钙钛矿型复合氧化物的制备及其光致变色、电化学发光和光催化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ABO_3钙钛矿结构复合氧化物具有多种独特的物理和化学性质,发现和探索这些独特性质的研究工作一直被人们所关注。本文以具有组成多样和性质可调变的ABO_3钙钛矿复合氧化物为研究对象,以其结构特点为基础,以A位和B位掺杂为途径,采用固相法和软化学法,制备了具有光催化活性和光致变色性质的ABO_3钙钛矿结构复合氧化物,研究其结构、组成、表面形态与性能的关系,探索了掺杂银钙钛矿结构复合氧化物修饰电极的电化学发光性质。主要内容如下:
     用硬脂酸法制备了比表面大、粒径小的AFeO_3(A=Ce、Pr、Nd、Sm、Gd、Dy、Er、Y)和ANiO_3(A=Nd、Gd)系列钙钛矿结构复合氧化物。以亚甲基兰为探针,研究了它们及B位互掺杂的钙钛矿结构复合氧化物NdFe_xNi_(1-x)O_3的光催化活性。其光催化活性与Fe/Ni比有关。未掺杂的钙钛矿结构复合氧化物的光催化活性比B位互掺杂的钙钛矿结构复合氧化物NdFe_xNi_(1-x)O_3的光催化活性高。
     分别以固相法、溶胶-凝胶法和溶剂热法制备了银掺杂的钙钛矿结构复合氧化物La_((2-x)/3)Ag_xTiO_(3+λ),着重讨论了各合成方法和银的掺杂量对掺杂产物的颗粒形貌、粒径、表面相组成等参数的影响。研究表明,在La_2O_3-TiO_2体系中,掺杂Ag~((Ⅰ))对形成La_((2-x)/3)Ag_xTiO_(3+λ)的钙钛矿结构起着至关重要的作用。其原因是Ag~((Ⅰ))可以使体系保持钙钛矿结构所必须的电荷平衡。因此,银的掺杂有利于La_((2-x)/3)Ag_xTiO_(3+λ)的钙钛矿结构的形成。
     实验结果表明,在掺杂Ag~((Ⅰ))的情况下,较低反应温度和较短反应时间即可获得钙钛矿结构的复合氧化物La_((2-x)/3)Ag_xTiO_(3+λ)。当银掺杂量(起始摩尔比)小于0.08时,产物中有未反应的起始物相存在;当银掺杂量大于0.1时,产物中明显有单质银存在,表明Ag~((Ⅰ))的掺杂量太低或太高,无法再通过缺陷或增加氧来调节电荷平衡,因此Ag~((Ⅰ))对形成钙钛矿晶体调节电荷平衡能力是有限的。
     研究了钙钛矿结构复合氧化物La_((2-x)/3)Ag_xTiO_(3+λ)的紫外-可见漫反射吸收光谱,并利用Kubelka-Munk函数,计算了样品的半导体能隙,得出如下结果:Eg_((Ag0.1-LT3))>Eg_((Ag0.1-LT2))>Eg_((Ag0.1-LT1));Eg_((Ag0.08-LT3))>Eg_((Ag0.06-LT2))>Eg_((Ag0.6-LT1));Eg_((Ag0.1-LT3))>Eg_((Ag0.08-LT3))
     发现了在紫外光照射下钙钛矿结构复合氧化物La_((2-x)/3)Ag_xTiO_(3+λ)的光致变色性质。探讨了La_((2-x)/3)Ag_xTiO_(3+λ)的制备方法和银掺杂量与其光致变色性质的关系。研究结果表明,La_((2-x)/3)Ag_xTiO_(3+λ)的光致变色性质主要与银的掺杂量有关。相同制备方法获得的样品,银掺杂量越多变色越快,颜色越深。
     探索了用钙钛矿结构复合氧化物La_((2-x)/3)Ag_xTiO_(3+λ)作为修饰电极的循环伏安行为和电化学发光性质。结果表明,不同制备方法和不同掺杂量样品的修饰电极循环伏安曲线有明显差异,说明制备方法和掺杂量均对其表面银的含量和形态有明显影响。发现了La_((2-x)/3)Ag_xTiO_(3+λ)修饰电极的电化学发光性质,其原因可能与其表面组成、银的形态、颗粒的形貌和粒径等因素有关,其电化学发光机理还有待进一步研究。
     采用溶剂热合成方法,以甘油和CTAB作为混合结构导向剂,合成了具有规则堆积孔道结构的TiO_2纳米晶,样品具有分散性好、粒径小和孔径分布窄等特征。样品HT2的粒径为5-10nm、孔径分布为4.2-6.2nm,比表面为285.3m~2/g。实验结果表明,在晶体生长和焙烧过程中混合结构导向剂能有效地阻碍相邻晶核之间的团聚,控制品体的生长,可获得晶体粒径小且具有规则堆积孔道结构的TiO_2纳米晶。
Perovskite-type oxides of ABO_3 have been extensively studied in recent years because of their unique physical and chemical properties. In this thesis, perovskite-type oxides of ABO_3 with different compositions and adjustable properties were taken as the subject and a series of ABO_3 and their doped composite oxides were successfully designed and synthesized by solid state reaction or soft-chemistry method. The obtained products showed good photocatalytic and photochromic properties. The influence of crystal structures, compositions and surface configuration of ABO_3 composite oxides on their photocatalytic activity was studied, and the electrochemiluminanscent property of electrode modified with silver-doped Perovskite-type composite oxides the was also explored. The thesis mainly focused on:
     Perovskite-type composite oxides of AFeO_3(A=Ce、Pr、Nd、Sm、Gd、Dy、Er、Y) and ANiO_3 (A=Nd、Gd) were successfully synthesized by the Stearic acid sol-gel method at a relatively low temperature (500℃-800℃).The obtained products showed good crystallinity, high BET surface area and small average size. The photocatalytic property of ABO_3 and doped Nd_xFe_(1-x)NiO_3 composite oxides was evaluated, using photodecomposition of methylene blue as the model system and an XPA photochemical reaction meter. The results indicated that ABO_3 composite oxides have good photocatalytic activity and the inverse proportion of Fe/Ni has quite effect on its photoactivity in Nd_xFe_(1-x)NiO_3 composite oxides. In comparison with Nd_xFe_(1-x)NiO_3,NdFeO_3 showed better photocatalytic activity, and the decomposition rate of methylene blue was up to 99% within 90 min.
