SnS/TiO_2(Nb_2O_5)纳米复合材料制备及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti02作为一种重要的无机半导体功能材料,具有无毒、化学稳定性良好、成本低、光催化活性高等优势,在光催化分解水制氢方面有着相当大的应用潜力。纳米管阵列结构相对于其他形态的TiO2纳米材料,有着高度有序的阵列结构、更大的比表面积、高效的电子传输等优势,引起了人们广泛的重视。Nb205也是一种重要的半导体功能材料,与Ti02相比有着更负的导带边,有望获得更高的开路电压和光电转化效率。但是ZiO2/Nb205均属于宽禁带半导体,仅能吸收太阳能光中的紫外光部分,而紫外光仅占太阳光的5%,如何能拓宽两者对太阳光的吸收范围,进一步提高其的光催化能力。依据与窄禁带半导体复合可以有效的拓宽宽禁带半导体的光响应范围,我们选择SnS作为窄禁带半导体复合材料与Ti02纳米管和Nb205纳米棒进行复合。
     SnS作为一种重要的p型半导体材料,禁带宽度为1.32eV,对可见光有较强的吸收能力,是一种很重要的光吸收材料。在本文中,采用连续离子层吸附反应法制备出SnS/TiO2纳米管复合材料,并对复合结构进行了表面光电压谱、I-V曲线等测试,并且发现复合结构较单纯的Ti02纳米管阵列光吸收范围得到了提高,光电转化效率达到了0.75%,并且还进一步分析了SnS/TiO2异质结结构中的电荷转移机制。通过对循环次数的控制,得到不同循环次数下SnS与TiO2(?)内米管阵列的复合结构,并讨论了循环次数对SnS/TiO2异质结复合结构形貌和光电性能的影响,结果显示循环次数为10次时,光电转化效率为最高的。
     在制备SnS/Nb2O5纳米棒复合材料之前,首先将不同形貌Nb2O5纳米粉体材料在正、负电场作用下的光伏响应情况进行了分析,发现类片状Nb2O5纳米粉体材料有着较高的表面光电压响应强度,究其原因应该得益于其有利的电子传输。除了对其粉体材料的研究外,利用操作简便地水热法成功地制备出Nb2O5纳米棒状结构,同样是由于其较宽的禁带宽度(Eg=3.4eV),我们采取了连续离子层吸附反应法制备得到了SnS/Nb2O5纳米棒复合阵列材料,以拓宽其的光响应范围,并对SnS/Nb2O5纳米棒复合阵列材料的形貌和光电化学性能进行了分析,结果发现复合结构较纯的Nb205纳米棒结构有着更高的短路电流和光电转化效率。
Titanium dioxide(TiO2) is an inorganic functional semiconductor materials,widely used as photocatalyst because of its non-toxicity,high chemical stability, high photocatalytic activity and low cost.Among all of the TiO2nanomaterials, TiO2nanotube arrays prepared by electrochemical anodization of titanium has attracted great attention due to their advantages of highly ordered array structure, the larger specific surface area and efficient electron transport. Niobium oxide (Nb2O5), an important functiona semiconductor materials, has a higher conduction band edge than TiO2, and therefore, it is possible to attain higher open circuit voltage and photo-conversion efficiency (η). Both TiO2and Nb2O5are wide gap semiconductors and efficiently absorb only a very small UV part (approximately5%) of solar light. Coupling TiO2nanotube and Nb2O5nanorod with low-band-gap is an efficient way to extend the range of light response. Tin suifide (SnS) was choosed as the narrow-band-gap semiconductor.
     It is a candidate for the absorber materials because there are many advantages of SnS such as proper bangdgap (1.32eV),high absorption coefficient in the visible solar spectrum.In this article, SnS/TiO2nannotube arrays composite materials were prepared through a successive ionic layer adsorption and reaction process.The photoelectrochemical property and surface photovoltaic response of the SnS/TiO2nanotube arrays composites have been improved due to the enhanced electron-hole separation that because heterojunctions between SnS and TiO2could provide the driving force. SnS/TiO2heteroj unction nanotube arrays with different deposition cycles were elevated in terms of morphology and photoelectrochemical property of the composites. Ultimately the optimum number of cycles was obtained.
     Before the preparation of surface SnS/Nb2O5nanorodcompositis,filed-induced photovoltage response of the different morphology of Nb2O5nano-powder under the positive and negative external electric field was analyzed. These flake-like structures Nb2O5nano-powder demonstrated higher surface photovoltage response due to its advantages of electronic transmission. In addition,Nb2O5nanorods were also prepared by using the niobium foil as a precursor via hydrothermal method. In view of its wide band gap (Eg=3.4eV), SnS nanoparticles was used to sensitize Nb2O5nanorods to improve the optical absorption property.The SnS/Nb2O5nanorod composites with the successive ionic layer adsorption and reaction process were obtained. Then the morphology and photoelectrochemical properties of the composites were analyzed and discussed, and found that the composite structure has a higher short-circuit current and photoelectric conversion efficiency than pure Nb2O5nanorod structure.
