变速风电机组的虚拟惯性与系统阻尼控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大规模风电场集中接入电网将导致系统惯性和阻尼特性改变,因而高风电渗透率电网的稳定性问题远比传统电网严峻。本文首先建立了变速风电机组的动态模型,进而分析高渗透率风电对系统惯性和阻尼的影响。然后在变速风电机组变流器最大功率跟踪控制的基础上,研究基于功率跟踪优化的虚拟惯性控制,以及基于有功调制和无功调制的对系统功率振荡的阻尼控制。最后提出变速风电机组的虚拟惯性与阻尼控制相结合的综合控制策略,不仅使其对电网频率具备动态支持能力,并能够有效抑制系统低频振荡,有效解决高风电渗透率的区域电网在有功扰动后将面临的频率稳定和功角稳定问题。本文的主要研究成果如下:
     (1)建立了变速风电机组的动态模型,包括:双馈异步发电机模型、永磁同步发电机模型、变速风电机组变流器及其控制系统模型、风力机及桨距角控制系统模型,用于研究大规模风电场接入电网后对系统惯性和阻尼特性的影响。
     (2)分析了变速风电机组并网后表现出的惯性与同步发电机惯性以及与自身机械惯性的区别,扩展了含风电场的系统惯性定义。通过改进最大功率跟踪控制,提出了变速风电机组基于功率跟踪优化的虚拟惯性控制策略,在确保风电机组惯性控制过程安全运行的同时,使风电机组具有可控的惯性响应,能够对系统频率提供有效的动态支持。
     (3)分析了变速风电机组并网后对系统阻尼特性的影响,基于简单系统的小扰动稳定分析,理论分析了通过风电机组的有功调制和无功调制增强系统阻尼的原理,提出风电机组有功、无功附加阻尼控制策略。并进一步分析了有功阻尼控制和无功阻尼控制对风电机组的故障穿越能力的影响,使风电机组在系统出现大扰动后,不仅能够不脱网运行,并且具有改善系统的阻尼特性的能力。
     (4)分析了虚拟惯性控制和有功阻尼控制对风电机组电磁功率的调节特性,实现了两种控制的有机结合,最终提出了具备惯性和阻尼功能的有功调制方法。在虚拟惯性和有功阻尼控制的基础上,利用风电机组变流器无功裕量,通过附加无功阻尼控制,进一步提高了变速风电机组阻尼系统功率振荡的能力,并综合考虑了虚拟惯性控制、有功阻尼控制、无功阻尼控制对电网及风电机组安全运行的影响,协调解决了多重控制目标间的矛盾,从而实现了变速风电机组综合PSS控制目标。
Both the system inertia and the power oscillation damping in the regional network will be reduced by the integration of large scale wind power generation, and thus the stability of the network under high wind power penetration level is more serious than that of the traditional grid. In this paper, the dynamic model of the variable speed wind turbine is established firstly, in order to analyze the impact of the wind generation on the system inertia and the power oscillation damping. Then, based on the conventional maximum power point tracking (MPPT) control, the virtual inertia control strategy by improving the MPPT control, the active power and the reactive power damping control strategies are proposed, respectively. Finally, the integrated control of the variable speed wind turbine for the dynamic frequency support and the power oscillation damping is further presented, so as to enhance the frequency and the power angle stability of the regional network with high wind power penetration during active power disturbances. The main research results are as follows:
     (1) The dynamic model of the variable speed wind turbine is established, include: doubly fed induction generator model, permanent magnet synchronous generator model, converter and its control system model, wind turbine and variable pitch control system model, which are used to analyze the impact of the large scale wind generation on the system inertia and the power oscillation damping.
     (2) The differences of the virtual inertia, the nature inertia of synchronous generators and variable speed wind turbines are discussed. The inertia concept of the grid with wind farms is redefined as well. Following that, a novel virtual inertia control strategy is proposed by improving the MPPT control. In this scheme, the controllable inertia response can be achieved for the grid dynamic frequency support and the safe operation is also ensured during the inertia control process.
     (3) The impact of the integration of variable speed wind turbines on the system damping is analyzed by the infinitesimal perturbation analysis in a simple network. The principles of the enhancement of the system damping by the active power and the reactive power regulation are discussed respectively in theory. Then, the fault ride through capability of the wind turbine with the proposed damping control schemes is further discussed, in order to ensure not only the safety of the wind turbine during grid faults, but also the improvement of the system damping.
     (4) The regulating characteristics of the proposed virtual inertia control and the active power damping control for the wind turbine's electromagnetic power is analyzed. Then, the integration of the inertia control with the active power damping control is achieved in the wind turbine's active power control loop. Furthermore, the system damping is further enhanced by the addition of the reactive power damping control and within the reactive power capacity of the wind turbine. Following that, the impacts of the wind turbine with the proposed virtual inertia control, the active power and the reactive power damping control on the grid security are also considered, and thus the integrated PSS control aim of the variable speed wind turbine is finally achieved by resolving the contradictions of these control schemes.
引文
[1]Global wind statistics 2012[R]. Brussels:Global Wind Energy Council,2013.
    [2]王仲颖,时璟丽,赵勇强,等.中国风电发展路线图2050[R].北京:国家发展和改革委员会能源研究所,2010.
    [3]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122-125.
    [4]Miller E, Muljadi D, Zinger S. A variable speed wind turbine power control[J]. IEEE Transactions on Energy Conversion,1997,12(2):181-186.
    [5]Miiller S, Deicke M, De Doncker R W. Doubly fed induction generator systems for wind turbines[J]. IEEE Industry Application Magazine,2002,8(3):26-33.
