A_2B_2O_7型纳米复合氧化物的水热合成及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合氧化物A_2B_2O_7(A和B为金属)包括具有不同结构的多种化合物,具有优异的光电磁等物理性质,而成为纳米材料领域最富有活力、对未来经济和社会发展有十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。传统的高温固相合成法不仅浪费资源,产物易出现杂项,而且产物尺寸较大。
     本论文研究重点在于以水热法合成A_2B_2O_7(A=Y,La,Bi;B=Sn,Ti)系列多种纳米复合氧化物,对合成出的产物进行了多种方法的表征,初步研究纳米材料的光催化性质,探索纳米颗粒的尺寸,形貌和化合物的结构变化对光催化性能的影响关系。取得的成果归纳如下:
     1.设计了一条简单的水热合成路线,成功地运用于A_2B_2O_7(A=Y,La,Bi;B=Sn,Ti)系列多种纳米复合氧化物的合成。
     2.通过简单的水热法,使用不同的有机试剂(聚甲基丙烯酸甲酯、十六烷基三甲基溴化胺、乙二铵四乙酸二钠盐),在较低的温度下合成出颗粒尺寸可控的Y_2Sn_2O_7纳米颗粒并对其合成的机理进行了探讨,提出了通过有机试剂来调控Y_2Sn_2O_7的纳米颗粒尺寸的机理。研究了Y_2Sn_2O_7的纳米颗粒大小与光催化性能的关系,发现颗粒半径最小的Y_2Sn_2O_7纳米颗粒光催化效果最好。阐明了纳米颗粒Y_2Sn_2O_7样品具有较高光催化能力的原因。
     3.为了验证设计的水热合成方法适用于相似体系复合氧化物的合成,把A_2B_2O_7中A位元素由钇换为镧,B位元素保持不变,通过设计的简单的水热法,在较低的温度下合成具有烧绿石结构的La_2Sn_2O_7纳米球,证明了设计的水热方法适用于相似体系的复合氧化物的合成。并观察到较大的La_2Sn_2O_7纳米球是由更小的结晶良好的纳米片自组装而成。发现其具有与纳米Y_2Sn_2O_7颗粒相似的光催化性质。
     4.为了合成光催化能力更高的层状复合氧化物,把A_2B_2O_7中B位元素由锡换为钛,A位元素保持不变,通过设计的简单的水热法合成了具有较为规则的长方形钙钛矿结构层状化合物La_2Ti_2O_7纳米片。通过对样品比表面积的测量,发现样品具有较大的比表面积;通过对其微观结构进行分析,发现
The compounds with the general formula of A_2B_2O_7 include many kinds of composite oxides with different structure. Because they possess many excellent physical properties,they have become the important investigation object in the nanomaterials field. At the same time;they were the important application materials in actual life. However,these compounds were generally synthesized through the traditional high temperature solid state reaction,which is not only wasting energy,polluting environment,but is easily induce impurity and the particle size is large.
     The main points of this thesis rest with exploring novel hydrothermal methods to synthesize functional composite oxides nanomaterials , and studying the photocatalytic properity of the products,and investigating the effect of particle size,mopholougy and the structure on the propertiy. The main results achieved are summed up as following:
     1. A hydrothermal process had been designed and successly applied in the synthesis of many composite oxides nanomaterials with the general formula of A_2B_2O_7 (A=Y,La,Bi;B=Sn,Ti).