引文
[1]彭英才,于伟,等.纳米太阳电池技术[M].化学工业出版社.2010,1-2.
    [2]Markvart T, LuisC,梁骏吾,.Solar Cell:Materials,Manufacture and Operation[M].机械工业出版社.2009,1-2.
    [3]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].西安交通大学出版社.1998,280-283.
    [4]熊绍珍,朱美芳.太阳能基础及应用[M].科学出版社.2009.92-97
    [5]陈敬中,刘剑洪.纳米材料科学导论[M].高等教育出版社.2006,6-7.
    [6]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社.2002,2-8.
    [7]Augustynski J. The role of the surface intermediates in the photoelectrochemi behaviour of anatase and rutile TiO2[J].Electrochimica Acta.1993,38(1):43-46.
    [8]任成军,钟本和,周大利等.水热法制备高活性Ti02光催化剂的研究进展[J].稀有金属[J].2004,10(5):903-906.
    [9]江润锋,周竹发.水热法制备纳米Ti02粉体工艺条件研究.江苏陶瓷.2006,4(39):829-833
    [10]王芹,陶杰,翁履谦,等.氧化钛纳米管的合成机理与表征[J].材料开发与应用.2004,19(5):9-12.
    [11]周艺,何小川,王尹根Tween-80和SDBS对纳米TiO2在水溶液中分散稳定的影响[J].长沙电力学院学报(自然科学版).2002,17(4):72-75.
    [12]Macak J M,Stein F S, Schmuki P.Efficient oxygen reduction on layers of order-ed TiO2 nanotubes loaded with Au nanoparticles[J].Electrochemical Communi-cation.2007,9(7):1783-1787.
    [13]Zhang Y H,Yang Y N,Xiao P,et al.Preparation of Ni nanoparticle TiO2 nanotube compositeby pulse electrodeposition[J].MateriaIsLetter.2009,63(28):2429-2431
    [14]Wang L S, Xiao M W, Huang X J,et al.Synthesis,character ization,and photocat-alytic activities of titanate nanotubes surf ace-decorated by zinc oxide nanopar-ticles[J].Journal of Hazardous Materials.2009,16(1):49-54.
    [15]Liu G, Li G S, Qiu X Q, Li L P. Synthesis of ZnO/titanate nanocomposites with highly photocatalytic activity under visible light irradiation[J].Journal of Alloy-s and Compounds.2009,481(1/2):492-497.
    [16]Xu J C, Lu M, Guo X Y,et al.Zinc ions surface-doped titanium dioxide nanotub-es and its photocatalysis activity for degradation of methyl orange in water[J]. Journal of Molecular Catalysis A.2005,226(1):123-127.
    [17]Seabold J A,Shankar K,Wilke R H T,et al. Photoelectrochemical properties of heterojunction CdTe/TiO2electrodes constructed using highly ordered TiO2 nanotube arrays[J].Chemical Materials.2008,20(16):5266-5273.
    [18]Liu Y T,Zhang X L,Liu R H,et al. Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arr-ays [J].Journal of Solid State Chemistry.2011,184(3):684-689.
    [19]HouY,Li X Y,Zou X J,et al.Photoeletrocatalytic activity of a Cu2O-loaded self organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation[J].Environmental Science & Technology.2009,43(3):858-863.
    [20]Mohapatra S K, Banerjee S, Misra M.Synthesis of Fe2O3/TiO2 nanorod-na notube arrays by filling TiO2 nanotubes with Fe[J].Nanotechnology.2008,19 (31):315601.
    [21]Chen S G,Paulose M,Ruan C M,et al.Electrochemically synthesized CdS nano-particle modified TiO2 nanotube-array photoelectrodes:Preparation characteri-zation,and application to photoelectrochemical cell[J].Journal of Photochemist-ry and Photobiology A.2006,177(2-3):177-184.
    [22]Sun L,Zhang S,Sun X, et al.Effect of the Geometry of the Anodized Titania Nanotube Array on the Performance of Dye-Sensitized Solar Cells.Journal of Nanoscience and Nanotechnology[J].2010,10(7):4551-4561.
    [23]Ghicov A,Albu S P,Hahn R,et al.TiO2 Nanotubes in Dye-Sensitized Solar Cell-s:Critical Factors for the Conversion Efficiency [J].Chemistry An Asian Journal, 2009,4(4):520-525.
