红麻不同基因型材料亲缘关系及种质鉴定的细胞学和分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验进行了红麻11个常规栽培种和3个野生种的细胞学标记及RAPD分子标记的研究。通过建立14个品种的核型模式图在染色体水平上比较红麻不同品种间的遗传差异,并在探讨红麻种子基因组DNA提纯方法和优化PCR扩增反应体系的基础上,利用RAPD技术对红麻品种基因组DNA多态性进行研究,检测出各品种的特异性DNA谱带,并依据分子标记研究结果探索了栽培种与野生种的亲缘关系,为红麻种质资源的系统进化研究和开发利用提供了科学依据,同时也为红麻种质鉴定建立起一种快速、简便、实用的方法。通过以RAPD分子标记为主,细胞学标记为辅的红麻品种遗传差异和种质鉴定的研究分析,结果表明:
     1.细胞学标记研究采用了稍加改进的F-BSG法获得了根尖细胞染色体分散、平展、分裂相多、随体清晰的染色体制片。核型分析结果表明14个品种的核型均为基本对称核型,但染色体的随体大小、数目等方面还存在一些差异。所以,红麻细胞学研究可以作为一种细胞学标记用于红麻不同基因型材料亲缘关系及种质鉴定的分析。
     2.为了缩短时间,减少工作量,本试验探索出一种经济、快速、简便、能够用于RAPD分析的红麻种子基因组DNA提取新方法。针对红麻种子中富含蛋白质、脂肪和糖类等贮藏物质,可能还含有丰富的酚类物质及酚氧化酶等,在提取液中加入适量β-巯基乙醇,有效地防止氧化褐变,排除杂质的干扰。同时,采用氯仿-异戊醇代替酚抽提,避免了酚难去除带来的交叉污染等,获得了高浓度和高质量的基因组DNA,较好地用于PCR扩增,进行RAPD分析。
     3.稳定的RAPD反应体系是进行RAPD分析的关键。通过实验优化建立了合适的RAPD反应体系。在25μl反应体系中含有:1×buffer,2.0mmol/LMgCl_2,200μmol/L dNTPs,0.6μmol/L随机引物,30ng基因组DNA,0.75U Taq酶。反应扩增程序为:94℃预变性5min,使模板DNA充分变性,然后进入下列温度循环:94℃变性30sec,38℃退火45sec,72℃延伸1min30sec,重复40个热循环,结束循环后72℃终延伸7min。按照优化的RAPD条件进行的重复实验,重现性较好,为红麻分子生物学研究提供参考依据。
    
     4.采用RAPD技术对红麻14个品种进行基因组DNA多态性分析,从150
    个随机引物中筛选出了重复性好、有丰富多态性的99个引物,共产生766条带,
    其中多态性带347条,占45.3%,反映不同红麻品种间存在遗传差异。扩增片段
    长度大多数集中在0.2~1.skb之间。应用SAS软件,采用系统聚类法中的Average
    Linkage Cluster Analysis对 GD进行遗传分类,构建树系图,将 14个红麻品种聚
    成七类,这同一般形态分类和己知的亲缘关系较吻合。从聚类结果中还可以看出,
    励海紫茎和元江红麻虽然原产地都是在云南,但两者的遗传差异较大,元江红麻
    是早熟特性,而励海紫茎是迟熟特性;NA 414尽管是野生种,但它同红引13 5
    的遗传差异为0刀7,亲缘关系比较近,它们在表型上也表现出一定的一致性。说
    明用RAPD方法对红麻进行分类和亲缘关系研究是有效的。
     5.RAPD分析能检测出大量变异,通过比较各品种间的特异带或特征带的差
    异,可进行品种鉴别和纯度鉴定。利用14个引物扩增获得的14条RAPD特征
    带,作为一组 DNA指纹图谱可以区分所有供试的 14个红麻品种。其中,MX 247、
    UG 93、NA 414、塔什干、古巴8号上个品种分别在弓I物S153、S18。、S184、SZ、
    S186扩增时产生 S153-320hp、S18。-1543hp、S184-1100hp、SZ-1100hp、S186-980hp
    特征性条带,利用这些特征带可进行红麻品种的早期鉴定。
     6.本研究的创新之处就在于首次将RAPD分子标记技术同细胞学标记技术
    相结合应用于红麻 11个常规栽培种和 3个野生种的遗传差异研究,探索品种间
    亲缘关系,并根据扩增出的特异性DNA谱带进行种质鉴定。研究表明不同品种
    的核型、随体大小及数目的差异与RAPD分析结果基本一致,RAPD分子标记和
    细胞学标记研究结合更能在一定程度上反映出品种的内在遗传差异。这些都表明
    RAPD技术辅之以细胞学标记技术检测出的DNA水平上的遗传差异,不仅有可
    能解决传统的红麻形态学分类方法所不能解诀的疑难问题,而且还可为红麻品种
    的早期鉴定提供分子指标。
In this experimentation, random amplified polymorphic DNA (RAPD) technique and chromosome karyotype analysis were used to analyze the genetic relationship of eleven cultivars and three wild stirps of Hibiscus cannabinus L.. As to cytological markers, comparing karyotypes and finding heredity differences of them by establishing fourteen idiograms. The extraction methodology of genomic DNA of Hibiscus cannabinus L. was explored and the influential parameters were optimized. On the basis of them, RAPD was used to investigate the genetic polymorphisms among fourteen breeds. And the relations of them was to be researched, RAPD characteristic markers were to be found. RAPD molecular markers being main part assisting cytological markers, the analysis of heredity differences and breeds distinction were carried out. Results were as follows:
    1 .In studies of cytological markers, cells of chromosomes scattered, flatted, more split phases were obtained using modified F-BSG method. The results of study for karyotype showed that fourteen breeds had similar karyotypes, but they also had some differences among them. According to those we could identify them. Therefore this cytological research can be cytological markers used to analyze the relations and the breeds distinction of various genotypes of Hibiscus cannabinus L.
    2.To save time and reduce workload, a economical, rapid, simple, and applicable for RAPD analysis extraction methodology of seeds genomic DNA of Hibiscus cannabinus L. was explored. Aimed at much protein, grease, sugar and oxidized polyphenolic components in seeds of Hibiscus cannabinus L, it is a best way of adding suitable 3 -EM to lysis. Furthermore, high concentration and good quality seeds genomic DNA of Hibiscus cannabinus L. were obtainde using CIAA instead of propanone. The genomic DNA samples, prepared from seeds of Hibiscus cannabinus L. with aforementioned modified method were to be used as templates for polymerase chain reaction (PCR) and very suitable for RAPD analysis.
    3.Steady reaction system is the key point to RAPD analysis. The influential
    
    
    factors such as templates DNA, dNTPs, MgCb, primers, Taq polymerase and so on were studied and experimental parameters were optimized. They were as follows: 25 H 1 reaction system containing 1 X buffer, 2.0mmol/LMgCl2, 200 V- mol/L dNTPs, 0.6 V mol/L primers, 30ng template, 0.75U Taq polymerase. The optimal amplification program was as follows: 5min at 94 , followed by 94 for 30sec, 38 for 45sec, 72 for IminSOsec, 40 cycles and final extension time of 72 for 7min.This optimized experiment conditions could obtain reproducible results and provide good references to molecular biology.
    4.The genetic polymorphism of Hibiscus cannabinus Z.was investigated using random amplified polymorphism DNA marker, the detected materials included eleven cultivars and three wild stirps. Ninety-nine primers selected from one hundred and fifty primers amplified 766 RAPD fragments and 347 bands of them showed polymorphism, which occupied 45.3%. The length of most amplified fragments ranged from 0.2 to 1.5kb. The dendrogram was constructed by using SAS software and Average Linkage Cluster Analysis method based on their genetic differences calculated from RAPD data. It was concluded that fourteen breeds which have been tested in the research could be classified into seven groups. The map relatively accorded with morphological analysis and known relationships. It also showed that the genetic difference between Menghaizijing and Yuanjianghongma were comparatively farther, although they all originated from Yunnai. The genetic difference between NA 414 and Hongyinl35 were relatively closer, in spite of NA 414 is wild stirp. These fragments were efficiently used in the analysis of the relationship of the fourteen breeds.