     2. Nanosized Y_2Sn_2O_7 powder photocatalysts with different particle sizes were synthesized through the low temperature hydrothermal method by using different organic agents (polymethyl methacrylate: PMMA , cetyltrimethyl ammonium bromide: CTAB or ethylene diamine tetraacetic acid: EDTA). A formation mechanism of the Y_2Sn_2O_7 nanoparticles with different sizes in the presence of organic agents was proposed. The diffuse reflection spectrum shows that with the decrease of sample particle size,the absorbance edges of samples move to long wavelength,that is to say,the red shift occurs. The surface areas of samples indicate that different kinds of organic agents result in the difference in the particle sizes,and the surface areas of the samples. The surface areas varied with the heat treatment temperature. The photo catalytic experiments showed that the
引文
1. 彭峰, 陈水辉, 张雷, 王红娟, 谢志勇. 纳米 ZnO 薄膜的制备及其可见光催化降解甲基橙. 物理化学学报. 2005, 21(8):944~948
    2. 郭世宜, 沈星灿, 郭俊怀, 夏顺保, 何锡文. 超细纳米 TiO2 光催化灭菌的研究. 南开大学学报:自然科学版. 2005, 38(3): 78~82
    3. 张茂林, 安太成, 胡晓洪, 王存, 王新明, 盛国英, 傅家谟. 泡沫镍负载纳米ZnO—SnO2 光催化降解三氯乙烯. 环境科学学报. 2005, 25(2): 259~263
    4. 章 俞 之 , 黄 银 松 . 三 氧 化 钼 溶 胶 凝 胶 光 致 变 色 的 研 究 . 化 学 学 报 . 2001, 59(12):2076~2079
    5. 徐英明, 霍丽华, 赵辉, 高山, 赵经贵. 介稳态氧化钨超微粉体的水热合成与光致变色性质研究. 无机化学学报. 2005, 21(4): 538~542
    6. 李俊华, 傅慧静, 傅立新, 郝吉明. 金属离子掺杂的 TiO2薄膜的制备及其光催化降解甲苯的性能. 催化学报. 2005, 26(6):503~507
    7. 刘 孝 恒 , 汪 信 . 薄 膜 空 气 ~ 水 界 面 自 组 装 的 研 究 . 无 机 化 学 学 报 . 2005, 21(10):1490~1494
    8. 张健, 吴全兴. 纳米二氧化钛的研究进展. 稀有金属快报. 2005, 24(3):1~5
    9. 干福熹. 信息材料. 天津:天津大学出版社, 2000. 203~224
    10. 成英之, 张渊明. WO3—TiO2 薄膜型复合光催化剂的制备和性能. 催化学报. 2001, 22:203~205
    11. 解仁国, 庄家骐, 王凌凌, 杨文胜, 王德军, 李铁津, 姚建年. 一种具有高效光致变色性能的 WO3/ZnO 纳米粒子复合体系. 高等学校化学学报. 2003, 24(11): 2086~2088
    12. G. Parravano. Catalytic activity of lanthanum and strontium manganite. J. Am. Chem Soc. 1953, 75(6):1497~1498
    13. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature. 2002, 418(6894):164~167
    14. Z. Y. Zhong, Q. J. Yan, X. C. Fu, J. Gong. Total oxidation of methane overperovskite-type complex oxides LaFel-yAyO3-λ(A=Mn, Co, Ni). Chem. Commun. 1996, (15):1745~1746
    15. M. S. D. Read, M. S. Islam, F. King, F. E. Hancock. Defect chemistry of La2Ni1-xMxO4 (M=Mn, Fe, Co, Cu): Relevance to catalytic behavior. J. Phys. Chem. B. 1999, 103(9):1558~1562
    16. K. L. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature. 1998, 395(6703):677~680
    17. M. Allix, P. D. Battle, P. P. C. Frampton, M. J. Rosseinsky, R. Ruiz-Bustos. Composition dependence of the structural chemistry and magnetism of Ca2.5Sr0.5(Ga,Co)(1+x)Mn2-xO8. Journal of Solid State Chemistry. 2006, 179 (3):775~792
    18. R. Gupta, A. Manthiram. Chemical extraction of lithium from layered LiCoO2. J. Solid State Chem. 1996, 121(2):483~491
    19. H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, J. Yamaki. Characterization and cathode performance of Li1-xNi1+xO2 prepared with the excess lithium method. Solid. State. Ionics. 1995, 80(3-4):261~269
    20. A. R. Armstrong, P. G. Bruce. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature. 1996, 381(6582):499~500
    21. K. T. Hwang, W. S. Um, H. S. Lee, J. K. Song, K. W. Chung. Powder synthesis and electrochemical properties of LiMn2O4 prepared by an emulsion-drying method. J. Power Sources. 1998, 74(2): 169~174
    22. S. Y. Chung, J. T. Bloking, Y. M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 2002, 1(2):123~128
    23. P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Mater. 2004, 3(3):147~152
    24. J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature. 2001, 414(6861):359~367
    25. S. P. Jiang, S. P. S. Badwal. An electrode kinetics study of H2 oxidation on Ni/Y2O3-ZrO2 cermet electrode of the solid oxide fuel cell. Solid State Ionics. 1999, 123(1-4):209~224
