafluorophosphate and1,1,3,3-tetramethylguanidiumlactate at elevated pressures[J]. J. Chem. Eng. Data,2005,50(5):1582-1586.
    [59] Zhang J M, Zhang S J, Dong K, et a1. Supported absorption of CO2bytetrabutylphosphonium amino acid ionic liquids [J]. Chem. Eur. J.,2006,12:4021-4026.
    [60] Xue Z M, Zhang Z F, Han J, et al. Carbon dioxide capture by a dual amino ioniliquid with amino-functionalized imidazolium cation and taurine anion [J]. In. J.Greenh. Gas Con.2011,5:628-633.
    [61] Sánchez L M, Meindersma G G W, de Haan A B. Kinetics of absorption of CO2inamino-functionalized ionic liquids [J]. Chem. Eng. J.2010,166:1104-1115.
    [62] Gutowski K E, Maginn E J. Amine-functionalized task-specific ionic liquids: amechanistic explanation for the dramatic increase in viscosity upon complexationwith CO2from molecular simulation [J]. J. Am. Chem. Soc.2008,130:14690-14704.
    [63] Goodrich B F, de la Fuente J C, Gurkan B E, et al. Effect of water and temperature onabsorption of CO2by amine-functionalized anion-tethered ionic liquids [J]. J. Phys.Chem. B.2011,115:9140-9150.
    [64] Liu H Y, Zhao X L, Li R. Studies on CO2absorption by Gemini-amine function ionicliquids [J]. Chem. Eng.2011,186:9-11.
    [65] Sánchez L M, Meindersma G G W, de Haan A B.Solvent properties of functionalizedionic liquids for CO2absorption [J]. Tran IchemE, Part A, Chemical EngineeringResearch and Design,2007,85(A1):31-39.
    [66] Baraa J E, Gabrielb C J, Carlislea T K., et al. Gas separations influoroalkyl-functionalized room-temperature ionic liquids using supported liquidmembranes [J]. Chemical Engineering,2009,147(1):43-50.
    [67] Tang H D, Tang J B, Ding S J, et a1. Atom transfer radical polymerization of styrenicionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids[J]. Inc. J. Polym. Sci.(PartA: Polym. Chem).2005,43: l432-1443.
    [68] Tang J B, Sun W L, Tang H D, et a1. Enhanced CO2absorption of poly (ionicliquid)s[J]. Macmmolecules,2005,38:2037-2039.
    [69] Tang J B, Tang H G, Sun W L, et a1. Poly (ionicliquid)s: a new materials for CO2absorption[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2005,43:5477-5489.
    [70] Tang J B, ShenY Q, Radosz M. Isothermal carbon dioxide sorption in Poly(ionicliquid)s[J]. Industrial&Engineering Chemistry Research,2009,48(20):9113-9118.
    [71] Yokozeki A, Shiflett M B, Junk C P, et al. Physical and chemical absorptions ofcarbon dioxide in room-temperature ionic liquids[J]. J. Phys. Chem. B2008,112(51):16654-16663.
    [72] Demberelnyamba D, Yon S J, Lee H. New epoxide molten salts: key interm ediatesfor designing novel ionic liquids [J]. Chem. Let.,2004,33(5):560-561.
    [73] Quinn, R. Room temperature molten carboxylate salt hydrates [J].Synth. React. Inorg.,Met. Org. Chem.2001,31(3):359-369.
    [74] Wang G N, Hou W L, Xiao F, et al. Low-viscosity triethylbutylammonium acetate asa task-specific ionic liquid for reversible CO2absorption[J]. J. Chem. Eng. Data2011,56:1125-1133.
    [75] Jiang Y Y, Wang G N, Zhou Z, et a1. Tetraalkylanum amino acids as funetionalizedionic liquids of locosity [J]. Chem. Commun.,2008,5:505-507.
    [76]刘华兵,徐国文,张成芳.活化MDEA水溶液中CO2的溶解度[J].华东理工大学学报,1999,25(3):242-246.
    [77] Shiflett M B, K asprzak D J, Junk C P, et al. Phase behavior of {carbondioxide+[bmim][Ac]} mixtures [J]. J. Chem. Thermodyn,2008,40:25-31.
    [78] Yim J H, Song H N, Yoo K P, et al. Measurement of CO2solubility in ionic liquids:
    [BMP][Tf2N] and [BMP][MeSO4] by measuring bubble-point pressure[J]. J. Chem.Eng. Data2011,56:1197-1203.