    5.RAPD analysis can examine lots of variations. There were fourteen RAPD characteristic markers, which were detected as a group of DNA fingerprints to identify all the fourteen cultivars. Specific markers were found in five cultivars, that is MX 247, UG
引文
[1] 贾继增.分子标记种质资源鉴定和分子标记育种。中国农业科学,1996,29(4):1~10
    [2] 刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的应用Ⅰ遗传标记的发展及分子标记的检测技术.湖北农业科学,1998,1:33~35
    [3] 周延清.遗传标记的发展.生物学通报,2000,35(5):17~18
    [4] 李竟雄,宋同明著.植物细胞遗传学.北京:科学出版社,1997,1~51
    [5] 洪德元编著.植物细胞分类学.北京:科学出版社,1990
    [6] Cooke R J. Gel electrophoresis for the identification of plant varieties. Journal of chromatography, 1995,698:281~299
    [7] 胡志昂,王洪新.蛋白质多样性和品种鉴定.植物学报,1991,33(7):556~564
    [8] Draper S R. ISTA variety committee report of the working group for biochemical tests for culture identification 1983~1986. Seed Sci and Technical, 1987,15: 431~434
    [9] Staub J E, Serquen F C, Gupta M. Genetic markers, map construction and their application in plant breeding. Hort Science, 1996,31(5):729~741
    [10] 沈法富,刘风珍,于元杰.分子标记在植物育种中的应用.山东农业大学学报,28(1):83~91
    [11] 白建荣,郭秀容,后变英.分子标记的类型、特点及在育种中的应用.山西农业科学,1999,27(4):33~38
    [12] 黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,4:19~22
    [13] Grodzicker J. Cold Spring Harbour Symp Quant Biol.1974,39:493
    [14] Bostein D, White R L, Skolnick M and Davis. Construction of a genetic map in man using restriction fragment polymorphisms. Am J Hum Genet, 1980,32:314~331
    [15] Donis-keller H.A genetic linkage map of the human genome. Cell, 1987,51:319~337
    [16] 陆朝福,朱立煌.植物育种中分子标记辅助选择.生物工程进展,1995,15(4):11~17
    [17] 徐吉臣.遗传图谱中的分子标记.生物工程进展,1992,12(5):1~3
    [18] Beckmann M. Genetic diversity analysis in plant with RFLP method.
    
    Euphtica, 1986,35:111~124
    [19] Beckmann J S, Soller M. Restriction fragment length polymorphism in genetic improvement:methodologies, mapping and costs. Theor Appl Genet, 1983,67:35~43
    [20] 肖顺元,张文才.RFLP在柑橘遗传多样性研究上的应用.果树科学,1995,12(1):1~4
    [21] 张立平,林伯年,沈德绪.葡萄属植物核糖体基因的RFLP分析.园艺学报,1997,24(4):385~387
    [22] Dietrich W F. A comprehensive genetic map of the mouse genome. Nature, 1996, 380:149~152
    [23] Dib C.A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature, 1996,380:152~154
    [24] 何平.真核生物中的微卫星及其应用.遗传,1998,20(4):42~47
    [25] 吴敏生,王守才.指纹图谱技术在品种鉴定和纯度分析上的应用.农业生物技术学报,1998,6(1):51~55
    [26] 危文亮,赵应忠.分子标记在作物育种的应用.生物技术通报,2000,2:12~16
    [27] Nybom H. DNA fingerprinting: A useful tool in fruit breeding. Euphytica, 1994, 77,1-2:59~64
    [28] 刘榜,张庆德,李奎.微卫星DNA作为遗传标记的优点及前景.湖北农业科学,1997,2:49~51
    [29] Zabeau M, Vos P. Selective restriction fragment amplication: a general method for DNA fingerprinting. Europeau Patent Application, No. O5344858A1, 1993
    [30] Blair. International plant genome conference Ⅲ. January, 1995, San Diego USA
    [31] Williaras J G K, Kubelik A R, Libak K J, Rafalski J A, Tingey S V. DNA polymorohisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990,18(22):6531~6535
    [32] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 1990(18):7213~7218