     The ceramic powder of perovskite type,La_(1-x)Ag_xTiO_(3+λ),has been synthesized by solid state reaction, sol-gel and solvothermal methods. The influence of synthetic methods and doping content of Ag on the size, surface composition and shape of the samples were investigated. It was found that the doping of Ag~((Ⅰ)) played a key role in the formation of perovskite-type structure because Ag~((Ⅰ)) was helpful to achieve the charge equilibrium for La_2O_3-TiO_2 system. Moreover, the doping of Ag~((Ⅰ)) [x = 0.08-0.1 (molar ratio)] can lead to the formation of Ag-La_(1-x)Ag_xTiO_(3-λ) with unique perovskite-type structure at lower temperature and shorter reaction time. However, small amounts of Ag was found to co-exist with La_(1-x)Ag_xTiO_(3-λ) when the doping content of Ag~((Ⅰ)) is more than 0.1, while reactants were found when the doping content of Ag~((Ⅰ)) is less than 0.08. So the amount of doping Ag is limited.
     The UV-Vis spectra of the obtained Ag-La_(1-x)Ag_xTiO_(3+λ).powders were studied and the band gaps of each sample were estimated based on Kubelka-Munk Function. The results showed that Eg decreased in the sequences of Eg_((Ag0.1-LT3)) > Eg_((Ag0.1-LT2)) > Eg_((Ag0.1-LT1))Eg_((Ag0.08-LT3))> Eg_((Ag0.06-LT2)) > Eg_((Ag0.6-LT1));Eg_((Ag0.1-LT3)) > Eg_((Ag0.08-LT3)).
     It was found that Ag-La_(1-x)Ag_xTiO_(3+λ) powders showed good photochromic property under ultraviolet light irradiation in air at room temperature. The effect of synthetic methods and doping content of Ag on the photochromic property of Ag-La_(1-x)Ag_xTiO_(3+λ) powders was investigated. The results indicated that, for the samples prepared with the method, the more amount of Ag was doped, the deeper color of Ag-La_(1-x)Ag_xTiO_(3+λ) was observed under UV radiation. The photochromic phenomenon of Ag-La_(1-x)Ag_xTiO_(3+λ) is presumably due to the interconversion between Ag~+ and Ag.
     The Cyclic voltamrnograms (CVs) behavior and electrochemiluminescent property of La_((2-x)/3)Ag_xTiO_(3+λ) were explored, using La_((2-x)/3)Ag_xTiO_(3+λ) modified glass carbon electrode. The data showed that La_((2-x)/3)Ag_xTiO_(3+λ) obtained with different synthetic methods and different doping contents of Ag had different Cyclic voltammograms behaviour, indicating that the synthetic methods and doping contents of Ag have sonsiderable influence on the shape and content of Ag on the surface.La_((2-x)/3)Ag_xTiO_(3+λ) modified glass carbon electrode also displayed electrochemi- luminescent property. This phenomenon may be caused by the substitution of Ag on the surface, particle size, surface composition and shape, etc. The electrochemi- luminescent mechanism of this system needs to be further investigated.
     The nanocrystalline titania with regular channel structure was synthesized, using a cetyltrimethylammonium bromide and nonsurfactant glycerol as a mixed structure-directing agent, by solvothermal method. Combination of the mixed structure-directing agent and solvothermal method resulted in the formation of nanocrystalline titania (HT2) with smaller size, higher crystallinity, better dispersibility, narrower particle distribution and much larger surface area. The experiment results showed that the average size of HT2 is 5-10 nm,the pore diameter is 4.2-6.2 nm and BET surface area is ca.285.3 m~2·g~(-1).Possible reason is that the combined structure-directing agents prevent the near crystals from congregating to each other effectively during the crystal growth and calcinations process, this is very helpful to obtain regular channel structure and small sized TiO_2 nanocrystals.
引文
1. He T, Yao J. N. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates[J]. Prog. Mater. Sci. 2006, 51: 810-879.
    2. Fujishima A., Honda K. Electrochemcal Photolysis of water at a semiconductor electrode[J].Nature, 1972, 238: 37-38.
    3. Deb S. K. Opportunities and challenges in science and technology of WO_3 for electrochromic and related applications[J].Sol. Energy Mater. Sol. Cells. 2008, 92:245-258.
    4. Xiong J. Y., Liu X. Y., Li J. L. Architecture of Macromolecular Network of Soft Functional Materials: from Structure to Function[J]. J. Phys.Chem. B 2007,111(20):5558-5563.
    5. Nalwa H. S. Handbook of nanostructured material and nanotechnology, Chap.1.Academic Press. San Diego.1999.
    6. 张立德,牟庆美.纳米材料和纳米结构.北京:科学出版社,2001.
    7. 张金升,许凤秀,王英姿等.功能材料综述[J].现代技术陶瓷.2003,24(3):40-44.
    8. Brian L. C, Kolesnichenko V. L., et al.Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev., 2004,104:3893-3946.
    9. 戴洪兴,何洪,李佩珩等.稀土钙钛矿型氧化物催化剂的研究进展[J].中国稀土学报.2003,21:1-13.
    10. 汪信,陆路德.纳米金属氧化物的制备及应用研究的若干进展[J].无机化学学报.2000,16:213-216.
    11. Naoi K..Ohko Y.,Tatsuma T. TiO_2 Films Loaded with Silver Nanoparticles: Control of Multicolor Photochromic Behavior[J]. J. Am. Chem. Soc, 2004, 126: 3664-3668.