    26. M. A. Subramanian, G. Aravamudan, G. V. S. Rao. Oxide pyrochlores-a review. Prog.Solid State Chem. 1983, 15(2):55~143
    27. Y. Teraoka, K. Torigoshi, H. Yamaguchi, T. Ikeda, S. Kagawa. Direct decomposition of nitric oxide over stannate pyrochlore oxides:relationship between solid-state chemistry and catalytic activity. J. Molecular catal. A-Chem. 2000, 155 (1-2):73~80
    28. S. Park, H. J. Hwang, J. Moon. Catalytic combustion of methane over rare earth stannate pyrochlore. Catal. Lett. 2003, 87(3-4):219~223
    29. M. H. Zahir, K. Matsuda, S. Katayama, M. Awano. Hydrothermal Synthesis of New Compounds with the Pyrochlore Structure and its Application to Nitric Oxide Abatement. Journal of the Ceramic Society of Japan. 2002, 110(11):963~969
    30. B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. E. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen. Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid Staet Ionics, 2000, 129(1-4):111~133
    31. V. Bondah-Jagalu, S. T. Bramwell. Magnetic susceptibility study of the heavy rare-earth stannate pyrochlores. Can. J. Phys. 2001, 79 (11-12):1381~1385
    32. K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka, T. Sakakibara. Low-temperature magnetic properties of pyrochlore stannates. Journal of the Physical Society of Japan. 2002, 71 (6):1576~1582
    33. 谢亚红, 刘瑞泉, 李志杰, 王吉德, 宿新泰. Ca、Ce 双掺杂烧绿石型复合氧化物的合成及离子导电性能研究. 无机化学学报. 2004, 20(5): 551~554
    34. G. S. V. Coles, S. E. Bond, G. Williams. Metal stannates and their role as potential gas-sensing elements. J. Mater. Chem. 1994, 4(1):23~27
    35. R. S. Pavlov, J. B. C. Castello, V. B. Marza, J. M. Hohembergerger. New red-shade ceramic pigments based on Y2Sn2-XCrxO7-δ pyrochlore solid solutions. J. Am Ceram. Soc. 2002, 85 (5):1197~1202
    36. A. M. Srivastava. On the luminescence of Bi3+ in the pyrochlore Y2Sn207. Mater. Res. Bull. 2002, 37 (4):745~751
    37. 张莉莉, 陆路德. 无机层状化合物及其应用述评. 2004, 32(3):1~4
    38. R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara. Photocatalytic activity of R3MO7and R2Ti2O7 (R = Y, Gd, La;M = Nb, Ta) for water splitting into H2 and O2. Journal of Physical Chemistry B. 2006, 110 (5):2219~2226
    39. D. W. Hwang, J. S. Lee, W. Li, S. H. Oh. Electronic Band Structure and Photocatalytic Activity of Ln2Ti2O7 (Ln = La, Pr, Nd). J. Phys. Chem. B. 2003, 107(21):4963~4970
    40. H.C. Gupta, S. Brown, N. Rani, V.B. Gohel. A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Sn2O7 pyrochlores. International Journal of Inorganic Materials. 2001, 3 983–986
    41. 张立德, 牟季美. 纳米材料和纳米结构. 北京:科学出版社, 2001:1~23, 51~68
    42. 尾崎义治, 贺集诚一郎, 一ノ赖升. 超微粒导论. 赵修建, 张联盟译. 武汉:武汉工业大学出版社, 1991:1~36, 78~181
    43. 蔡登科. 张博, 孟凡. 纳米 Ti02 在有机废水处理方面的研究进展. 电力环境保护. 2003, 19(3):49~51
    44. K. Kobayakawa, C. Sato, Y. Sato, A. Fujishima. Continuous-flow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water. Journal of Photochemistry and Photobiology A: Chemistry. 1998, 118(1):65~69
    45. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 1998, 395(6702):583~585
    46. M. R. Fitzsimmons, E. Burkel, S. L. Sass. Experimental Measurement of the Thermal Displacive Properties of a Large-Angle Twist Grain Boundary in Gold. Phys. Rev. Lett. 1988, 61(19):2237~2240
    47. S. B. Wang, K. W. Li, R. Zhai, H. Wang, Y. D. Hou, H. Yan. Synthesis of metastable gamma-manganese sulfide crystallites by microwave irradiation. Materials Chemistry And Physics 2005, 91 (2-3):298~300
    48. J. B. Liu, K. W. Li, H. Wang, M. K. Zhu, H. Y. Xu, H. Yan. Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology 2005, 16 (1):82~87
    49. J. B. Liu, K. W. Li, H. Wang, M. K. Zhu, H. Yan. Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chemical Physics Letters. 2004, 396(4-6):429~432
    50. 王俊中, 胡源, 陈祖耀. 超声化学制备纳米材料的研究进展. 稀有金属材料与工程. 2003, 32(8):585~590.