    [33] Welsh J, Peterson C, McClell M. Polymorphisms generated by arbitrarily primed PCS in the mouse: application to strain identification and genetic mapping. Nucleic Acids Research, 1991(19):303~306
    [34] 惠东威,陈受宜.RAPD技术及其应用.生物工程进展,1992,12(6):1~5,27
    
    
    [35] 石太渊.PCR,RAPD技术在植物研究中的应用.国外农学-杂粮作物,1995(5):16~18
    [36] Plant Genetic Resources Newsletter,1996(107):50~54
    [37] 王冰冰.RAPD技术进展及其在小麦遗传育种中的应用.农业生物技术学报,1997,5(3):227~233
    [38] Hu J, Quiros C F. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant cell Rep, 1991,10:505~511
    [39] Graham J, McNicol R T. An examination of the ability of RAPD markers to determine the relationship within and between kubus species. Theor Appl Genet, 1995,90: 1128~1132
    [40] Virk P S, Newbury H J, Tackson M T. The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theor Appl Genet, 1995,90:1049~1055
    [41] Dos Santos J B, Nienhuis J, Skroch P. Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica aleracea L genotype. Theor Appl Genet, 1994,87:909~915
    [42] Kresovich S, Williams J O K, McFerson J R. Characterization of genetic identifies and relationships of Brassica aleracea L via a random amplified polymorphic DNA assay. Theor Appl Genet, 1992,85:190~196
    [43] 丁晓东,吕柳新.利用RAPD标记研究荔枝品种的亲缘关系.热带亚热带植物学报,2000,8(1):49~54
    [44] 李云海,钱前.我国主要杂交水稻亲本的RAPD鉴定及遗传关系研究.作物学报,2000,26(2):171~176
    [45] 贾建航,王萍.RAPD标记在紫菜遗传多样性检测和种质鉴定中的应用.植物学报,2000,42(4):403~407
    [46] 李海真,许勇.南瓜属三个种的亲缘关系与品种的分子鉴定研究.农业生物技术学报,2000,8(2):161~164
    [47] 彭建营,束怀瑞.枣RAPD技术体系建立与几个品种亲缘关系的研究.农业生物技术学报,2000,8(2):155~159
    [48] 揭雨成.苎麻不同基因型亲缘关系的RAPD分析.中国麻作,1999,21(1):1~6
    [49] 周东新.黄麻DNA提取与RAPD反应体系的建立.福建农业大学学报,2001,30(3):334~
    
    339
    [50] Frank Robinson. California Agriculture. September~October, 1988,31, pp. 31~32
    [51] Frank X Werber. Proceedings International Kenaf Conference. March, 3~6,1993, Fresno. California
    [52] International Jute Organization, 1987, Proceedings of the IJO/ICAR Orientation Course on "Germplasm Collection, Characterization and Conservation of Jute Allied Fibers"
    [53] 熊和平.坦桑尼亚黄麻红麻种质资源考察.中国麻作,1989
    [54] 祁建民.红麻种质资源创新的理论与实践.中国麻作,1999,21(1):43~44
    [55] 李爱青.安徽省沿淮地区红麻生产特点与发展措施.中国麻作,1993(1):29~30,28
    [56] 李爱青.红麻新品种917安徽试验示范简报.中国麻作,1994,16(4):9
    [57] 谢国炎.我国红麻种子产、销现状及发展方向.中国麻作,1998,20(3):35~37
    [58] 孙进昌.红麻生产中存在的主要问题及对策.农业科技通讯,1998(5)
    [59] 汤永海.我国红麻种子工作的主要问题及其对策.中国麻作,1994,16(3):37~41
    [60] 陈安国.走杂交红麻种子产业化道路发展和完善我国的红麻生产.中国麻作,1998,20(4):44~45,28
    [61] T. Ghosh. Handbook of Jute, FAO of United Nations. Rome, 1983
    [62] Howard A and G L C Howard. 1911, Mem. Dept. Agr. India, Bot. Ser. 4(2)
    [63] 邓丽卿.红麻种质资源的形态及分类研究.中国麻作,1991(4):16~20
    [64] Edmonds J M. Herburium survey of Corchorus and Hibiscus. IJO technical reports, Dhaka, Bangladesh, 1987
    [65] 唐守伟.我国麻类生产现状和发展对策.中国麻作,1999,21(3):45~49
    [66] Proceedings of International Kenaf Association Conference. Albuquerque, NM. USA. March, 21~23,1996
    [67] 邓丽卿.我国红麻品种资源研究.作物品种资源,1986(2):15~17