    12. Naoi K..Ohko Y.. Tatsuma T. Switchable rewritability of Ag-TiO_2 nanocomposite films with multicolor photochromism[J].Chem. Commun..2005:1288-1290.
    13. Yoshihisa O.,Tetsu T., Tsuyoshi F., et al. Multicolour photochromism of TiO_2 films loaded with silver nanoparticles[J]. Nat. Mat. 2003, 2: 29-31.
    14. Pe(?)a M., A., Fierro J. L. Chemical Structures and Performance of Perovskite Oxides[J]. Chem. Rev. 2001, 101: 1981-2017.
    15. Chong H. Li., KwanSoh K.C,Wu P. Formability of ABO_3 perovskites[J]. J.Alloys Compd.,2004, 372: 40-48.
    16. Abe M., Uchino K. X-ray study of the deficient perovskite La_(2/3)TiO_3[J].Mat. Res. Bull.1974,9(2):147-156.
    17. Houivet D., Fallah J. E., Bernard J., et al.Microwave properties and microstructures of La_(2/3)TiO_3 stabilized with NiO[J].J.Eur. Ceram. Soc,2001, 21: 1715-1718.
    18. 牛新书,李华等.A位离子对AFeO_3(A=Sm,Gd,Bi)光催化活性的影响[J].稀土.2007,28(5):45-47.
    19. 李红花,汪浩,严辉.ABO_3钙钛矿型复合氧化物光催化剂设计评述[J].化工进展,2006,25(11),1309-1313.
    20. 段碧林,曾令可,刘平安等.稀土钙钛矿型复合氧化物催化剂研究现状[J].陶瓷.2006.8:5-9.
    21. 李大光,章弘毅,张鹤丰等.钙钛矿型复合氧化物的研究与应用进展[J].材料导报.2006,20:296-299.
    22. 白树林,傅希贤,桑丽霞等.钙钛矿(ABO_3)型复合氧化物的光催化活性变化趋势与分析.高等学校化学学报.2001,20(4):663-665.
    23. 邓积光,王国志,张玉娟等.钙钛矿型氧化物的制备与光催化性能研究进展[J].中国稀土学报.2006,24:80-93.
    24. Sumio K.,Masataka O.,Mikio S., et al. Crystal structure and property of perovskite-type oxides containing ion vacancy[J]. Catal Surv Asia.2004, 8(1):27-34.
    25. 罗世永,张家芸.SrTiO_3的缺陷化学[J].北京科技大学学报.2001,23(5):409-413.
    26. 徐庆,陈文,袁润章.一次烧成SrTiO_3复合功能陶瓷中掺杂Ag~+离子的行为及其机制[J].功能材料.2001,32(3):312-314.
    27. 曲昭君,于春英,李文钊.掺杂钙钛矿型氧化物的固体结构及其可交换氧[J],物理化学学报.1994,10:796-801.
    28. 秦善,王汝成.钙钛矿(ABX_3)型结构畸变的几何描述及其应用[J].地质学报.2004,78(3):345-351.
    29. Stramare S., Thangadurai V., Weppner W. Lithium Lanthanum Titanates: A Review[J]. Chem.Mater. 2003, 15: 3974-3990.
    30. 孙永安.稀土钙钛矿LaMnO_(3+λ)系列化合物的结构计算与分析[J].世界地质.2005,24(1):102-104.
    31. Rache A., Ebbinghaus S., Gungerich M.. et al. Tantalum and niobium perovskite oxynitrides: Synthesis and analysis of the thermal behaviour[J]. Thermochim.Acta.2005,438: 134-143.
    32. 康振晋,孙尚梅,郭振平.钙钛矿结构类型的功能材料的结构单元和结构演变[J].化学通报.2000,4:23-26.
    33. 牛新书,李华等.A位离子对AFeO_3(A=Sm,Gd,Bi)光催化活性的影响[J].稀土. 2007,28(5):45-47.
    34. 于杰,王华,马文会.复合掺杂钙钛矿氧化物催化剂的研究进展[J].昆明理工大学学报.2003,28(1):19-22.
    35. Bhalla A.S., Guo R. Y., Roy R. The perovskite structure a review of its role in ceramic science and technology[J].Mat. Res. Innovat.2000, 4: 3-26.
    36. 原晓波,刘宜华,黄宝歆等.La_(0.67)Ba_(0.33)MNO_3中Ag的掺杂效应[J].功能材料.2005,36(1):32-34.
    37. Fompeyrine J., Seoab J. W., Locquet J. P. Growth and Characterization of Ferroelectric LaTiO_(3.5) Thin Films[J] J. Eur. Ceram.Soc. 1999, 19: 1493-1496.
    38. Zhang W. W., Lin H. B. Study of Ag/La_(0.6)Sr_(0.4)MnO_3 catalysts for complete oxidation of methanol and ethanol at low concentrations[J]. J. Appl.Catal.B,2000, 24 (3-4),219-221.
    39. Fourquet J. L., Duroy H., Crosnier-Lopez M. P. Structural and Microstructural Studies of the Series La_(2/3-x)Li_(3x(?)1/3-2x)TiO_3[J].J.Solid State Chem.1996,127: 283-294.
    40. 杨光,陈正豪.掺Ag纳米颗粒的BaTiO_3复合薄膜的非线性光学特性[J].物理学报.2007,56(2):1182-1187.
    41. 王伟,张鸿斌,林国栋等.Ag/La_(0.16)Sr_(0.14)MNO_3基催化剂上CH_3OH和CO的完全氧化[J].燃料化学学报.2000,28(1):8-15.
    42. 宋宽秀,李金花,肖谧等.(Ag_(0.9)Li_(0.1))(Nb_(1-y)Ta_y)O_3纳米瓷粉的制备与表征[J].无机化学学报.2005,21(2):273-276.
    43. 唐立文,杜丕一,翁文剑.高掺银-钛酸铅复相薄膜的制备研究[J].无机材料学报.2005,20(1):175-180.
