TiO_2纳米管阵列的制备、改性及其光电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(Ti02)作为一种无机功能材料,在科学研究领域引起了广泛的关注并获得诸多的应用。尤其在与能源、环境相关的应用方面,例如太阳能电池和光电化学分解水、光催化降解水中污染物等领域,其应用前景广阔、潜力巨大。随着纳米科学的进步,人们开发出了各种形态的Ti02纳米材料,使其性能不断提高。Ti02纳米管阵列与其它形态的纳米Ti02相比,具有比表面积更大、取向性更好等特点,且具有高效、有序的电子传输通道。这种新颖的纳米结构有望提高TiO2的光电、光催化性能。由于Ti02材料的形貌、晶体结构、化学组成等对其性能有很大影响,通过探索新型的制备技术,实现对TiO2材料的微观结构和成分进行调控,从而达到优化其性能的目的是一项非常重要和意义重大的研究工作。本文在传统的阳极氧化制备TiO2纳米管阵列的基础上,通过控制和优化氧化参数实现了对Ti02纳米管阵列的尺寸形貌的主动调控;开发出新型的晶化工艺,并与窄禁带半导体的复合,实现了对Ti02纳米管阵列的改性;采用表面光电压谱、光化学性能测试研究了改性后Ti02纳米管阵列的光电性能,阐述了其性能优化的物理机理。主要内容如下:
     (1)通过改变电解液体系、氧化电压、氧化时间、氧化温度等反应参数,对纳米管阵列的纳米管形貌和结构进行了研究和控制,结果表明:在不同电解液体系中,所需的氧化电压范围不同,制备的纳米管管径和管长也有差别;在同一电解液体系中,不同的氧化电压对纳米管管径和长度等形貌有影响;不同的时间和温度对纳米管的长度也有显着的影响;在不同电解液体系中,电压、时间还有温度都有一个最优区间,在这个区间制备出的Ti02纳米管阵列的尺寸形貌得以优化;在优化工艺条件的基础上,进一步采用不同的后期处理,得到了几种新型结构的Ti02纳米管阵列,包括氧化铝模板型、半壁型、弹簧型等二氧化钛纳米管阵列。
     (2)常温下阳极氧化法制备Ti02纳米管阵列为非晶态结构,而光电领域的应用要求对Ti02纳米管阵列进行晶化。传统的Ti02纳米管阵列晶化方法包括在空气或其它惰性气氛中高温退火,或在较高温度的电解液中阳极氧化。然而,在未来的诸多应用中,人们需要将Ti02纳米管阵列制备在塑料、高分子等低耐热性质的衬底上,这就需要在较低的温度下对Ti02纳米管阵列进行晶化。本文通过分别将常温下阳极氧化法制备的Ti02纳米管阵列置于水、乙二醇、乙醇等溶液中,通过常压或水热的方式可以在较低温度下实现Ti02纳米管阵列的晶化,同时可探索Ti02纳米管阵列的低温晶化途径。我们发现,水是最好的晶化溶液,可在40℃晶化TiO2纳米管阵列,得到高质量的、单一锐钛矿结构的TiO2纳米管阵列。
     (3)采用阳极氧化法制备TiO2纳米管阵列同时存在阳极氧化和化学刻蚀两种过程。当阳极氧化时间较长时,化学刻蚀的作用不可忽略。适当利用这种化学刻蚀作用可以诱导纳米管劈裂,使得纳米线覆盖在纳米管表面,形成管/线复合结构,这种材料微观结构的变化往往可以导致其电子输运特性的变化,获得新颖的性能。本文通过延长阳极氧化时间制备了TiO2纳米管/线复合阵列,利用表面光电压谱(SPS)和场诱导表面光电压谱(FISPS)研究了退火对TiO2纳米管/线复合阵列表面光生电荷性质的影响,并结合晶体结构的变化分析了退火前后SPS和FISPS发生明显变化的原因。结果表明,TiO2纳米管/线复合阵列在晶化前后的导带边缘均出现了束缚激子态,晶化前由于自建场较弱,束缚激子态能在正负电场作用下发生不对称偏转;晶化后,晶体结构从非晶态变为晶态,自建场增强,束缚激子态对正电场敏感并表现出明显的光伏响应,而在负电场作用下束缚激子态没有任何的光伏响应。
     (4)锐钛矿结构的TiO2能带带隙为3.2eV,它只能吸收太阳光中的紫外光部分,而紫外光部分能量只占太阳光谱能量的约5%,导致其光电转化效率较低。与窄禁带半导体复合是拓展TiO2光响应范围的重要方式。CuS是一种禁带宽度为2.0eV的半导体材料,广泛用在锂离子电池、聚合物表面改性、超导等领域。本文通过水热方式实现了CuS与TiO2纳米管阵列的有序复合。电流-电压曲线表明CuS/TiO2纳米管异质结阵列具有明显的整流效应。根据表面光电压谱和相位谱,在376-600nm之间,CuS/TiO2纳米管异质结阵列表现为p型半导体特征,电子在表面聚集;在300-376nm之间表现为n型半导体特征,空穴在表面聚集;在376nm异质结阵列的表面光伏响应为零。CuS/TiO2和CuS/ITO之间界面电场的不同导致了异质结在不同波长范围内表面电荷聚集的差异。光电化学性能测试表明以CuS/TiO2纳米管异质结阵列为光阳极组成的光化学太阳电池在AM1.5G100mW/cm2标准光强作用下具有0.4%的光电转换能力。利用逐次沉积法在CuS/TiO2纳米管异质结阵列的基础上沉积了PbS量子点,进一步提高了TiO2纳米管阵列的光化学性能到1.2%,CuS/PbS/TiO2纳米管异质结阵列光阳极获得了1.46%的光电转换效率
Titanium dioxide (TiO2) as an inorganic functional material has attracted much attention in the scientific research field. Especially in energy conversion and environmental improvement, such as photoelectrochemical decomposition of water, photocatalytic degradation of pollutants in water, and solar cells, TiO2has shown a great potential of applications. With advances in nanoscience, a various form of TiO2nanomaterials has been made, and their performance is also greatly improved. Compared with other forms of nano-TiO2, TiO2nanotube arrays have a larger specific surface area and better alignment characteristics, and also possess a highly ordered and efficient electronic transmission channel. This novel nanostructure is expected to improve the photoelectric and photocatalytic properties of the TiO2. Since the morphology, crystal structure, and composition of TiO2have a significant impact on its performance, thus in this thesis, TiO2nanotube arrays were studied by exploring new preparation methods, adjusting its morphology, structure, and microstructure, and modifying its chemical and physical properties, and making composites with other narrow band materials. A series of new results have been achieved and the mechanism beneath we elucidate by investigating their photoelectric properties through surface photovoltage spectroscopy and photochemistry performance testing. The main contents include the followings:
     (1) The morphology and structure of the nanotube arrays are studied and controlled by changing the reaction parameters of the electrolyte, oxidation voltage, oxidation time, oxidation temperature, etc. The results show that the desired oxidation voltage range is different in different electrolyte system, which affects the tube diameter and length of the arrays. In the same electrolyte system, different oxidation voltage can also results in different morphology of the nanotube with different tube diameter and length. A significant impact of different time and temperature on the tube length and diameter are also observed. However, in different electrolyte system, the reaction voltage and time as well as temperature has an optimal range, within which a better morphology of TiO2nanotube arrays can be achieved. On the basis of these optimized conditions with a well-designed post-annealing processing, a series of novel types of TiO2nanotube arrays have been obtained, which include alumina template type, half-wall type, spring types, etc.
     (2) TiO2nanotube arrays are amorphous structure when prepared by anodic oxidation method under room temperature, which can not satisfy the optoelectronic applications where crystallized TiO2nanotube arrays are required. Traditional crystallization methods of TiO2nanotube array include high temperature annealing in air or other inert gas atmosphere, and the anodic oxidation in the electrolyte at an elevated temperature. However, high temperature processing can not be used to prepare the TiO2nanotube arrays on substrates of low tolerance for temperature, such as polymers, which are needed for many applications. In this research, anodized TiO2nanotube arrays prepared at room temperature were put in water, ethylene glycol and ethanol solution, respectively, to realize the hydrothermal crystallization of TiO2nanotube arrays at a temperature as low as40℃. High quality TiO2nanotube arrays with a single anatase structure have been prepared at40℃with this new method.
     (3) Two process, anodic oxidation and chemical etching are simultaneously coexisting in the preparation of TiO2nanotube arrays made by anodic oxidation method. The role of chemical etching can not be ignored in the anodic oxidation process with a long reaction time, which can easily lead to split the TiO2nanotubes from tubes to wires, thus forming a tube/wire composite structure on the surface of the nanotubes. The changes of the microstructure may lead to the transformation in the electronic transportation, which in turn leads to some novel performance. In this research, TiO2nanotube/nanowire composite arrays were fabricated on the Ti substrate via anodic oxidation method. Annealing effects on the surface photoelectronic properties of TiO2nanotube/nanowire composite arrays were studied by surface photovoltage spectrum (SPS) and the electrical field induced surface photovoltage spectrum (FISPS). The results showed that the bound excitons exist at the edge of conduction band both in as-prepared and annealed TiO2nanotube/nanowire composite arrays. The build-in field in as-prepared TiO2nanotube/nanowire composite arrays is weak and the bound excitons can inverse antisymmetrically under external field. After being annealed, TiO2nanotube/nanowire composite arrays were crystallized from amorphous structure, the build-in field is increased, but the SPS responses related to the bound excitons could exhibit only under positive field.