    [68] 邓丽卿.红麻不同熟型品种生长发育与纤维产量关系研究.中国麻作,1987(3):22~27
    [69] 中国农业科学院麻类研究所主编.中国黄麻红麻品种志.农业出版社,北京,1985,p.8
    [70] 黄培坤.国外引进红麻种质资源鉴定和利用研究.中国麻作,1989(4):5~9
    [71] I R Denton (Ed). Report of the 1St~5th IJO germplasm collection missions for jute and kenaf and allied fibers in Kenya and Tanzania. IJO, Dhaka, Bangladesh, 1987~
    
    1988
    [72] 李爱青.红麻稀有材料分类地位研究.作物学报,1993,19(3):239~245
    [73] 粟建光.红麻种质资源农艺性状的遗传变异和数量分类.中国农业科学,1992,25(3):50~57
    [74] 邓丽卿.红麻种质资源的农艺性状研究与利用.中国麻作,1994,16(4):1~4
    [75] 朱凤绥.麻类作物染色体组型分析及Giemsa带型初步观察.中国麻作,1981(3):1~9
    [76] Menzel M Y,1986,pidy printing press Ltd.Kanachi
    [77] 李爱青.红麻不同类型品种的形态特征与细胞学研究.中国麻作,1985(2):6~10
    [78] 黄培坤.红麻染色体构型的初步研究.中国麻作,1987(1):1~2
    [79] 朱凤绥.麻类作物G带的研究.中国麻作,1993(2):16~18,26
    [80] 邓丽卿.红麻和木槿属Furcaria组植物的形态分类及细胞遗传学研究.湖南农学院学报,1994,20(4):310~317
    [81] 李爱青.红麻不同类型随体染色体与几个不同性状遗传关系研究初报.中国麻作,1988(3):6~9
    [82] 李爱青.不同来源红麻品种异染色质研究.中国麻作,1991(1):1~3
    [83] 曹德菊.花粉管法将外源抗除草剂基因导入红麻的有效方法及参数研究.中国麻作,2000,1
    [84] 曹德菊.抗除草剂转基因红麻的分子验证.中国麻业,2001,3
    [85] Keil M. Use of random amplified polymorphic DNA rariation in the eggplant, Solanum melorgena L. (Solanaceac).Theor Appl Genet, 1994(90):767~770
    [86] Vierling R A. Use of RAPD marlers to determine the genetic diversity of diploid wheat genotypes. Theor Appl Genet, 1992(84):835~838
    [87] López - Braa I.Analysis of Heterodera avenae populations by the random amplified polymorphic DNA technique. Genome, 1996(39):118~122
    [88] Demeke T.A DNA marker for Bt-lO Common bunt resistance gene in wheat. Genome, 1996(39):51~55
    [89] Penner G A. Identification of a RAPD marker linked to the oat stem rust gene. P3, Theor Appl Genet, 1993(85):702~705
    [90] Reiter R S. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad
    
    Sci USA, 1992(89):1477~1481
    [91] Wilde J. Genetic fingerprinting of Theobrma clones using randomly amplified polymorphic DNA markers. Theor Appl Genet, 1992:871~877
    [92] 程舟,鲛岛一彦.红麻种质资源遗传变异和亲缘关系的RAPD分析.中国麻业,2002,24(1):1~12
    [93] 朱凤绥.植物染色体F-BSG分带方法与带型.遗传,1982,4(3):25~28
    [94] 李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究所,1985,3(4):297~302
    [95] Levan A. Nomenclature for centromeric position on chromosomes, Hereditas, 1964,52:201~220
    [96] Stebbins G L. Chromosomal evolution in higher plant. London, Edwards Arnold Ltd, 1971
    [97] Stebbins G L. Longevity,habitat,and release of genetic variability in the higher plants. Cold Spring Harbor Symp Quant Bio1,1958,23:365~378
    [98] 季道藩主编.遗传学实验.北京:中国农业出版社,1992,5,P59
    [99] Arano H. Cytological studies insubfamily Cardeaellompositae of Japan.Ⅸ, Bot Mar, Tokyo, 1963,76:128~140
    [100] Mc Couch S R. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76:815~829
    [101] 赵妹华,王富德.提取、纯化植物DNA方法的比较.国外农学—杂粮作物,1998,18(2):35~38
    [102] Pierre G, Haurence M D. Isolation of plant DNA: A fast, inexpensive, and reliable method. Plant Mol Biol Rep, 1992,10:60~65
    [103] 邹喻苹,汪小全.几种濒危植物及其近缘类群总DNA的提取与鉴定.植物学报,1994,36(7):528~533
    [104] 王玉富.亚麻总DNA快速提取方法研究.中国麻作,1997,19(1):19~21