    44. Fompeyrine J., Seoab J. W., Locqueta J. P. Growth and Characterization of Ferroelectric LaTiO_(3.5) Thin Films[J].J.Eur. Ceram.Soc. 1999, 19: 1493-1496.
    45. 周东明,尤静林,蒋国昌等.BaTiO_3纳米粉体的制备及结构的光谱表征[J].光散射学报.2005,16(4):307-312.
    46. Ruiz A. I., Lo'pez M. L., Pico C, et al.Structural characterization and physical properties of the system La_(1.33)Li_xCr_xTi_(2-x)O_6[J].J.Solid State Chem.2003,173:130-136.
    47. Xue J.M., Wan D.M., Wang J. Functional ceramics of nanocrystallinity by mechanical activation[J]. Solid State Ionics. 2002,151:403- 412.
    48. Raveau B. Transition metal oxides: Promising functional materials[J].J.Eur. Ceram.Soc. 2005, 25: 1965-1969.
    49. Burda C, Chen X. B., Narayanan R., el at. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Client. Rev. 2005,105:1025-1102.
    50. Peng X. G. Mechanisms for the Shape-Control and Shape-Evolution of Semiconductor Nanocrystals[J].Adv.Mater. 2003, 15 (5): 459-463.
    51. Adair J.H., Suvaci E. Morphological control of particles[J].Curr. Opin. Coll. & Interf.Sci. 2000, 5: 160-167.
    52. Polleux J., Pinna N., Antonietti M., et al.Ligang-Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures[J]. Adv. Mater. 2004,16(5): 436-439.
    53. Lee S. M., Cho S. N., Cheon J. W. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J].Adv.Mater. 2003, 15(5): 441-444.
    54. Moritz T., Reiss J., Diesner K. D., et al. Chemseddine. Nanostructured Crystalline TiO_2 through Growth Control and Stabilization of Intermediate Structural Building Units[J].J.Phys. Chem.B.1997, 101: 8052-8053.
    55. Sato. S. Effects of surface modification with silicon oxides on the photochemical properties of powdered titania[J]. Langmuir.1988, 4: 1156-1159.
    56. Wei Y., Jin D. L., Ding T. Z., et al. A Non-surfactant Templating Route to Mesoporous Silica Materials[J].Adv.Mater. 1998, 3(4):313-316.
    57. Kazunari D., Junko N. K.,Michikazu H., et al. Photo- and machano- catalytic overall water splitting reactions to form H_2 and O_2 on heterogeneous catalyst[J]. Bull. Chem.Soc.Jpn.2000,73:1307-1331.
    58. Yang J., Li D., Wang X., et al. Rapid synthesis of nanocrystalline TiO_2/SnO_2 binary oxides and their photoinduced decomposition of methyl orange[J].J.Solid State Chent. 2002, 165:193-198.
    59 岳林海,水淼,徐铸德.二氧化钛微品结构和光催化性能关联性研究[J].化学学报.1999,57:1219-1225.
    60 杨儒,李敏,李友芬等.锐钛矿型纳米TiO_2介孔粉体表面织构的研究[J].高等学校化学学报[J].2003,24(1):146-150.
    61. Bagshaw S. A., Prouzet E., Pinnavaia T. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science,1995, 269: 1242-1244.
    62. Zheng J. Y., Pang J. B., Qiu K. Y., el at. Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template[J].J.Mater. Chem.[J].2001,11:3367-3372.
    63. Gregg S. J., Sing K. S. W. Adsorption, Surface Area and Porosity Academic Press.London, 1982.
    64. 唐玉朝,李薇,胡春等.TiO_2形态结构与光催化活性关系的研究[J].化学进展2003,15(5):379-384.
    65. Yao J. N., Chen P., Fujishima A. Electrochromic behavior of electrodeposited tungsten oxide thin films[J].J.Electroanal.Chem.1996,406: 223-226.
    66. Feng W., Zhang T., Liu Y., el at. Evaluation of photochromic properties in heteropolyoxometallate-based inorganic polymeric thin films[J]. Mater.Chem.Phys.2002, 77: 294-298.
    67. Matsubara K.,Tatsuma T. Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO_2 Surfaces[J]. Adv. Mater. 2006,3(4):1-5.
    68. Moritz T., Reiss J., Diesner K.,et al.Nanostructured Crystalline TiO_2 through Growth Control and Stabilization of Intermediate Structural Building Units[J].J.Phys.Chem.B.1997,101:8052-8053.
    69. 张金龙,陈锋,何斌编著.光催化.上海:华东理工大学出版社.2004.
    70. Swadeshmukul S., Rovelyn T., Nikoleta T., et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemilsion: the effect of nonionic surfacents[J]. Langmuir, 2001,17:2900-2906.
    71. 姜月顺,李铁津编著.光化学.北京:化学工业出版社.2005.
    72. Faughnan B. W. Photochromism in Transition-Metal-doped SrTiO_3[J].Phys. Rev. B.1971,4(10):3623-3636.
    73. Yamase T. Photo- and Electrochromism of Polyoxometalates and Related Materials[J].Chem.Rev.1998, 98: 307-325.
    74. Deb S. K. Reminiscences on the discovery of electrochromic phenomena in transition metal oxides[J].Sol. Energy Mater. Sol. Cells. 1995, 39: 191-201.
    75. Chen J., Liu Y., Feng W., et al. Structure and photochromism of polyoxometalates nanoparticles in cross-linked polymer networks[J].J Mater. Sci: Mater. Electron.2008 19:295-299.
    76. He T., Yao J. N. Photochromism in transition-metal oxides[J]. Res. Chem.Intermed.,2004, 30(4-5): 459-488.
    77. Faughnan B. W., Kiss Z. J. Optical and EPR Studies of Photochromic SrTiO_3,Doped with Fe/Mo and Ni/Mo[J]. IEEE J. Quantum Electronics. 1969, 5(1):17-21.