     (4) TiO2can only absorb the ultraviolet part in sunlight due to its large bandgap (3.2eV), but the energy of the ultraviolet part is only about5%of energy of solar spectrum, that makes the photoelectric conversion efficiency of TiO2is low. Compositing with narrow bandgap semiconductor is an important way to expand the TiO2light response range. CuS is a semiconductor material and its band gap is2.0eV. CuS is widely used in the fields of lithium ion batteries, polymer surface modification, superconducting materials, etc. In this research, ordered CuS nanoparticles and TiO2nanotube arrays composites are prepared. The current-voltage curve shows that CuS/TiO2nanotube heteroj unction arrays have obvious rectifying effect. According to the results of SPS and phase spectrum (PS), CuS/TiO2nanotube heteroj unction arrays show p-type semiconductor character and electrons aggregate at the surface in376-600nm, but show n-type semiconductor character and holes aggregate at the surface in300-376nm. The surface photovoltage response is zero at376nm. The photoelectrochemical property of CuS/TiO2nanotube heteroj unction arrays-base photoelectrochemical cell shows0.4%of photoelectricity conversion efficiency under100mW/cm2simulated AM1.5sunlight. After depositing PbS quantum dots on the basis of CuS/TiO2nano tube heteroj unction arrays by successive deposition, the photochemical properties of TiO2nanotube arrays is significantly improved. The CuS/PbS/TiO2nanotube heteroj unction arrays-based photoelectrochemical cell shows1.46%photoelectricity conversion efficiency.
引文
1. Hoffert, M. I.; Caldeira, K.; Jain, A. K.; Haites, E. F.; Harvey, L. D. D.; Potter, S. D.; Schlesinger, M. E.; Schneider, S. H.; Watts, R. G.; Wigley, T. M. L.; Wuebbles, D. J. Nature 1998,395,881.
    2. Petit, J. R.; Jouzel, J.; Raynaud, D.; Barkov, N. I.; Barnola, J. M.; Basile, I.; Benders, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; Delmotte, M.; Kotlyakov, V. M.; Legrand, M.; Lipenkov, V. Y.; Lorius, C.; Pepin, L.; Ritz, C.; Saltzman, E.; Stievenard, M. Nature 1999,399,429.
    3. Shell International. Exploring the Future. Energy Needs, Choices and Possibilities. Scenarios to 2050. Shell International Limited:London,2001.
    4. United Nations Development Programme (UNDP). World Energy Assessment, New York,2000.
    5. Becqueral,A.E.,1839.Memoire sur les effects electriques produits sous l'influence des rayons solaires. C.R.Acad.Sci.paris, Vol.9,pp.561-567.
    6. Chopin D, Fuller C, Pearson G. J. Appl. Phys.,1954,25:676-677.
    7. Shockley W,Queisser H. J. Appl. Phys.,1961,32,510-519.
    8. Hegedus S, Luque A. Handbook of photovoltaic science and engineering. In:Luqur A, Hegedus S. Great Britain by Antony Rowe Ltd, Chippenham,Wiltshire,2002.
    9. Goetzberger A, Knobloch J, Voss B H. Crystalline Silicon Solar Cells, New York,1998.
    10. Green MA. Solar Cells. Kensinton:University of New South Wales Press,1992.
    11. Photovoltaic Technology Research Advisory Council (PV-TRAC) of European Commision. A vision for photovoltaic technology [Z].2005.11-22.
    12.2nd International Workshop Thin Films in the Photovoltaic Industry, Ispra, November, (2006).
    13. Mulligan W.P, Rose D.H, Cudzinovic M.J et al. Manufacture ofsolar cells with 21% efficiency[A]. EPVSEC.19th European Photovoltaic Solar ENERGY Conference[C]. Paris: SunPower Corporation, 2004.1-3.
    14. Zhao J, Wang A, Maetin A G.Prog.Photovolt: Res.Appl.,1999,7:471.
    15. britt J.F. Appl. Phys. Lett.,1993,62:2851.
    16. Wu X.J. Appl. Phys.,2001,89:4564.
    17. Mickelsen R,Chen W.Proc.15th IEEE Photovoltaic Specialist Conf.1981:800.
    18. REPINSI, CONTRERAS M A, EGAAS B, et al.19.9%. eficient ZnO/CdS/CulnGaSe2 solar cell with 81.2% fill factor[J]. Progress in Photovo 1 taics:Research and Applications,2008,16(3):235-239.
    19.何宇亮,丁建宁,彭英才等,对硅薄膜型太阳电池的一些思考[J].物理.2008,37:862.
    20. Das U K,Bueeows M Z, Lu M, et al. Appl. Phys. Lett.,2008,92:63504.
    21.吕宝堂.柔性衬底非晶硅太阳能电池.[J]新能源,1996,18(6):20-23.
    22. Yamamcoto K,Nakajima A,Yoshimi Y, et al.4th World Conference on Photovoltaic Energy Conversion.2006.
    23. Gordon I, Nieuwenhuysen K V, Carnel L, et al. [J]Thin Solid Films,2006,(511-512):608.
    24. Gall S, Schneider J, Klein J.Thin Solid Films,2006, (511-512):7.
    25. Shah. A, Torres. P, Tscharner. R, et al. Photovoltaic technology:the case for thin-film solar cells. [J]Science.1999,285(5428):692.