    [105] 曹德菊.红麻基因组提纯方法研究.中国麻作,1999,21(1):9~12
    [106] 马文宾,庄杰云,彭应财.遗传,1998,20(2):1~4
    [107] 根井正利著,王家玉译.分子群体遗传学.北京:农业出版社,1983,143~172
    [108] Guidet F, Rogowsky P. Cloning and characterization of a new rye specific
    
    repeated sequence. Genome, 1991,34:81-87
    [109] Wilkie S E, Isaac P G and Later R J. Theor Appl Genet, 1993,86:497~504
    [110] Hardry H, Balick M and Schierwater B. Mol, Ecol, 1992,1:55~66
    [111] 朱凤绥.染色体Giemsa分带新技术在二十几种农作物上显带成功.湖南农学院学报,1980,1:34
    [112] Greilhuber J. Giemsa karyotypes and their evdutianary significance in scilla bifolia, S. drunensis and S. rindobnensis. Plant Syst, Evol, 1977,127:171~190
    [113] 刘玉红.五种黄芪植物的核型分析.植物分类学报,1984,22(2):125~127
    [114] J M Leggett. Chromosome relationships and morphological comparisons in the hybrid Arena hybrid×A. Sativa and A. hybrid×A, maroccana. Can J Genet Cytol, 1983,25(3):255~260
    [115] Fiskesjo G. 1975, Hereditas, 81:23
    [116] Merker A. 1973, Hereditas, 75:304~306
    [117] 朱澄主编.《植物染色体及染色体技术》.科学出版社,1982,P154
    [118] 李懋学,陈瑞阳,徐宗尧编著.植物染色体研究技术.河北.昌黎,1988,7
    [119] Kim C S. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res, 1997,25:1085~1086
    [120] 朱衡,瞿峰,朱立煌.利用氯化苄提取适于分子生物学分析的真菌DNA,真菌学报,1994,13(1):34~40
    [121] 郭安平.几种麻类作物及其近缘种植物总DAN的提取与鉴定.中国麻作,1997,19(4):4~10
    [122] McDonald M B, Elliot L J, Sweeney P M. DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seeds Science and Technology, 1994,22:171~176
    [123] Chunwongse J, Martin G B, Tanksley S D. Pre-germination genotypic screening using PCR amplification of half-seeds. Theor Appl Genet, 1993,86:694~698
    [124] Yoshihashi T, Nakamura S, Fujii T. Identification of domestic rice cultivars by RAPD analysis using one grain of milled rice as a sample. Nippon-Shokuhin-Kagaku-Kogaku-Kaishi, 1999,46(4):250~254
    [125] Edwards K. A simple and rapid method for the preparation of plant genomic DNA
    
    for PCR analysis. Nucleic Acids Research, 1991,19(6):1349
    [126] 赵妹华.农作物种子及半粒种子DNA RAPD扩增研究.国外农学—杂粮作物,1999,19(3):22~25
    [127] 翟文学.谷类作物半粒种子的PCR分析及其在标记辅助选择育种中的应用.生物工程学报,1996,12(4):416~421
    [128] 王玉民.玉米半粒种子DNA提取及RAPD分析.玉米科学,1996,4(3):27~28
    [129] 乔爱民.直接从人工老化的菜心干种子中提取基因组DNA用于RAPD分析.植物学通报,1999,16(6):701~704
    [130] 郭景伦.玉米单粒种子 DNA 提取新方法及在玉米种质鉴定中的应用研究.种子,1999(2):37~38
    [131] 李世民,苏业瑜.红麻(Hibiscus cannbinus)DNA的提取与纯化.中国麻作,1986,3:9~11
    [132] 林万明.PCR技术操作和应用指南.北京:人民军医出版社,1993
    [133] Kaya Z. Utility of random amplified polymorphic DNA (RAPD) markers for linkage mapping in Turkish Red Pine (Pinus brutia Ten).Silvae Genetics, 1995,44:11O~116
    [134] Wei J. Genetic variability in Russian Wildrye(Psathyrostachys juncea) assessed by RAPD. Genetic Resources and Crop Evolution, 1994,44:117~125
    [135] Stiles J L, Lemme C, Sondur S, Morshidi M B and Mansharst M. Theor Appl Genet, 1993,85:697~701
    [136] Paran. Development of reliable PCR-based markers linged to downy mildew resistance gene in lettuce. Theor Appl Genet, 1993,85:985~993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700