    [79] Shin E K, Lee B C. High-pressure phase behavior of carbon dioxide with ionicliquids:1-Alkyl-3-methylimidazolium trifluoromethanesulfonate[J]. J. Chem. Eng.Data2008,53:2728-2734.
    [80] Song H N, Lee B C, Lim J S. Measurement of CO2solubility in ionic liquids:
    [BMP][TfO] and [P14,6,6,6][Tf2N] by measuring bubble-point pressure[J]. J. Chem.Eng. Data2010,55:891-896.
    [81] Peters R J. Carbondioxide solubility in the homologous1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imidefamily[J]. J.Chem Eng Data,2009,54:382-386.
    [82] Shariati A, Peters C J. High-pressure Phase Equilibria of Systems with Ionic Liquids[J]. J. Supercrit. Fluids,2005,34:171-176.
    [83] Shariati A, Gutkowski K, Peters C J. Comparison of the Phase Behavior of SomeSelected Binary Systems with Ionic Liquids [J]. AIChE J.,2005,51:1532-1540.
    [84] Carvalho P J, á lvarez V H, Marrucho I M, et al. High pressure phase behavior ofcarbon dioxide in1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imideand1-butyl-3-methylimidaz olium dicyanamide ionic liquids[J]. J. Supercrit Fluids,2009,50:105-111.
    [85] Aki S N V K, Mellein B R, Saurer E M, et al. High-pressure Phase Behavior ofCarbon Dioxide with Imidazolium-based Ionic Liquids[J]. J. Phys. Chem. B,2004,108:20355-20365.
    [86] Marsh K N, Boxal J A, Lichtenthaler R. Room temperature ionic liquids and theirmixtures-a review[J]. Fluid Phase Equilibria,2004,219:93-98.
    [87]张建敏.溶剂——离子液体混合体系的物理化学性质的研究[D].北京:中国科学院化学研究所,2003.46-52.
    [88] Zafarani-moattar M T, Shekaari H. Apparent molar volume and isentropiccompressibility of ionic liquid1-butyl-3-methylimidazolium bromide in water,methanol and ethanol at T=(298.15to318.15)K[J]. J. Chem. Thermodyn.,2005,37(10):1029-1035.
    [89] Gomez E, Gonzalez B, Dominguez A, et al. Dynamic viscosities of a series of1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures withwater at several temperatur[J]. J. Chem. Eng. Data,2006,51(2):696-701.
    [90]董丽,郑丹星,武向红等.离子液体[Emim]Br水溶液的密度和超额体积[J].工程热物理学报,2009,30(8):1271-1274.
    [91] Ficke L E, Novak R R, Brennecke J F. Thermodynamic and thermophysicalproperties of ionic liquid+water system[J]. J. Chem. Eng. Data,2010,55(11):4946-4950.
    [92] Zhang Z F, Wu W, Liu Z M, et al. A Study of tri-phasic behavior of ionicliquid-methanol-CO2systems at elevated pressures [J]. Phys. Chem. Chem. Phys.,2004,6:2352-2357.
    [93] Zhang Z F, Wu W Z, Gao H X, et al. Tri-phase behavior of ionic liquid-water-CO2system at elevated pressure [J]. Phys.Chem. Chem. Phys.,2004,6:5051-5055.
    [94] Zhang Z F, Wu W Z, Wang B, et al. High-pressure phase behavior ofCO2/acetone/ionic liquid system [J]. J. Supercritical. Fluids,2007,40:1-6.
    [95] Scurto A M, Aki S N V K, Brennecke J F. CO2as a separationSwitch for ionicliquid/organic Mixtures[J]. J. Am.Chem.Soc.,2002,124:10276-10277.
    [96] Scurto A M, Aki S N V K, Breennecke J F.Carbon dioxide induced separation ofionic liquids and water [J]. Chem. Commn.,2003:572-573.
    [97] Wasserscheid P, Welton T. Ionic Liquids in Synthesis[M], Wiley-VCH: Weinheim,Germany,2004.
    [98] Danckwerts P V. Gas-Liquid Reactions [M]. New York: McGraw-Hill Book Co,1970.
    [99]李松林,周亚平,刘俊吉.物理化学(第5版)[M].北京:高等教育出版社,2009,5.
    [100] Kurnia A K, Abdul M M I, Ariwahjoedi B. Estimation of physicochemical propertiesof Iionic liquids [H2N-C2mim][BF4] and [H2N-C3mim][BF4][J]. J. Chem. Eng. Data,2011,56:2557-2562.