    26. Heeger,A,J.,2001.Semiconducting and metallic polymers:The fourth generation of polymeric materials[J]J.Physical Chemistry B, Vol.105(36), pp.8475-8491.
    27. Halls,J.J.M. and Friend,R.H.,2001.Organic Photovoltaic Devices.In:Archer,M.D. and Hill,R.D.,Eds., Clean Electricity from Photovoltaics, Imperial College Press,London,pp.377-445.
    28. KIM J Y,LEE K,COATES N E,et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science,2007,317:222-225.
    29.黎立佳,鲁广昊,杨小牛等.[J]科学通报,2006,51:2457.
    30. O'REGAN B,GRATZEL M. A low-cost, high-efficient solar-cell based on dye-sensitized colloidal TiO2[J]. Nature,1991,335(6346):737-740.
    31. Michael Gratzel. Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res.,2009,42 (11), pp 1788-1798.
    32. ITO S, HANLC, ROTHERNBERGER G, et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystal-line TiO2 photoanode[J]. Chem.Comm., 2006,(38):4004-4006.
    33. HAN L, CHIBA Y, ISLAM A, et al. High efficiency of dye-sensitized solar cells and model.16th International Conference of Photochemical Conversion and Solar Sstorage. Uppsala, Sweden.2006. W42P211.
    34. Wayne M. Campbell, Anthony K. Burrell, David L. Officer, et al. Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews 248 (2004) 1363-1379.
    35. James,T.H.,1977.The theory of the Photographic Process.4th. Ed.,Macmillan,New York,USA.
    36. West,W.,1974. First hundred years of spectral sensitization[J],Photogr.Sci.Eng,. Vol.18, pp.35-48.
    37. Gould,I.R., Lenhard,J.R., Munter,A.A., Godelski,S.A. and Farid,S.,2000. Two-electron sensitisation: a new concept for silver halide photography[J]. J,Am.Chem.Soc., Vol.122, PP.11934-11943.
    38. Kato,T., Maekawa,E., Fujishima,A. and Honda,K.,1984. Current doubling effect generated by formate on the cadmium sulfide photoanode and characterization of the photo-electrochemical cell[J]. Nippon Kagaku KaiShi,pp.233-238.
    39. M. K. Nazeeruddin, A.Kay, I.Rodicio, et al. Conversion of light to electricity by Cis-X2bid(2, 2'-Bipyridyl-4,4'-Dicarbocylate) Ruthenium (Ii) charge-transfer sensitizers (X=C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.115 (1993) 6382-6390.
    40. M. K. Nazeeruddin, F.DeAngelis, S.Fantacci, et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers [J]. J. Am. Chem. Soc.127 (2005) 16835-16847.
    41. Wang Y.and Herron N.Nanometer-sized semiconductor clusters:materials synthesis,quantum size effects,and photophysical properties[J]. J.Phys.Chem.,1991,95:525-532.
    42. Nozik A.J.Quantum dot solar cells[J].Physica E,2002,14:115-120.
    43. A.J.Nozik,Quantum dot solar cells[J],Physica,002,E14,1-15.
    44. T.Trupke, M.A.Green,P.Wfirfel, Improving solar cell efficienciens by down_conversion of high-energy photons[J],J.Appl.Phys.2002,92(3),1668.
    45. R.D.Schaller, V.I.Klimov, High efficiency carrier multiplication in PbSe nanocrystals, Implications for solar energy conversion[J],Phys.Rev.Lett.2004,92(18),186601.
    46. M.C.Hanna, A.J.Nozik,Solar conversion efliciency of photovolatic and photoelectrolysis cells with carrier multiplication absorbsrs[J],J.Appl.Phys.2006,100(7),074510.
    47.彭英才,于威等纳米太阳电池技术[M]化学工业出版社,2010年9月.
    48. Nozik A.J.Exciton Multiplication and Relaxation Dynamics in Quantum Dots:Applications to Ultrahigh-Efficiency Solar Photon Conversion[J]. Inorg.Chem.,2005,44:6893-6899.
    49.彭英才,傅广生,2009.量子点太阳电池的探索.材料研究学报.vol23.No.5.
    50. V. Aroutiounian, S. Petrosyan, A. Khachatryan, A. Khachatryan, K. TOuryan,. Quantum dot solar cells, [J].Appl.Phys.2001,89(4),2268.
    51. A.Marti,N.Lopez,E.Antolin,E.Canovas,A.Luque,C.R.Stanley.Emitter degradation in quantum dot intermediate band solar cells,Appl.Phys.Lett.,90(23),233510(2007).
    52. R.B.Laghumavarapu, M.El-Emawy, N.Nuntawong,A.Moscho,L.F.Lester,D.L.Huffaker,.Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers, Appl.Phys.Lett.,2007,91 (24),243115.
    53. R.Loef, A. J. Houtepen, E. Talgorn, J.Schoonman,A.Goossens.Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells[J],Nano Lett.2009,9(2),856.