    78. Faughnan B. W., Kiss Z. J. Photoinduced reversible charge transfer processes in transition metal doped single crystal SrTiO_3,and TiO_2[J].Phys. Rev. Letters 1968, 21:1331-1334.
    79. He Y. P., Wu Z. Y., Fu L. M., et al.Photochromism and Size Effect of WO_3 and WO_3-TiO_2 Aqueous Sol[J]. Client. Mater. 2003,15:4039-4045.
    80. He T..Yao J.N. Photochromic materials based on tungsten oxide[J].J. Mater.Chem.2007. 17:4547-4557.
    81. Chen J., Li M. A., Wei F., et al. Preparation and photochromism of nanocomposite thin film based on polyoxometalate and polyethyleneglycol[J]. Mater. Lett. 2007 61:5247 5249.
    82. Kiss Z. J. Photochromic Materials for Quantum Electronics[J]. IEEE J. Quantum Electronics. 1969,5(1): 12-17.
    83. Kiss Z. J., Phillips W. Cathodochromism in Photochromic materials[J]. Phys. Rev.1969, 180(3): 924-925.
    84. Schlam E. Electroluminescent Phosphors[J]. Proceedings of the IEEE. 1973, 61(7):894-901.
    85. 解仁国,庄家骐,王凌凌等.一种具有高效光致变色性能的WO_3/ZnO纳米粒子复合体系[J].高等学校化学学报.2003,(11):2086-2088.
    86. 王建营,冯长根.光致变色现象及其载国防上的应用[J].国防科技.2005,3:22-25.
    87. 樊美公.光致变色与光子器件[J].化学进展.1994,6(3):209-213.
    88. 沈庆月,陆春华,许仲梓.光致变色材料的研究与应用[J].材料导报.2005,19(10):31-35.
    89. 李天文,刘鸿生.变色材料的研究与应用[J].现代化工.2004,24(2):62-64.
    90. 杨丽,乔亚.光学动态伪装技术研究[J].红外.2006,27(11):9-14.
    91. Pumera M., S'anchez S., Ichinose I., et al. Electrochemical nanobiosensors[J]. Sens.Actuators, B. 2007, 123: 1195-1205.
    92. Jie G. F., Huang H. P., Sun X. L., et al. Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin[J]. Biosens. Bioelectron. 2008, 23:1896 1899.
    93. Han H. Y., Sheng Z. H., Liang J. G. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution[J].Anal. Chim.Acta.2007, 596: 73-78.
    94. Sun C. Y., Liu B., Li J. H. Sensitized chemiluminescence of CdTe quantum-dots on Ce(Ⅳ)-sulfite and its analytical applications[J].Talanta. 2008, 75: 447-454.
    95. Liu B., Ren T., Zhang J. R., et al. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water[J]. Electrochem. Commun.2007, 9: 551 557.
    96. Ge C.W., Xu M., Liu J., et al. Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor[J]. Chem.Commun. 2008,450-452.
    97. Jiang H., Ju H. X. Electrochemiluminescence Sensors for Scavengers of Hydroxyl Radical Based on Its Annihilation in CdSe Quantum Dots Film/Peroxide System[J].Anal. Chem.2007, 79: 6690-6696.
    98. Jiang H., Ju H. X. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates[J].Chem. Commun.. 2007:404-406.
    99. 黄萍,颜仰东,李东辉.量子点荧光探针在生物医学研究中的应用进展[J].界华人消化杂志.2007,15(20):2175-2180.
    100.Zou G.Z., Ju H. X., Wei. P., et al.Electrogenerated chemiluminescence of CdSe hollow spherical assemblies in aqueous system by immobilization in carbon paste[J].J.Electroanal. Chem.2005, 579:175 180.
    101. 张莉芹,袁泽喜.纳米技术和纳米材料的发展及其应用[J].武汉科技大学学报(自然科学版).2003,26(3):234-238.
    102.Li F., Zheng H.G., Jia D. Z., et al. Syntheses of perovskite-type composite oxides nanocrystals by solid-state reactions[J]. Mater. Lett. 2002, 53: 282-286.
    103.Wu N.L.,Wang S.Y., Rusakova I. A. Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides[J].Science. 1999, 285(27):1375-1377.
    104.Liu X. H., Yang J., Wang L., et al. An improvement on sol-gel method for preparing ultrafine and crystalline titania powder[J]. Mater. Sci.& Engin. A, 2000, 289:241-245.
    105.Yang J., Li D., Wang X., et al. Synthesis and microstructural control of nanocrystalline titania powders via stearic acid method[J]. Mater. Sci. & Engin. A, 2002,328:108-112;
    106.Moritz T., Reiss J., Diesner K., et al. Nanostructured Crystalline TiO_2 through Growth Control and Stabilization of Intermediate Structural Building Units[J]. J. Phys. Chem.B.1997,101:8052-8053.
    107.Chen D. R., Jiao X. L., Zhang M. S. Hydrothermal synthesis of strontium titanate powders with nanometer size derived from dierent precursors[J]. J. Eur.Ceram.Soc.2000,20: 1261-1265.
    108. 聂秋林,袁求理,徐铸德等.水热合成CdS纳米晶体的形貌控制研究[J].物理化学学报.2003,19(12):1138-1142.
    109.Sun X. M., Chen X., Deng Z. X., et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods[J]. Mater. Chem. Phys. 2002, 78:99-104.
    110.James H. D., Suvaci E. Morphological control of particles[J]. Curr. Opin.Colloid Interface Sci.2000,5:160-167.
    111. 刘晓瑭,张亚兰,石春山.Na_(0.5)La_(0.5)TiO_3的水热法合成及其表征[J].合成化学.2004,12:65-68.
    112. 郑文君,赵鸿喜,庞文琴.La_(0.66-x)Li_(3x)TiO_(2.993)(x≤0.11)的水热合成和表征[J].化学研究与应用.2000,12(3):256-259.