    [24]杨蓉,王维波,敬炳文,等.苯基磷酸联吡啶钌络合物敏化纳晶多孔TiO2薄膜电极光电性能研究[J].感光科学与光化学.1997,15(4):293-296.
    [25]Mor G K, Shankar K, Paulose M,et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letters.2006,6(2):215-218.
    [26]冯小明,黄先威,黄辉,等.有机染料敏化网状二氧化钛纳米纤维微孔膜太阳能电池研究[J].化学学报.2010,68(11):1123-1129.
    [27]Zhang Z H,Yuan Y,Liang L H,et al.Preparation and photoelectrochemical prop-erties of a hybrid electrode composed of polypyrrole encapsulated in highly ordered titanium dioxide nanotube array[J].ThinSolidFilms.2008,516(23):8663-8667.
    [28]梁建鹤,肖秀峰,刘榕芳,等.宽电压范围下阳极氧化制备TiO2纳米管阵列及 其热稳定性[J].无机化学学报.2010,26(1):112-119.
    [29]陶杰,陶海军.Ti02纳米管阵列的制备及应用研究进展[J]MachineBuilding Automation.2008,37(1):1-4.
    [30]刘晓新,靳正国,步绍静.CdS薄膜的SILAR法制备与表征[J].无机材料学报.2004,193:691
    [31]刘晓新,靳正国,步绍静SILAR法制备无机化合物薄膜[J].材料导报.2003,17(3):66.
    [32]Qiu Y H,Shi W M,Wei G P,et al.Characterization on the SnS thin films deposi-ted by vacuume vaporation[J].Journal of Optoelectronics Laser.2006,17(7):817-820.
    [33]Ristov M,Sinadinovski G J,Grozdanov I,et al.Chemical deposition of tin (ii) sulphide thin films[J].Thin Solid Films.1989,173:53.
    [34]Tanusevski A.Optical and photoelectric properties of SnS thin films prepared by chemical bath desposition[J]. ScienceTechnology.2003,18(6):501-505.
    [35]Deshpande N G, Sagade A A, Gudage Y G,et al.Growth and Characterization of tin sulfide(SnS2) thin filmdeposited by successive ionic layer adsorption and reaction(SiLAR) technique[J]. Journal of Alloys and Compounds.2007,436: 421-426.
    [36]Nicolau Y F.Solution deposition of thin solid compound films by a success ionic-layer adsorption and reaction process[J].Applications of Surface Science. 1985,22:1061-1074.
    [37]温立哲,邓淑华,黄慧民,等.水热法制备氧化锆微粉的进展[J].无机盐工业.2003,35(2):16-18.
    [38]吴会军,刘笑笑,朱冬生,等.水热反应法制备纳米粉体的研究进展[J].现代化工.2003,23(增刊):37-40.
    [39]周菊红,王涛,陈友存,等.水热法合成一维纳米材料的研究进展[J].化学通报.2008,7:510-517.
    [40]刘向阳,王蓓,郑海务,等.表面光电压谱及其检测技术实验[J].物理实验.2009,29(12):1-4.
    [41]Sverky V,Pelant i,et al.surface photovoltage measurements in μc-Si:H Mano festatio of the bottom space charge region.Journal of Applied Physics[J].2002, 92(5):2323-2329.
    [42]Datta S,Ghosh S,et al.Surface photovoltage spectroscopies of semiconductor structures using an indium-tin-oxide-coated glass electrode in soft contact model[J].Review of Scientific instrume.2001,72(l):171-182.
    [43]王华英,朱海丰,何杰,等.半导体光电特性的表面光电压谱表征[J].河北建筑科技学院学报.2004,21(2):90-93.
    [44]Lin Y H,Wang D J,Zhao Q D, et al. A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy[J].Journal of Physical Chemistry B.2004(108):3202-3206.
    [45]Jiang T F,Xie T F,Zhang Y,et al.Physical Chemistry Chemical Physics[M]. 2010,15476-15481.
    [46]王凌凌,杨文胜,王德军,等CdS/ZnO异质结构材料的光生电荷性质[J].高等学校化学学报.2010,31(12):2316-2318.
    [47]袁占强,庞山,程轲,等.种子层对TiO2纳米棒阵列取向生长及界面态的影响[J].高等学校化学学报.2011,32(4):828-833.
    [48]Lindgren T,Mwabora J M,Avendano E,et al. Photoelectrochemical and optical properties of nitrogen-doped titanium dioxide film prepared by reactive DC magnetic sputtering[J].Journal of Physical Chemistry B.2003,107(24):5709-57 16.
    [49]Umebayashi T, Yamaki T,itoh H,et al. Bandgap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters.2002,81:454-456.
    [50]Barea E M, Shalom M, Gimenez S,et al. Design of injection and Recombination in Quantum Dot Sensitized Solar Cells[J].Journal of the American chemical society.2010,132(19):6834-6839.