    54. S.C.Lin,Y.L.Lee,C.H.Chang,Y.J.Shen,Y.M.Yang,Quantum dot sensitized solar cells: assembled monolayer and chemical bath deposition,Appl.Phys.Lett.2007,00(14),143517.
    55. Yuh-Lang Lee, and Yi-Siou Lo. Highly Efficient Quantum-Dot-Sensitized Solar CellBased on Co-sensitization of CdS/CdSe. Adv. Funct. Mater.,19, (2009) p604-609.
    56. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel. Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell. J. Phys. Chem. B 2003,107,8981-8987.
    57. Zaban A.,Mi?i?O.I.and A.J.Nozik,et.al.Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots[J]. Langmuir,1998,14:3153-3156.
    58. Rengarajan, R.Jiang, P.Colvin, [J]V.Appl. Phys. Lett.,2000,77:3517.
    59.高濂,郑珊,张青红。2002,纳米氧化钛光催化材料及应用[M].化学工业出版社:北京.
    60.魏刚,张元晶,熊蓉春。2003,纳米Ti02膜的可控制备及膜结构与光催化活性关系[J],中国科学(B),33:74-79.
    61. Fujishima A, Kohayakawa K.1975, Hydrogen production under sunlight with an electrochemical photocell. J. Electrochem. Soc.,11:1487-1489.
    62.张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    63. P.Hoyer. Formation of a titanium dioxide nanotube array [J]. Langmuir.1996.12.1411.
    64. MICHAILOWSKI.A et,al, Hight regular anatase nanotube anays fabricated in porous anodic templates[J]. Chemical Physies Letter 2002,349:1-5.
    65. Foss C.A., Hornyak G.L., Stockert J.A., et al., Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape [J] Journal of Physical Chemistry.1994, 98(11):2963-2971.
    66. Hoyer P. Formation of a titanium dioxide nanotube array[J]. Langmuir.1996,12(6):1411-1413.
    67. Y.Lan, X.Gao, H.Zhu, et al. Titanate nanotubes and nanorods prepared from rutile powder[J]. Adv.Funct.Mater.,2005.15.1310.
    68. Y.Kubota, H.Kurata, S.Isoda, Nanodiffraction and characterization of titania nanotubeprepared by hydrothermal method[J]. Mol.Cryst. Liq.Cryst.2006.445.107.
    69. J.J.Yang,Z.S.Jin,X.D.Wang,et al.,Study on composition, structure and formation process of nanotube Na2Ti204(OH)2[J].Dalton Trans.2003.20.3898.
    70. Gong, D., Grimes, C. A.,Varghese, O. K. et al.. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research 16(12):(2001)3331-3334.
    71. Beranek R, Hildebrand H, Schmuki P. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes[J]. Electrochemical and Solid-State Letters,2003,6(3):B12-B14.
    72. Mack J M, Tsuchiya H, Schmuki P. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium[J]. Angew.Chem.Int.Ed,2005,44(14):2100-2102.
    73. Cai Q Y, Paulose M, Varghese O K, Grimes C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. J.Mater.Res,2005, 20(1):230-236.
    74. Liu, S. Q., Fang, D. Li, Z. J. et al.. Fabrication and fluorescence property of titanium dioxide nanotube arrays by anodizing processes. [J]Chinese Journal of Inorganic Chemistry (2007)23(5):827-832.
    75. Paulose M, Shankar K, Yoriya S, et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134p.m in Length[J]. J.Phys.Chem.B,2006,110(33):16179-16184.
    76. Albu S P, Ghicov A, Macak J M, Schmuki P.250μm long anodic TiO2 nanotubes with hexagonal self-ordering[J]. Phys.Stat.Sol,2007,1(2):R65-R67.
    77. C.Ruan, M.Paulose, O.K. Varghese, et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte[J]. J.Phys.Chem.B.2005.109.15754.
    78. L.V.Taveira, J.M.Macak, H.Tsuchiya, et al. N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia[J]. Electrochem.Soc.2005.152.B405.
    79. Ghicov,H. Tsuchiya,J. M.Macak, et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochem.Commun.2005.7.505.576.
    80. H.Tsuchiya, J.M.Macak, L.Taveira, et al.Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes [J]. Electrochem.Commun.2005.7.
    81. Fujishima,A. and Honda,K.,1972. Electrochemical photolysis of water on a semiconductor electode[J]. Nature, Vol.238, pp.37-38.
    82. Mor G K, Shankar K, Paul os e M, et al. Enhanced photocleavage of water using titania nanotube arrays. Nano Letterers,2005,5(1):191-195.
    83.吕明.新型光解水制氢用半导体光催化材料的研究进展[J].材料导报,2005,19(005):1-3.
    84. Y.Xie. Photoelectrochemical application of nanotubular titania photoanode[J]. Electrochimica Acta.2006.51.3399.
    85.沈伟韧,赵文宽,贺飞,方佑龄.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    86.左国民,徐敏,程振兴.挥发性有机物的气相光解及光催化降解研究[J].分子催化,2001,15(6):463-466.