    113. 施尔畏,陈之站,元如林等著.水热结晶学.北京:科学出版社,2004.
    114. 徐英明,霍丽华,赵辉等.介稳态氧化钨超微粉体的水热合成与光致变色性质研究[J].无饥化学学报.2005,21(4):538-542.
    115. 李国华,王大伟,徐铸德.纳米二氧化钛粉体晶相控制实验研究[J].无机材料学报.2002,17(3):422-428.
    116.Lan C.W.Recent progress of crystal growth modeling and growth control[J]. Chem.Eng.Sci.2004,59:1437 1457.
    117. 尹荔松,周岐发,唐新桂等.纳米TiO_2粉晶的晶粒长大动力学及相转位动力学[J]功能材料.2000,31(2):186-193.
    118. 吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化[J].无机化学学报.2002,18(4):399-403.
    119.Bunsho O.,Yoshitaka O.,Nishimoto S., et al. Photocatalytic activity of TiO_2 powders suspended in aqueous silver nitrate solution correlation with pH-dependent surface structures[J]. J. Phys. Chem., 1987, 91:3550-3555.
    120.Shu Y., Tsugio S. Photocalatic activity of platinum loaded fibrous titania prepared by solvothermal process[J]. J. Photochem. & Photobio.A: Chem.,2005,196:89-94.
    121. 肖松文,张多默.模板效应与粉末结构形貌控制[J].化学通报.1997,8:27-30.
    122. 冯守华,徐如人.无机合成与制备化学研究进展[J].化学进展.2000,12(4):446-457.
    123.Yanagisawa M,Uchida S., Shu Y, et al. Synthesis of titania-pillared hydrogen tetratitanate nanocomposites and control of slit width[J]. Chem. Mater.,2001,13:174-178.
    124.Feng S. H., Xu R. R. New Materials in Hydrothermal Synthesis[J]. Acc.Chem. Res.2001,34:239-247.
    125.Kato H., Kobayashi H., Kudo A. Role of Ag~+ in the Band Structures and Photocatalytic Properties of AgMO_3 (M: Ta and Nb) with the Perovskite Structure[J].J.Phys. Chem. B. 2002, 106:12441-12447.
    126.Raymond E. S., Thomas E. M. Perovskites by Design: A Toolbox of Solid-State Reactions[J]. Chem. Mater. 2002, 14: 1455-1471.
    127. 曲昭君,于春英,李文钊等.掺杂钙钛矿型氧化物的固体结构及其可交换氧[J].物理化学学报.1994,10(9):796-800.
    128.Attfield J. P. 'A' cation control of perovskite properties[J].Cryst.Eng. 2002, 5:427-438.
    129.Toda K., Suzuki T., Sato M. Synthesis and high ionic conductivity of new layered perovskite compounds[J]. AgLaTa_2O_7 and AgCa_2Ta_3O_(10)[J]. Solid State Ionics. 1997,93: 177-181.
    130.Ye S. L., Song W. H., Dai J. M., et al.Effect of Ag substitution on the transport property and magnetoresistance of LaMnO_3[J].J.Magn. Magn. Mater. 2002, 248: 26-33.
    131.Gubaev A. I., Kapphan S. E. Photochromism and polaronic photocharge localization in diluted KTa_(1-x)Nb_xO_3[J].J.Appl.Phys. 2006, 100: 023106,1-5.
    132.Sayouri S., Kellati M., Taibi M, et al. Diffuse phase transition and relaxor behavior in (Pb, La)TiO_3 ceramics[J]. Phys. stat. sol. 2004, 201(13): 3001-3009.
    133.Kim K., Kwon Y. W., Norton D. P., et al. Epitaxial (La,Sr)TiO_3 as a conductive buffer for high temperature superconducting coated conductors[J]. Solid-State Electron. 2003,47:2177 2181.
    134.Manik S.K., Pradhan S.K. Microstructure characterization of ball milled prepared nanocrystalline perovskite CaTiO_3 by Rietveld method[J]. Mater. Chem.Phys. 2004,86:284-292.
    135. 贺连星,柳汉印,李毅.B位异价离子(Al,Cr)置换对Li_(3x)La_(2/3-x)TiO_3离子电导率的影响[J]无机材料学报.2004,19(4):809-819.
    136.Li C. H., Hao T. Y., Zheng Z. Y., et al. Prediction of lattice constant in perovskites of GdFeO_3 structure[J].J.Phys.Chem.Solids. 2003, 64: 2147-2156.
    137. 娄向东,赵晓华,成庆堂.复合氧化物光催化研究进展[J].化学研究与应用.2003,15(4):447-450.
    138.Brous J., Fankuch I.,Banks E. Rare Earth Titanates with a Perovskite Structure[J].Acta Cryst. 1953, 67(6): 67-70.
    139.Fabbrini L., Kryukov A., Cappelli S., et al. Sr_(1-x)Ag_xTiO_(3±δ)(x=0.01) perovskite-structured catalysts for the flameless combustion of methane[J]. J. Catal.2005, 232:247-256.
    140.Adachi G. Y., Imanaka N., Tamura S. Ionic Conducting Lanthanide Oxides[J]. Chem.Rev. 2002, 102:2405-2429.
    141.Abe M., Uchino K.X-ray study of the deficient perovskite La_(2/3)TiO_3 [J].Mat. Res.Bull.1974,9(2): 147-156.
    142.Yokoyama M. Flux growth of perovskite-type La_(2/3)TiO_(3-x) crystals[J].J.Cryst.Growth.1989,96:490-496.
    143.Sckapin D. S., Kolar D., Suvorov D. Phase stability and equilibria in the La_2O_3+TiO_2 system[J]. J. Eur. Ceram. Soc, 2000, 20: 1179-1185.
    144. 向勇,郝建民,张昊等.La_2O_3-TiO_2系陶瓷物相与介电性能研究[J].硅酸盐通报.2001,2:51-54.