    51. K. W. Li, X. T. Meng, X. Liang, H. Wang, H. Yan. Electrodeposition and characterization of PbSe films on indium tin oxide glass substrates. Journal of Solid State Electrochemistry. 2006, 10 (1):48~53
    52. 曹茂盛. 超微颗粒制备科学与技术. 哈尔滨:哈尔滨工业大学出版社, 1998:46~63
    53. P. Matteazzi, G. Lecaer, A. Mocellin. Synthesis of Nanostructured Materials by Mechanical alloying. Ceram Int. 1997, 23(1):39~44
    54. P. Matteazzi, G. Lecaer. Room-temperature Mechanosynthesis of Carbides by Grinding of Elemental Powders. J Am Ceram Soc. 1991, 74(6):1328~1390
    55. A. Calka, J. Nikolov. Direct Synthesis of AlN and Al-AlN Composites by Room Temperature Magneto Ball Billing:the Effect of Milling Condition on Formation of Nanostructures. Nanostructured Mater. 1995, 6(1-4):409~412
    56. U. Kersen, L. Holappa. H2S-sensing properties of SnO2 produced by ball milling and different chemical reactions. Analytica Chimica Acta. 2006, 562 (1): 110~114
    57. 鄢程, 李竟先. 固相法制备纳米颗粒. 材料导报. 2000, 14:339~340
    58. 段波, 赵兴中, 李星国, 张同俊, 肖建中, 胡镇华, 崔昆. 超微粉制备技术的现状与展望. 材料工程. 1994, (6):5~8
    59. 徐凤琼, 刘云霞, 窦明民. 高纯超细电子陶瓷粉体材料的制备. 有色冶炼. 1998, 27(5):57~60
    60. 余家国, 张联盟. 精细陶瓷超微细粉制备技术的现状与展望. 仪表材料. 1990, 21(1):45~49
    61. 张燕红, 邱向东, 赵谢群, 胡初潜. 超细颗粒材料的制备(一). 稀有金属, 1997, 21(6):451~457
    62. 毛豫兰, 赵雷康. 纳米材料的制备及研究发展. 国外建材科技, 2001, 22(4):16~20
    63. Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino, K. Arai. Flow Method for Rapidly Producing Barium Hexaferrite Particles in Supercritical Water. J Am Ceram Soc, 1998, 81(9):2461~2464
    64. Y. Hakuta, S. Onai, H. Terayama, T. Adschiri, K. Arai. Production of Ultra-fine CeriaParticles by Hydrothermal Synthesis under Supercritical Conditions. J Mater. Sci Lett. 1998, 17(14):1211~1213
    65. T. Adschiri, K. Kanazawa, K. Arai. Rapid and Continuous Hydrothermal Crystalization of Metal Oxide Particles in Supercritical Water. J Am Ceram Soc. 1992, 75(4):1019~1022
    66. 杨海堃. 气相氢氧焰水解法生产超细二氧化钛. 中国粉体技术. 2000, 6(1):30~34
    67. 张恒, 张力. 纳米复合材料实用化技术前景. 材料导报. 2001, 15(8):20~22.