    87.廖振华,陈建军,姚可夫,等.纳米TiO2光催化剂负载化的研究进展[J].无机材料学报,2004,19(1):17-24.
    88. GK.Mor, O.K.Varghese. A review on highly ordered,vertically oriented TiO2 nanotube arrays: Fabrication,material properties,and solar energy applications[J]. Solar Energy Materials&Solar Cells,2006.90.2011.
    89. Konenkamp R,Dloczik L,Ernst K,Olesch C. Nano-structures for solar cells with extremely thin absorbers[J]. Physica E:Low-dimensional Systems and Nanostrucrures,2002,14(1-2):219-223.
    90. D. Kim, A. Ghicov, et al. (2008). Bambo-type TiO2 nanotubes:Improved conversion Efficiency in Dye-Sensitized Solar cells" Journal of the American Chemical Society 130(40):16454-16455.
    91. Lin, C. J., W. Y. Yu, et al. (2008). "Rough conical-shaped TiO2-nanotube arrays for flexible backilluminated dye-sensitized solar cells." Applied Physics Letters 93(13):133107.
    92. Mor, G. K., K. Shankar, et al. (2006). "Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells." Nano Letters 6(2):215-218.
    93. Paulose, M., K. Shankar, et al. (2006). "Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells." Journal of Physics D-Applied Physics 39(12):2498-2503.
    94. Park, J. H., T. W. Lee, et al. (2008). "Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays:use in dye-sensitized solar cells." Chemical Communications(25):2867-2869.
    95. Lee W, Kang S H, et al. Cosensitization of ver tically alig ned T iO2 nano tubes with two different sizes of CdSe quantum dots for broad spectrum [J]. Electr ochem Commun,2008,10(10):1579.
    96. Kong kanand A, et al. Quantum dot solar cells. Tuning photo response through size and shape control of CdSe-TiO2 architecture[J]. J Am Chem Soc,2008,130(12):4007.
    97. Sun W T, et al. CdS quantum dots sensitized TiO2 nano tube array photoelectrodes[J]. J Am Chem Soc,2008,130(4):1124.
    98. Ho des G. Compar ison of dye and semiconductor sensitized porous nanocrystalline liquid junction solar cells[J]. J Phys Chem C,2008,112(46):17778
    99. Gregorio F O, Ilie H Z, Thierry D, et al. Alternative Li+ion battery electrode based on self-organized titania nanotubes[J]. Chem Mater,2009,21(1):63-671.
    100. Zhao J L,Wang X H,Chen R Z,Li L T.Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates[J].Mater.Lett,2005,59(18):2329-2332.
    101. Prida V M.Velez M H,Cervera M,et al.Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes [J] Journal of Magnetism and Magnetic Materials,2005,294(2):e69-e72.
    102. Oh S H,Finones R R,Jin S H,et al.Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials,2005,26(24):4938-4943.
    103.吴辉煌主编.电化学[M].北京:化学工业出版社化学与应用化学出版中心,2004.
    104. Moe G K, Varghese OK, Paulose M, et al.J.Mater.Res.,2003,18(11):2588-2593.
    105. Raja K S, Misra M, Paramguru K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium [J]. Electrochimica Acta,2005,51(1):154-165.
    106. Kar A, Raja K S, Misra M. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications[J]. Surface and Coatings Technology,2006,201(6):3723-3731.
    107. Cai Q Y, Paulose M, Varghese O K, et al. J. Mater. Res.,2005,20(1):230-236.
    108. Jae H L, Jinsub C. Small,2007,3(9):1504-1507.
    109.张鸿飞,汪良主,张立德,吴希俊.金红石相纳米块材Ti02的介电特性[J],物理学报,1996,45(06):1045-1050.
    110. X.S.Ye, Z.GXiao, D.S.Lin, Experimental investigation on the dielectric behavior of nanostructured rutile-phase titania[J]. Mater. Sci. and Eng.2000.B74.133.
    111. L.Gao, Q.Li, Z.Song, Preparation of nano-scale titania thick film and its oxygen sensitivity[J], Sens.Actuators,2000.B71.179.
    112. K.N.P.Kumar, K.Keizer, A.J.Burggraaf, Textural evolution and phase transformation in titania membranes:part 2 supported membranes [J]. J.Mater.Chem.1993.3.1151.
    113. H.Zhang, J.F.Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2.[J]. J.Phys.Chem.B.2000.104.3481.113.
    114. P.Hoyer.Formation of a titanium dioxide nanotube array[J]. Langmuir.1996.12.1411.
    115. Kronik, L.;Shapira, Y. Surface Science Reports,1999,254:1.
    116. V. Donchev, K. Kirilov, T. Ivanov, Surface photovoltage phase spectroscopy-a handy tool for characterisation of bulk semiconductors and nanostructures, Mater. Sci. Eng, B,2006,129 (1-3): 186-192.