    145.Christopher J. H., Lumpkin G. R., Smith R. I. Crystal structures and phase transition in the system SrTiO_3-La_(2/3)TiO_3[J].J.Solid State Chem.2004,177:2726-2732.
    146.Laguna M. A., Sanjuan M. L., Varez A., et al.Lithium dynamics and disorder effects in the Raman spectrum of La_((2-x)/3)Li_xTiO_3[J].Phys. Rev. B, 2002, 66: 054301.
    147. 田国辉,池玉娟,于海涛等.Ag修饰La_(0.18)Sr_(0.12)CoO_3空气电极电催化性能[J].哈尔滨工业大学学报.2006,138(8):1278-1280.
    148.Machocki A.,Ioannides T.. Stasinska B., et al. Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane[J].J.Catal.2004, 227: 282-296.
    149. 黄继鹏,李莉萍,吕哲.La_(1-x)Na_xTiO_3的高压高温合成及谱学研究[J].高温物理学报.2000,14(2):105-110.
    150.Bohnke O.,Bohnke C, Ahmed J. Lithium Ion Conductivity in New Perovskite Oxides [Ag_yLi_(1-y)]_(3x)La_(2/3-x(?)1/3-2x)TiO_3(x<0.09 and 0    151.Houivet D, Fallah J. E, Bernard J., et al. Microwave properties and microst ructures of La_(2/3)TiO_3 stabilized with NiO[J].J.Eur. Ceram. Soc.2001,21:1715-1718.
    152.Ruiz A. I., Lopez M. L., Pico C, et al. New La_(2/3)TiO_3 Derivatives: Structure and Impedance Spectroscopy[J].J.Solid State Chem. 2002, 163: 472-478.
    153.Keisuke K., Kentaro S., Yoshihisa O.,et al. Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism[J]. Phys. Chem. Chem.Phys. 2005, 7:3851-3855.
    154.Patra A., Christopher S. F.,Kapoor R., et al. Fluorescence Upconversion Properties of Er~(3+)-Doped TiO_2 and BaTiO_3 Nanocrystallites[J]. Chem. Mater. 2003, 15: 3650-3655.
    155.L'opez-Garc' A., Alonso R., Presa P., et al. Hyperfine interactions in cubic perovskites[J].Hyperfine Interact.1999,120/121:97-106.
    156.Yakovleva I.S.,Isupova L. A., Tsybulya S. V., et al. Mechanochemical synthesis and reactivity of La_(1-x)Sr_xFeO_(3-y) perovskites (0≤x≤1)[J].J.Mater. Sci.2004.39:5517- 5521.
    157.Santos P. V., Carvalho J. F., Frejlich J. Photochromism, bleaching and photorefractive recording in undoped Bi_(12)TiO_(20) crystals in the visible and near infrared wavelength range[J]. Opt. Mater. 2007, 29: 462 467.
    158.Haile S. M., Staneff G., Ryu K. H. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites[J].J.Mater. Sci. 2001, 36:1149-1160.
    159.Jung W. H. Small polarons in La_(2/3)TiO_(3-λ)[J].J.Appl.Phys.,2000, 88 (5): 2560-2563.
    160.Sanjuana M.L.,Laguna M. A., Varez A.,et al.Effect of quenching on structure and antiferroelectric instability of La_((2-x)/3)Li_xTiO_3 compounds: a Raman study[J]. J. Eur.Ceram.Soc.2004,24:1135-1139.
    161.Bohnke O., Bohnke C, Fourque J. L. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate[J]. Solid State Ionics.1996,91:21-31.
    162.Kim I.S.,Nakamura T., Inaguma Y., et al. Electronic transport phenomena of La_(2/3+x)TiO_(3-δ)(δ<0.2):metal-nonmetal transition by electron doping[J].J.Solid State Chem. 1994,113:281-288.
    163.Vashook V.,Vasylechko L., Trofimenko N., et al. A-site deficient perovskite-type compounds in the ternary CaTiO_3-LaCrO_3-La_(2/3)TiO_3 system[J].J.Alloys Compd.2006,419:271-280.
    164.MacEachern M. J., Dabkowska H.,Garrett J. D., et al. Metal-Insulator Transitions in La_(1-x)TiO_3,0.0≤x≤0.33.Structure-Property Correlations[J].Chem. Mater. 1994, 6:2092-2102.
    165.Sammers N. M., Philipps M. Systhesis of La_(1-x)Sr_xMnO_3 at different sintering temperatures[J]. Mater. Lett. 1993,12(11); 825-832.
    166. 苗继鹏,李莉萍,吕哲等.La_(1-x)Na_xTiO_3的高压高温合成及谱学研究[J].高压物理学报.2000,14(2):105-110.
    167. 唐涛,曹庆琪,谷坤明等.La_(1-x)Ag_xMnO_3多晶非均匀颗粒系统的巨磁电阻效应[J].南京大学学报(自然科学).2000,36(4):423-426.
    168.Tenne D. A., Soukiassian A., Xi X. X., et al. Lattice dynamics in Ba_xSr_(1-x)TiO_3 single crystals: A Raman study[J]. Phys. Rev. B. 2004, 70:174302(1-9).
    169.Jung W. H. Structure, thermopower and electrical transport properties of La_(2/3)TiO_(3-(?))[J].J.Mater. Sci. Lett. 1999, 18:1181-1183.
    170.Dobal P. S., Dixit A., Katiyar R. S., et al. Micro-Raman study of Ba_(1-x)Sr_xTiO_3 ceramics[J].J.Raman Spectrosc.2001, 32: 147-149.
    171.尤静林,蒋国昌,王桢枢等.TiO_2晶型及其相变的高温拉曼光谱研究[J].光散射学报.2004,16(12):95-98.
    172.李颖,段玉然,李维华.纳米锐钛矿的拉曼光谱特征[J].光谱学与光谱分析.2000,20(15):699-701.
    173.张明生,张伟风,尹真.纳米二氧化钛材料的相变和声子限制效应[J].光散射学报.2001,13(12):95-101.