    [101] Camper D, Bara J E, Gin D L, et al. Room temperature ionic liquid-amine solutions:Tunable solvents for efficient and reversible capture of CO2[J]. Ind. Eng. Chem. Res.2008,47:8496-8498.
    [102] Sharma P, Park S D, Park K T, et al. Equimolar carbon dioxide absorption by etherfunctionalized imidazolium ionic liquids [J]. B. Korean Chem. Soc.2012,33:2325-2332.
    [103] Chen J J, Li W W, Li X L, et al. Carbon dioxide capture by aminoalkylimidazolium-based ionic liquid: a computational investigation[J]. Phys. Chem. Chem.Phys.,2012,14:4589-4596.
    [104] Wang C, Luo H, Li H, et al. Tuning the physicochemical properties of diversephenolic ionic liquids for equimolar CO2capture by the substituent on the anion [J].Chemistry.2012,18:2153-2160.
    [105]陈敏恒,丛德滋,方图南等.化工原理(第三版)[M].北京:化学工业出版社,2010,7:7-17.
    [106] Ali Y, Narasimhan S. Sensor network design for maximizing reliability of linearprocesses [J]. AIChE J,1993,39(5):820-828.
    [107] Schreiner C, Zugmann S, Hartl R, et al. Fractional walden rule for ionic liquids:Examples from recent measurements and a critique of the so-called ideal KCl line forthe walden plot [J]. J. Chem. Eng. Data,2010,55(5):1784-1788.
    [108] Crosthwaite J M, Muldoon M J, Dixon J K, et al.Phase transition and decompositiontemperatures, heat capacities and viscosities of pyridinium ionic liquids[J]. J. Chem.Thermodyn,2005,37:559-568.
    [109] Jacquemin J, Husson P, Padua A A H, et al. Density and viscosity of several pure andwater-saturated ionic liquids [J].Green Chem.,2006,8:172-180.
    [110] Anthony J L, Anderson J L, Maginn E J, et al. Anion effects on gas solubility in ionicliquids [J].J. Phys. Chem. B,2005,109(13):6366-6374.
    [111] Paul S, Dean C, Jesse K, et al. Regular solution theory and CO2gas solubility in roomtemperature ionic liquids [J]. Ind. Eng. Chem. Res.2004,43(21):6855-6860.
    [112] Aki S N V K, Mellein B R, Saurer E M,et al. High-pressure phase behavior of carbondioxide with imidazolium-based ionic liquids [J]. J. Phys. Chem. B,2004,108(52):20355-20365.
    [113] Wang G N, Hou W L and Feng X. Low-viscosity triethylbutyl ammonium acetate as atask-specific ionic liquid for reversible CO2absorption[J]. J. Chem. Eng. Data2011,56:1125-1133.
    [114]韩丽君.离子液体在混合溶剂中的基础物理化学性质研究[D].河南师范大学,2005.
    [115] Malyanah E T, Thanapalan M. Densities and excess molar volumes of binarymixtures of bis (2-hydroxyethyl) ammonium acetate+water and monoeyhanolamine+bis(2-hydroxyethyl) ammonium acetate at temperature from (303.15to353.15)K[J]. J. Chem. Eng. Data,2010,55:5910-5913.
    [116] Glasser L. Lattice and phase transition thermodynamics of ionic liquids [J].Thermochim. Acta2004,421:87-93.
    [117] Adamson A W. Physical chemistry of surfaces [M],3rd ed., John-Wiley: New York,1986.
    [118] Shereshefsky J L. Surface tension of saturated vapors and the equation of Eotvos [J].J. Phys. Chem.1931,35:1712-1720.
    [119] Zaitsau D H, Kabo G J, Strechan A A, et al. Experimental vapor pressures of1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlationscheme for estimation of vaporization enthalpies of ionic liquids [J]. J. Phys. Chem.A,2006,110:7303-7306.
    [120] Cai Y Q, Lu F, Peng Y Q, et al. Preparation and characterization of amino orcarboxyl-functionalized ionic liquids [J]. Chin.Chem. Lett.2007:18:21-23.
    [121] Zang S L, Fang D W, Li J X, et al. Estimation of physicochemical properties of ionicliquid HPReO4using surface tension and density [J]. J. Chem. Eng. Data,2009,54:2498-2500.
    [122] Tong J, Hong M, Guan W, et al. Studies on the thermodynamic properties of newionic liquids:1-methyl-3-pentylimidazolium salts containing metal of group III [J]. J.Chem. Thermodyn.2006,38:1416-1421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700