    117.杨峰2008 ZnO纳米结构形态调控与表面光电性能研究.
    118. Wu Zhong-Biao, Guo Sen, Wang Hai-Qiang, et al. Electrochem.Commun.,2009,11(8):1692-1695.
    119. Kim Doohun, Ghicov Andrei, Schmuki Patrik. Electrochem.Commun.,2008,10(12):1835-1838.
    120. Fang H T, Liu M, Wang D W, et al. Nanotechnology [J],2009,20(22):225701. 121. LIU En-Ke(刘恩科),ZHU Bing-Sheng(朱秉升),LUO Jin-Sheng(罗晋生)Physics of Semiconductor(半导体物理学) [M], Beijing:National Defense Industry Press(北京:国防工业出版社),2004,340-359.
    122. Lin Y H, Wang D J, Zhao Q D, et al. J. Phys. Chem. B [J],2004,108(10):3202-3206.
    123. JIN Li-Qiang(井立强), WANG De-Jun (王德军),XIN Bo-Fu (辛柏福),et al. 掺 Sn 的纳米TiO2表面光生束缚激子的验证及其特性,Acta Chim. Sinica(化学学报)[J],2005,Vol.63,No.11,1008-1012.
    124. Van Dijken-A., Meulenkamp E-A., Vanmaekelbergh D., et al. J. Phys. Chem. B [J],2000, 104(18):4355-4360.
    125.LI Zi-Heng(李子亨),WANG De-Jun(王德军), ZHANG Qin-Lin(张清林), et al. Chem. J Chinese Universities(高等学校化学学报) [J],2003,24(12):2282-2284.
    126. Jin Y.Z.,Wang J.P., Blakesley J.C.,et al.Nano Lett.[J],2008,8(6):1649-1653.
    127. Liao Z.M.,Xu J.,Yu D.P.,et al.. Appl. Phys. Lett.[J],2008,93:023111-1-023111-3.
    128. Yanagisawa, K.; Ovenstone, J. J. Phys. Chem. B 1999,103,7781.
    129.戴高鹏,刘素芹,罗天熊等,水热处理锐钛矿TiO2纳米管阵列及其增强的光电催化活性,无机化学学报[J],2012,Vol.28 No.8 1617-1622.
    130. Brus L E. Electron-electron and Electron-hole Interactions in Small Semiconductor Crystallites:The Size Dependence of the Lowest Excited Electronic State[J].J.Chem.Phy,1984,80:4403-4409.
    131. Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells[J]. Appl.Phys.Lett,2005, 86(5):053114.
    132. Torimoto T, Tsumura N, Miyake M.Preparation and Photoelectrochemical Properties of Two-Dimensionally Organized CdS Nanoparticle Thin Films[J].Langmuir,1999,15(5):1853-1858.
    133. Namba,S. and Hishiki,Y.,1965. Color sensitization of zinc oxide with cyanine dyes.J.Phy.Chem., Vol.69,pp.774-779.
    134. Georgios C. Vougioukalakis, Athanassios I. Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coord. Chem. Rev. (2010) doi:10.1016/j.ccr.2010.11.006。
    135.黎立佳,鲁广昊,杨小牛等.科学通报,2006,51:2457.
    136. V Popescu. G Bester. M C Hanna. A.G.Norman, Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells[J], Phys.Rev.,78(20),205321(2008).
    137. Richter C., Schmuttenmaer C. A.. Nature Nanotech. [J],2009,5:769-772.
    138.王伟,郝彦忠.量子点CdS修饰纳米结构TiO2复合膜的光电化学研究[J].化学研究与应用,2007,19(2):199.
    139. Lee W, Kang S H, et al. Cosensitization of ver tically alig ned TiO2 nano tubes with two different sizes of CdSe quantum dots for broad spectrum [J]. Electr ochem Commun,2008,10(10):1579.
    140.杨峰,蔡芳共,柯川,赵勇.TiO2纳米管阵列在太阳能电池中应用的研究进展[J].材料导报:2010,24(6)50-52.
    141. Sun W T, et al. CdS quantum dots sensitized TiO2 nano tube array photoelectrodes[J]. J Am Chem Soc,2008,130(4):1124.
    142.杨健茂,胡向华,田启威,唐明华,陈志钢,查刘生.量子点敏化太阳能电池研究进展[J].材料导报:2011,23:1-4.
    143. [Baker D R, et al. Photosensitization of TiO2 Nanostructures with CdS quantum dots:Particulate versus tubular support architectures[J]. Adv Funct Mater,2009,19(5):805.
    144. Zhang H, Quan X, et al. Mulberry like CdSe nanoclusters anchored on TiO2 nanotube arrays:A novel architecture with remarkable photoelectrochemical performance [J]. Chem Mater,2009,21(14): 3090.
    145. Ho des G. Compar ison of dye and semiconductor sensitized porous nanocrystalline liquid junction solar cells [J]. J Phys Chem C,2008,112(46):17778.