    174.李颖,段玉然,李维华.采用拉曼光谱技术研究纳米锐钛矿到金红石的相转变[J].光谱学与光谱分析.2002,22(15):783-786.
    175.王伟,熊智涛,林国栋等.Ag修饰La_(0.6)Sr_(0.4)MnO_3基催化剂氧物种的谱学表征[J].厦门大学学报(自然科学版).1999,38(6):877-883.
    176.龚沿东.XPS数据处理的曲线拟合组合算法及检验[J].金属学报.1996,32(2):219-224.
    177.Wagner C. D., Gale L. H., Raymond R. H. Two-Dimensional Chemical State Plots: A Standardized Data Set for Use in Identifying Chemical States by X-Ray Photoelectron Spectroscopy[J].Anal.Chem.1979, 51(4): 466-482.
    178.Bird R. J., Swift P. Energy calibration in electron spectroscopy and the re-determination of some reference electron binding[J]. J. Electron. Spectrosc. Relat.Phenom. 198021:227-240.
    179.Hammond J. S., Gaarenstroom S. W., Winograd N. X-Ray Photoelectron Spectroscopic Studies of Cadmium-and Silver-Oxygen Surfaces[J]. Anal. Chem.1975,47(13): 2193-2199.
    180.郜小勇,刘萍,陈永生等.热处理对Ag_xO薄膜结构及成份的影响[J].人工晶体学报.2005,34(6):1158-1162.
    181.Kaushik V. K. XPS core level spectra and auger parameters for some silver compounds[J]. J. Electron. Spectrosc. Relat. Phenom.199156: 273-277.
    182.Kasahara B., Nukumizu K.,Hitoki G., et al.Photoreactions on LaTiO_2N under Visible Light Irradiation[J]. J.Phys.Chem. A. 2002,106:6750-6753.
    183.Su L. Y., Lu Z. H. Photochromic and photocatalytic behaviors on immobilized TiO_2 particulate films[J]. J. Photochem.& Photobio.A: Chem,1997,107:245-248.
    184.Subramaniana B., Sanjeevirajaa C, Jayachandran M. Brush plating of tin(Ⅱ) selenide thin films[J]. Journal of Crystal Growth. 2002,234:421-426.
    185.Islam M.S.Computer modelling of defects and transport in perovskite oxides[J]. Solid State Ionics. 2002.154-155:75-85.
    186.李涛,赵广军,何晓明等.YAP晶体变色现象的研究[J].人工晶体学报.2002,31(5):456-459.
    187.Jin R. C, Cao Y. W., Chad A. M., et al.Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J]. Science. 2001, 294(30): 1901-1903.
    188.Lassaletta G., Fernfindez A., Espin6s J. P., et al. Spectroscopic Characterization of Quantum-Sized TiO_2 Supported on Silica: Influence of Size and TiO_2-SiO_2 Interface Composition[J].J.Phys.Chem 1995,99: 1484-1490.
    189.Linsebigler A. L., Lu G. G, Yates J. T. Photocatalysis on TiO_2 Surfaces: Principles,Mechanisms, and Selected Results[J]. Chem.Rev.1995,95: 735-758.
    190.黄惠忠.固体催化剂的研究方法.第九章表面分析方法(上)[J].石油化工.2001,30(4):325-339.
    191.黄惠忠.固体催化剂的研究方法.第九章表面分析方法(中)[J].石油化工.2001,30(5):414-423.
    192.Jing X. Z., Li Y. X., Yang Q. B., et al. Synthesis of fibrous TiO_2 from layered protonic tetratitanate by a hydrothermal soft chemical process[J]. Mater. Sci. Eng., B. 2004,110:18-22.
    193.井立强,张新,屈宜春等.掺杂镧的TiO_2纳米粒子的光致发光及其光催化性能[J].中国稀土学报.2004,22(6):746-750.
    194.吴建人,张晓晖,丁秀琴.Ag-Ag_2SO_4化学修饰电极的研制及应用[J]理化检验-化学分册.1996,32(3):156-157.
    195.刘洪涛,夏熙.电极用纳米Ag_2O的电化学性能研究Ⅲ.电极的循环伏安行为[J].应用化学2002,19(5):441-445.
    196.姚爱丽,吕桂琴,胡长文.银纳米修饰电极的制备及电化学行为[J].无机化学学报.2006,22(6):1099-1102.
    197.方宾,方惠群,陈洪渊.银微电极微分电位溶出分析法研究[J].分析化学.1995,23(11):1243-1246.
    198.赵发琼,曾百肇.银电极在电化学分析研究中的应用[J].分析科学学报.2001,17(5):418-423.
    199.冷鹏,郑岩,黄加栋.纳米Ag_2O修饰碳糊电极的电化学性能研究[J].传感器与微系统.2006,25(8):12-14.
    200.藤导 昭等著.陈震等译.电化学测定方法.北京大学出版社,1995.
    201.SatO S. Effects of Surface Modification with Silicon Oxides on the Photochemical Properties of Powdered TiO_2[J].Langmuir. 1988,4: 1156-1159.
    202.Tamura H., Mita K., Tanaka A., et al. Mechanism of Hydroxylation of Metal Oxide Surfaces[J].J.Colloid Interface Sci.2001, 243: 202-207.
    203.Rodriguez R., Blesa M. A., Regazzoni A. Surface Complexation at the TiO_2 (anatase)/Aqueous Solution Interface: Chemisorption of Catechol[J] J.Colloid Interface Sci.1996, 177:122-131.
    204.Dugas V., Chevalier Y. Surface hydroxylation and silane grafting on fumed and thermal silica[J]. J. Colloid Interface Sci.2003, 264: 354-361.
    205.吴越.催化化学.北京:科学出版社,1998.
    206.程光熙著.拉曼、布里渊散射.北京:科学出版社,2001.
    207.赵成大.固体量子化学-材料化学的理论基础,北京:高等教育出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700