    68. 丁江波, 袁曦明, 陈敬中. 纳米发光材料的研究现状及进展. 材料导报. 2001, 15(1):30~32
    69. 刘梅冬, 李楚容, 曾亦可, 王培英, 饶韫华. 溶胶-凝胶技术制备 Ba4Ti3O12 铁电薄膜的研究.功能材料. 1997, 28(3):297~299
    70. 张志, 崔作林. 纳米技术与纳米材料. 北京:国防工业出版社, 2000:183~196
    71. 杜仕国. 超微粉制备技术及其进展. 功能材料. 1997, 28(3):237~241
    72. T. Hinklin, B. Toury, C. Gervais, F. Babonneau, J. J. Gislason, R. W. Morton, R. M. Laine. Liquid-feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chemistry of Materials. 2004,16 (1): 21~30
    73. 高海燕, 曹顺华. 纳米粉制备方法进展. 硬质合金. 2002, 19(2):96~99
    74. T. S. Yang, M. C. Yang, C. B. Shiu, W. K. Chang, M. S. Wong. Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Applied Surface Science. 2006, 252 (10): 3729~3736
    75. R. W. Siegel, S. Ramasamy, H. Hahn, Z. Q. Li, R. Gronsky. Synthesis, Characterization and Properties of Nanophase TiO2. J Mater Res. 1988, 3(6):1367~1372
    76. G. Skandan, H. Hahn, M. Roddy, W. R. Cannon. Ultrafine-Grained Dense Monoclinic and Tetragonal Zirconia. J Am Ceram Soc. 1994, 77(7):1706~1710
    77. W. Chang, F. Cosandey, H. Hahn. Electron Microscopy Studies of Phase Transformations in Nanostructured Yttriumoxide. Nanostructured Materials. 1993, 2(1):29~35
    78. 铃木宏茂. 陈世兴译. 工程陶瓷. 北京:科学出版社, 1989:26~45
    79. 胡黎明, 李春忠, 陈敏恒, 袁渭康. 工业反应过程的开发---CVD 法超细粒子的控制方法. 石油化工. 1994, 23(6):383~387
    80. 孙志刚, 胡黎明. 气相法合成纳米颗粒的制备技术技术. 化工进展. 1997, (2):21~24
    81. 王廷富, 潘庆谊. In2O3 薄膜及纳米颗粒制备进展. 材料导报. 2001, 15(8):45~47
    82. 张姝, 赖欣, 毕剑, 高道江. 纳米材料制备技术及其研究进展. 四川师范大学学报(自然科学版). 2001, 24(5):516~519
    83. 施锦行. 纳米陶瓷的制备及其特性. 中国陶瓷. 1997, 33(3):36~38
    84. 王世敏, 许祖勋, 傅晶. 纳米材料制备技术. 北京:化学工业出版社, 2002:1~56
    85. 陈祖耀, 张大杰. 纳米级超细粉末的制备. 仪表材料, 1990, 21(5):299~304
    86. K. Byrappa, M. Yoshimura. Handbook of Hydrothermal Technology:A Technology for Crystal Growth and Materials Processing, William Andrew Publishing, LLC Norwich, New York, 2001:1~43
    87. 施尔畏, 夏长泰, 王步国, 仲维卓. 水热法的应用与发展. 无机化学学报. 1996, 11(2):193~206
    88. 徐如人, 庞文琴. 无机合成与制备化学. 高等教育出版社, 2001:128~163
    89. M. Yoshimura. Importance of Soft Solution Processing for Advanced Inorganic Materials. J. Mater. Res. 1998, 13(4):796~802
    90. 王秀峰, 王永兰, 金志浩. 水热法制备纳米陶瓷粉体. 稀有金属材料与工程. 1995, 24(4):1~6
    91. M. Yoshimura, J. Livage. Soft Processing for Advanced Inorganic Materials. MRS Bulletin. 2000, 25(9):12~13
    92. M. Yoshimura, W. L. Suchanek, K. Byrappa. Soft Solution Processing:A Strategy for One-Step Processing of Advanced Inorganic Materials. MRS Bulletin. 2000, 25(9):17~25
    93. M. Yoshimura. Soft Solution Processing: Environmentally Benign Direct Fabrication of Shaped Ceramics (Nano-crystals, Whiskers, Films, and/or Patterns) without Firing. Key Engineering Materials. 2002, 206-2:1~6
    94. M. Yoshimura, W. Suchanek. In Situ Fabrication of Morphology-controlled Advanced Ceramic Materials by Soft Solution Processing. Solid State Ion. 1997, 98(3-4):197~208
    95. 王敦青. 溶剂热合成纳米功能材料研究进展. 德州学院学报. 2002, 18(2):61~64
    96. H. G Yu, J. G. Yu, B. Cheng, M. H. Zhou. Effects Of Hydrothermal Post-Treatment On Microstructures and Morphology of Titanate Nanoribbons. Journal Of Solid State Chemistry 2006, 179 (2):349~354
    97. G. Demazeau. Solvothermal Processes:a Route to the Stabilization of New Materials. J. Mater. Chem. 1999, 9(1):15~18
    98. 舒磊, 余书宏, 钱逸泰. 半导体硫化物纳米微粒的制备. 无机化学学报. 1999, 15(1):1~7
    99. 钱逸泰, 谢毅, 唐凯斌. 非氧化物纳米材料的溶剂热合成. 中国科学院院刊. 2001, 16(1):26~28