    146. klimov V I,Karavanskii V A, Phys.B,1996,54:8087.
    147. Rothwarf,A; Bamett,A.M., Design analysis of the thin-film CdS-Cus2S solar cell. IEEE Transactions on Electron Devices 1977,24,(4).381-387.
    148. Setkus,A.; Galdikas,A.; Mironas,A.;Imkiene,I.; Janickis,V; Kaciulis,S.; Mattogno,G.; Ingo,G.M., Properties of CuxS thin film based structures:influence on the sensitivity to ammonia at room temperatures. Thin Solid Films 2001,391,(2),275-281.
    149. Lou,Y.;Samia,A.C.S.;Crwen,J.; Banger,K.; Chen,X.; Lee,H.; Burda,C., Evaluation of the photoinduced electron relaxation dynamics of Cul.8S quantum dotsy. Phys.Chem.Chem.Phys 2003,5,1091-1095.
    150. Du,W.; Qian,X.; Ma.X.;Gong,Q.;Cao,H.;Yin,J.,Shape-Contrlled Synthesis and Self-Assembly of Hexagonal Covellite (CuS) Nanoplatelets. Chem.Eur.J.2007,12,3241-3247.
    151. WANG X Y, ZHEN F, LIN X. Copper sulfide nanotubes:facile, large-scale synthesis, and application in photodegradation[J].J. Nanopart Res.,2009,11 (3):731-736.
    152. Zhang J., Bang J.H., Tang C.C., Kamat P.V.. ACS Nano [J],2010,4(1):387-395.
    153. Liou Y.H., Kao L.C.,Tsai M.C., Lin C.J.. Electrochem. Commun. [J],2012,15(1):66-69.
    154. Yuan K. D., Wu J. J., Liu M. L., Zhang L. L., Xu F. F., Chen L. D., and Huang F. Q.. Appl. Phys. Lett. [J],2009,93(13):132106-1-132106-3.
    155. Hou Y., Li X. Y, Zhao Q. D., Quan X., Chen G. H.. Appl. Phys. Lett. [J],2009,95(9): 093108-1-093108-3.
    156. Richter C., Schmuttenmaer C. A.. Nature Nanotech. [J],2009,5:769-772.
    157. WANG Ling-Ling(王凌凌),YANG Wen-Sheng(杨文胜),WANG De-Jun(王德军), XIETeng-Feng(谢腾峰)Chem.J.Chinese Universities(高等学校化学学报)[J],2010,31(12):2316-2318.
    158. Jiang T. F., Xie T. F., Zhang Y., Chen L. P., Peng L.L., Li H.Y. and Wang D. J.. Phys. Chem. Chem. Phys. [J],2010,12:15476-15481.
    159 Chen Hong-Ming(陈红明),Huang Xin-Fan(黄信凡), Xu Ling(徐岭),He Yong(何勇),Chen Kun-Ji(陈坤基)Chinese Journal of Semiconductors(半导体学报)[J],1999,20(12):1125-1128.
    160. Shen Q. M., Zhao X. M., Zhou S. W., Hou W. H., Zhu J. J.. J. Phys. Chem. C [J],2011,115(36): 17958-17964.
    161. Ouyang M., Bai R., Yang L. G., Chen Q., Han Y. G., Wang M., Yang Y, Chen H. Z.. J. Phys. Chem. C [J],2008,112(7):2343-2348.
    162. Ratcliff E. L., Zacher B., Armstrong N. R.. J. Phys. Chem. Lett. [J],2011,2(11):1337-1350.
    163. LIU En-Ke(刘恩科),ZHU Bing-Sheng(朱秉升), LUO Jin-Sheng(罗晋生)Physics of Semiconductor(半导体物理学) [M], Beijing:National Defense Industry Press(北京:国防工业出版社),2004,340-359.
    164. Anusorn Kongkanand,Kevin Tvrdy, Kensuke Takechi, Masaru Kuno, Prashant V. Kamat Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. [J] J. Am. Chem. Soc.,2008,130 (12),4007-4015.
    165. Schaller R D, Sykora M,Klimov V Let al.Nano.Lett.,2006,6:424.
    166. PLASS R, PELET S, KRUEGER J, et al. Quantum dot sensitization of organic-inorganic hybrid solar cells[J]. J. Phys. Chem. B,2002,106(31):7578-7580.
    167. Machol J L, Wise F W. Thnner D B, et al. Vibronic quantum beats in PbS microcrystallites[J]Phys.Rev.B.:Condens.Matter,1993,48:2819-2822.
    168. BYUNG R H, ZHONG Y W, BARTNIK A C.Electron injection from colloidal PbS Quantum dots into Titanuium dioxide nanoparticles[J]. JACS.,2008,2(11):2206-2212.
    169. GRATZEL M. Dye-sensitized solar cells[J].J. Photochem. Photobiol.,2003,4:145-153.
    170. Yuh-Lang Lee, Yi-Siou Lo. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. [J]. Adv. Funct. Mater.2009,19,604-609

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700