    [51]Kuang S Y, Yang LX, Luo S L,et al.Fabrication,characterization and photoelec-trochemical properties of Fe2O3 modified TiO2 nanotube arrays[J].Applied Surface Science.2009,255:7385-7388.
    [52]Kang Q, Liu S H,Yang L X,et al. Fabrication of PbS Nanoparticle-Sensitized TiO2 Nanotube Arrays and Their Photoelectrochemical Properties[J].ACS Applied Materials interfaces.2011,3:746-749.
    [53]Deepa K G,Nagaraju J.Growth and photovoltaic performance of SnS quantum dots[J].Materials Science and Engineering B.2012,177:1023-1028.
    [54]Chiclana F, Herrera F.integrating three representation model sinfuzzy multi purpose decision making based in fuzzy preference relations[J].Fuzzy Sets and Systems.1998, 97(1):33-38.
    [55]Ramakrishna Reddy K T, Koteswara Reddy N, et al.Photovoltaic properties of SnS based solar cells[J].Solar Energy Materials and Solar Cells.2006,90:3041.
    [56]Donchev V, Kirilov K,ivanov T,et al. Surface photovoltage phase spectroscopy a handy tool for characterisation of bulk semiconductors and nanostructures[J]. Materials Science and Engineering B.2006,129:186-192.
    [57]Yang C Y,Wang W D,Shan Z C,et al.Preparation and photocatalytic activity of high efficiency visible-light-responsive photocatalyst SnSx/TiO2[J].Journal of Solid State Chemistry.2009,182:807-812.
    [58]Zhang X,Zhang L Z,Xie T F,et al.Low-Temperature Synthesis and High Visible-Light-induced Photocatalytic Activity of BiOi/TiO2 Heterostructures[J].Journ-al of Physical Chemistry C.2009,113(17):7371-7378.
    [59]Sieber I, Hilderbrand H, Friedrich A, et al.Formation of self-organized niobium porousoxide on niobium[J].Electrochemistry Communication.2005,7(1):97-100.
    [60]Gimon-Kinsel M E,Balkus K J, Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors[J].Microporous Mesoporo-us Mater.1999,28(1)113-123.
    [61]Ozer N,Chen D G,Lampert CM, Preparation and properties of spin-coated Nb2O5 films by the sol-gel process for electrochromic applications[J].Thin Soli-d Films.1996,277:162-168.
    [62]Viswanathamurthi P,Bhattarai N,Kim H Y,et al.Preparation and morphology of niobium oxide fibres by electrospinning[J].Chemical Physics Letter.2003,374: 79-84.
    [63]Pirnat U,Valant M,Jancar B,et alFormation Characteristics of the Commensura te Fluorite-Type Bi2O3-Nb2O5 Solid SolutionChem[J].MaterialsLetters.2005, 17(20):5155-5160.
    [64]Chen S G,Chappel S,Diamant Y,et al.Preparation of Nb2O5 Coated TiO2 Electro-de and Their Application in Dye-Sensitized Solar Cells[J].Chemistry of Mate-rials.2001,13(12):4629-4634.
    [65]Miyake H,Kouzuka H.Photoelectrochemical Properties of Fe2O3-Nb2O5 Films Prepared by Sol-Gel Method[J].the Journal of Physical Chemistry B.2005, 109(38):17951-17956
    [66]Zhitomirsky I.Electrolytic Deposition of Niobium Oxide Films Materials [J]. Materials Letters.1998,35:188-193.
    [67]Yoshimura K,Miki T,Iwama S,etal.Characterization of niobium oxide electro-chromic thin films prepared by reactive d.c. magnetron sputtering[J]. Thin Solid Films.1996,281/282:235-238.
    [68]Lai F C,Li M,Wang H Q,et al.Optical scattering characteristic of annealed nio-bium oxide films[J].Thin Solid Films.2005,488:314-320.
    [69]Ensinger W, Hartmann J, Bender H,et al. Niobium oxide thin films formed by plasma immersion oxygen ion implantation.Surface and CoatingTechnology[J]. 1996,85:80-85.
    [70]Guo P, Aegerter M A. RU(ii) sensitized Nb2O5 solar cell made by the sol-gel process[J].Thin Solid Films.1999,351,290-294.
    [71]Ghosh R,Brennaman,M K,Uher T,et al.Nanoforest Nb2O5 Photoanodes for Dye Sensitized Solar Cells by Pulsed Laser Deposition[J].ACS Applied Materials interfaces.2011,3(10):3929-3935.
    [72]Yan C L,Xue D F.Formation of Nb2O5 Nanotube Arrays Through Phase Trans formation[J]. Advanced Materials.2008,20:1055-1058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700