    100. K. Byrappa, M. Yoshimura. Handbook of Hydrothermal Technology:A Technology for Crystal Growth and Materials Processing, William Andrew Publishing, LLC Norwich, New York, 2001:161~186
    101. A. N. Zaidel. E. Y. Shreder. 李孝昌. 张碧华译. 真空紫外光谱学. 成都:成都科技大学出版社, 1990:237~256
    102. C. P. Udawatte, M. Kakihana, M. Yoshimura. Preparation of pure perovskite-type BaSnO3 powders by the polymerized complex method at reduced temperature. Solid State Ionics. 1998, 108(1-4):23~30
    103. Y. C. Mao, G. S. Li, W. Xu, S. H. Feng. Hydrothermal synthesis and characterization of nanocrystalline pyrochlore oxides M2Sn2O7 (M=La, Bi, Gd or Y). J. Mater. Chem. 2000, 10(2), 479~482
    104. 朱静. 纳米材料与器件. 北京:清华大学出版社, 2003:125~128
    105. J. T. Hu, T. W. Odom, C. M. Lieber. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts. Chem. Res. 1999, 32(5):435~445
    106. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15(5):353~389
    107. 武汉大学. 分析化学. 高等教育出版社, 1986:158~161
    108. Y. G. Wang, Y. Xiong, S. L. Meng, D. Q. Li. Separation of yttrium from heavy lanthanide by CA-100 using the complexing agent. Talanta. 2004, 63(2):239~243
    109. Q. S. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Y. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays. Chem. Mater. 1994, 6(8):1176~1191
    110. 施尔畏. 水热结晶学. 北京:科学出版社,2004:152~162
    111. 仲维卓; 刘光照; 施尔畏; 华素坤; 唐鼎元; 赵庆兰. 在热液条件下晶体的生长基元与晶体形成机理. 中国科学(B 辑). 1994, 24(4):349~355
    112. A. A. Chernov. J. E. S. Bradley. Growth of crystals. New York:Consultants Bureau, 1979:236~312
    113. B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104:3893~3946
    114. Y. I. Kim, S. J. Atherton, E. S. Brigham, T. E. Mallouk. Sensitized Layered Metal-oxide-semiconductor Particles for Photochemical Hydrogen Evolution from Nonsacrificial Electron-donors. J. Phys. Chem. 1993, 97 (45):11802~11810
    115. S. K. Lee, P. K. J. Robertson, A. Mills, D. McStay, N. Elliott, D. McPhail. The Alteration of the Structural Properties and Photocatalytic Activity of TiO2 Following Exposure to Non-linear Irradiation Sources. Appl. Catal. B: Environ. 2003, 44 (2):173~184
    116. P Ball, L. Garwin. Nature, 1992, 355 (6363):761~766
    117. H. X. Fu, A. Zunger. InP Quantum Dots: Electronic Structure, Surface Effects, and the Redshifted Emission. Phys. Rev. B. 1997, 56 (3):1496~1508
    118. C. A. Smith, H. W. H. Lee, V. J. Leppert, S. H. Risbud. Ultraviolet-blue emission and electron-hole states in ZnSe quantum dots. Appl. Phys. Lett. 1999, 75 (12):1688~1690
    119. A. L. Rogach, A. Kornowski, M. Y. Gao, A. Eychmuller, H. Weller. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B. 1999, 103 (16):3065~3069
    120. H. J. Chang, C. Z. Lu, Y. S. Wang, C. S. Son, S. I. Kim, Y. H. Kim, I. H. Choi. Optical properties of ZnO nanocrystals synthesized by using sol-gel method. J. Korean Phys. Soc. 2004, 45 (4):959~962
    121. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. J. Zhang, Y. C. Han. Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4: A (A=Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol-Gel Soft Lithography. Chem. Mater. 2002, 14(5):2224~2231
    122. H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, J. Y. Wang. Spectral parameters of Nd-doped yttrium orthovanadate crystals. Journal of Applied Physics, 2000, 88(9):5134~5137
    123. Z. G. Lu, J. W. Wang, Y. G. Tang, Y. D. Li. Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals. J. Solid State Chem. 2004, 177(9):3075~3079
    124. F. Parsapour, D. F. Kelley, R. S. Williams. Spectroscopy of Eu3+-doped PtS2 nanoclusters. J. Phys. Chem. B. 1998, 102 (41):7971~7977
    125. G. S. V. Coles, S. E. Bond, G. Williams. Metal stannates and their role as potential gas-sensing elements. J. Mater. Chem. 1994, 4(1):23~27
    126. 马忠乾, 赵明忠, 巩雄. La2Sn2O7:Ce Tb 的合成及发光性能研究, 发光学报, 1993, 14(3):282~285
    127. 马忠乾, 赵明忠, 巩雄, La2Sn2O7:Bi3+的合成及发光性能研究, 发光学报, 1993, 14(3):277~281
    128. M. T. Weller, R. W. Hughes, J. Rooke, C. S. Knee, J. Reading. The pyrochlore family – a potential panacea for the frustrated perovskite chemist. Dalton Trans. 2004, (19):3032~3041
    129. Y. C. Mao, G. S. Li, W. Xu, S. H. Feng. Hydrothermal synthesis and characterization of nanocrystalline pyrochlore oxides M2Sn2O7 (M=La, Bi, Gd or Y). J. Mater. Chem. 2000, 10(2):479~482
    130. 郭宪吉, 侯文华, 颜其洁, 陈懿. 层柱过渡金属氧化物. 科学通报, 2002, 47(22):1681~1689
    131. 何天白, 胡汉杰. 功能高分子与新技术, 北京:化学工业出版社, 2001:245~258
    132. 张莉莉, 刘冠鹏, 张维光, 陆路德, 杨绪杰, 汪信. 超细层状材料 A2La2Ti3O10(A=Na, K)的低温合成及表征, 无机化学学报, 2005, 21(7〕, 1093~1097
    133. 汪信, 陆路德. 纳米金属氧化物的制备及应用研究进展. 无机化学学报 2000, 16(2), 213~217
    134. 钱家盛, 何平笙. 功能性聚合物基纳米复合材料. 功能材料. 2003, 34(4):371~374
    135. Y. I. Kim, S. Salim, M. J. Huq, T. E. Mallouk. Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J. Am. Chem. Soc. 1991; 113(25):9561~9563
    136. J. Yoshimura, Y. Ebina, J. Kondo, K. Domen, A. Tanaka. Visible-Light Induced Photocatalytic Behavior Of a Layered Perovskite Type Niobate, Rbpb2nb3o10. Journal of Physical Chemistry. 1993, 97 (9):1970~1973
    137. W. F. Shangguan, A. Yoshida. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. Journal of PhysicalChemistry B. 2002, 106 (47):12227~12230
    138. A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. nature, 1972, 238:37~38
    139. H. G. Kim, D. W. Hwang, J. Kim, Y. G. Kim, J. S. Lee. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chemical Communications 1999(12):1077~1078
    140. U. Balachandran, N. G. Eror. X-ray-diffraction and vibrational-spectroscopy study of the structure of La2Ti2O7, Journal of Materials Research. 1989, 4(6):1525~1528
    141. J. Kim, D. W. Hwang, H. G. Kim, S. W. Bae, J. S. Lee, W. Li, S. H. Oh. Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts. Top. Catal. 2005, 35(3-4):295~303
    142. D. W. Hwang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim, J. S. Lee. Photocatalytic Water Splitting over Highly Donor-Doped (110) Layered Perovskites. J. Catal. 2000, 193(1):40~48
    143. J. Kim, D. W. Hwang, H. G. Kim, S. W. Bae, S. M. Ji, J. S. Lee. Nickel-loaded La2Ti2O7 as a bifunctional photocatalyst. Chem. commun. 2002, (21):2488~2489
    144. H. G. Kim, D. W. Hwang, S. W. Bae, J. H. Jung, J. S. Lee. Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method. Catal. Lett. 2003, 91(3-4):193~198
    145. D. W. Hwang, K. Y. Cha, J. Kim, H. G. Kim, S. W. Bae, J. S. Lee. Photocatalytic degradation of CH3Cl over a nickel-loaded layered perovskite. Ind. Eng. Chem. Res. 2003, 42(6):1184~1189
    146. M. Uno, A. Kosuga, M. Okui, K. Horisaka, S. Yamanaka. Photoelectrochemical study of lanthanide titanium oxides, Ln2Ti2O7 (Ln = La, Sm, and Gd). Journal of Alloys and Compounds. 2005, 400(1-2):270~275
    147. D. W. Hwang, H. G. Kim, J. S. Jang, S. W. Bae, S. M. Ji, J. S. Lee. Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation. Catal. Today. 2004, 93-5:845~850
    148. P. A. Fuierer, R. E. Newnham. La2Ti2O7 Ceramics. Journal of the American Ceramic Society. 1991, 74 (11):2876~2881
    149. M. M. Sandstrom, P. Fuierer. Sol-gel synthesis of textured lanthanum titanate thin films. Journal of Materials Research. 2003, 18 (2):357~362
    150. A. V. Prasadarao, U. Selvaraj, S. Komarneni, A. S. Bhalla. Sol-Gel Synthesis of Ln2(Ln=La, Nd)Ti2O7. Journal of Materials Research. 1992, 7 (10):2859~2863
    151. M. Suresh, A. V. Prasadarao, S. Komarneni. Mixed hydroxide precursors for La2Ti2O7 and Nd2Ti2O7 by homogeneous precipitation. Journal of Electroceramics. 2001, 6 (2):147~151
    152. D. Chen, R. Xu. Hydrothermal Synthesis and Characterization of La2M2O7 (M =Ti, Zr) Powders. Mater. Res. Bull. 1998, 33(3):409–417
    153. Y. Deng, C. W. Nan. Hydrothermal synthesis and dielectric properties of lanthanum titanate ceramics. J. Cent. South Univ. Technol. 2005, 12(3):251~254
    154. C. Zhang, Y. F. Zhu. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chem. Mater. 2005, 17(13):3537~3545
    155. R. Z. Ma, Y. Bando, T. Sasaki. Directly Rolling Nanosheets into Nanotubes. J. Phys. Chem. B. 2004, 108(7):2115~2119
    156. X. Wang, Y. D. Li. Rare-Earth-Compound Nanowires, Nanotubes, and Fullerene-Like Nanoparticles:Synthesis, Characterization, and Properties. Chem. Eur. J. 2003, 9(22):5627 ~5635
    157. G. R. Chen, S. Baccaro, M. Nikl, A. Cecilia, Y. X. Y. Du, E. Mihokova. The Red-Shift of Ultraviolet Spectra and the Relation to Optical Basicity of Ce-Doped Alkali Rare-Earth Phosphate Glasses. J. Am. Ceram. Soc. 2004, 87(7):1378~1380
    158. 上官文峰. 太阳能光解水制氢的研究进展. 无机化学学报, 2001, 17(5):619~ 626
    159. 张彭义, 余刚, 蒋展鹏. 半导体光催化剂及其改性技术进展. 环境科学进展, 1997, 5(3):1~10
    160. G. Blasse. The Influence of Crystal-Structure on the Luminescence of Tantalates and Niobates. J. Solid State Chem. 1988, 72(1):72~79
    161. A. M. Srivastava, J. F. Ackerman, W. W. Beers. On the luminescence of Ba5M4O4O15 (M = Ta5+, Nb5+). J. Solid State Chem. 1997, 134(1):187~191
    162. 马礼敦. X 射线多晶体衍射—实验技术与数据分析. 北京:化学工业出版社. 2004:55~86
    163. 韦斯特(West, A. R.). 苏勉鲁等译. 固体化学及其应用. 上海:复旦大学出版社.1989:386~412
    164. M. T. Vandenborre, E. Husson, J. P. Chatry, D. Michel. Rare-Earth Titanates and Stannates of Pyrochlore Structure-Vibrational-Spectra and Force-Fields. J. Raman Spectrosc. 1983, 14(2):63~71
    165. Y. Teraoka, K. Torigoshi, H. Yamaguchi, T. Ikeda, S. Kagawa. Direct decomposition of nitric oxide over stannate pyrochlore oxides: relationship between solid-state chemistry and catalytic activity. J. Mol. Catal. A:Chem. 2000, 155 (1-2):73~80
    166. B. J. Kennedy, B. A. Hunter, C. J. Howard. Structural and bonding trends in tin pyrochlore oxides. J. Solid State Chem. 1997, 130(1):58~65
    167. I. Kennedy, B. J. Kennedy, B. A. Hunter, T. Vogt. Bonding and Structural Variations in Doped Bi2Sn2O7. J. Solid State Chem. 1997, 131(2):317~325
    168. R. Abe, M. Higashi, Z. G. Zou, K. Sayama, Y. Abe. Photocatalytic Water Splitting into H2 and O2 over R2Ti2O7(R = Y, Rare Earth) with Pyrochlore Structure. Chemistry Letters. 2004, 33(8): 954~955

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700