    [6]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006,26(23):109-114.
    [7]卞松江,吕晓美,相会杰,等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报,2005,25(16):43-50.
    [8]国家标准化管理委员会.GB/T19963-2011风电场接入电力系统技术规定[s].北京:中国标准出版社,2011.
    [9]国家能源局.NB/T31003-2011大型风电场并网设计技术规范[S].北京:中国电力出版社,2011.
    [10]Rahimi M, Parniani M. Coordinated Control Approaches for Low-Voltage Ride-Through Enhancement in Wind Turbines With Doubly Fed Induction Generators[J]. IEEE Transactions on Energy Conversion,2010,25(3):873-883.
    [11]Wang Y, Xu L. Coordinated Control of DFIG and FSIG-Based Wind Farms Under Unbalanced Grid Conditions[J]. IEEE Transactions on Power Delivery, 2010,25(1):367-377.
    [12]周宏林,杨耕.不同电压跌落深度下基于撬棒保护的双馈式风机短路电流特性分析[J].中国电机工程学报,2009,29(S1):184-191.
    [13]李辉,付博,杨超,等.双馈风电机组低电压穿越的无功电流分配及控制策略改进[J].中国电机工程学报,2012,32(22):24-31.
    [14]张永斌,袁海文,赵斌.双馈风电机组低电压穿越主控系统控制策略[J].电力自动化设备,2012,32(8):106-112.
    [15]李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.
    [16]肖磊,黄守道,黄科元,等.不对称电网故障下直驱永磁风力发电系统直流母线电压稳定控制[J].电工技术学报,2010,25(7):123-129.
    [17]胡书举,李建林,许洪华.直驱式VSCF风电系统直流侧Crowbar电路的仿真分析[J].电力系统及其自动化学报.2008,20(3):118-123.
    [18]张坤,毛承雄,陆继明,等.基于储能的直驱风力发电系统的功率控制[J].电工技术学报,2011,26(7):7-14.
    [19]王文亮,葛宝明,毕大强.储能型直驱永磁同步风力发电控制系统[J].电力系统保护与控制,2010,38(14):43-48.
    [20]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述[J].电工技术学报,2009,24(9):140-146.
    [21]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略[J].电力系统自动化,2009,33(12):91-96.
    [22]Geng H, Yang G, Xu D W, et al. Unified power control for PMSG-based WECS operating under different grid conditions[J]. IEEE Transactions on Energy Conversion,2011,26(3):822-830.
    [23]Kim K H, Jeung Y C, Lee D C, et al. LVRT scheme of PMSG wind power systems based on feedback linearization[J]. IEEE Transactions on Power Electronics,2012,27(5):2376-2384.
    [24]Miller N, Marken P E. Facts on grid friendly wind plants [C]. Proceedings of IEEE Power and Energy Society General Meeting, Minneapolis, America, 2010.
    [25]Cardinal M, Miller N. Grid friendly wind plant controls:Wind control-field test results[J]. Wind Power,2006:1-8.
    [26]P. Kundur. Power systems stability and control [M]. New York:McGraw-Hill, 1994:581-623.
    [27]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002:72-80.
    [28]王伟胜,范高锋,赵海翔.风电场并网技术规定比较及其综合控制系统初探[J].电网技术,2007,31(18):73-77.
    [29]宋卓彦,王锡凡,滕予非,等.变速恒频风力发电机组控制技术综述[J].电力系统自动化,2010,34(10):8-17.
    [30]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2012,30(25):1-9.
    [31]Rogerio G, Almeida D, Pecas Lopes J A. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Transactions on Power systems,2007,22(3):944-950.
    [32]Chang-Chien L R, Lin W T, Yin Y C. Enhancing Frequency Response Control by DFIGs in the High Wind Penetrated Power Systems[J]. IEEE Transactions on Power Systems,2011,26(2):710-718.
    [33]薛迎成,邰能灵,宋凯,等.变速风力发电机提供调频备用容量研究[J].电力自动化设备,2010,30(8):75-80.
    [34]Zertek A, Verbic G, Pantos M. Participation of DFIG wind turbines in frequency control ancillary service by optimized rotational kinetic energy[C]. Proceedings of International Conference on the European Energy Market, Ljubljana, Slovenia,2010.
    [35]Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines[J]. IET Renewable Power Generation,2007, 1(1):3-9.
    [36]Xue Y C, Tai N L. Review of contribution to frequency control through variable speed wind turbine[J]. Renewable Energy,2011,25:1671-1677.
    [37]Eduardo V N, Andreas S, Oriol G B, et al. Design of a pitch control of a wind turbine to improve system frequency response[C]. Proceedings of Power Electronics and Applications, Barcelona, Spain,2009.
    [38]Zertek A, Verbic G, Pantos M. Optimised control approach for frequency-control contribution of variable speed wind turbines[J]. IET Renewable Power Generation,2012,6(1):17-23.
    [39]Grillo S, Marinelli M, Silvestro F, et al. Transient Support to Frequency Control From Wind Turbine With Synchronous Generator and Full Converter[C]. Proceedings of Universities Power Engineering Conference, Genoa, Italy,2010.
    [40]Sow T, Akhrif O, Okou A F, et al. Control strategy insuring contribution of DFIG-Based wind turbines to primary and secondary frequency regulation[C]. Proceedings of Annual Conference on IEEE Industrial Electronics Society, Montreal, Canada,2011.
    [41]张昭遂,孙元章,李国杰,等.超速与变桨协调的双馈风电机组频率控制[J].电力系统自动化,2011,35(17):20-25.
    [42]Zavadil R, Zack J, Miller N, et al. Technical Requirements for Wind Generation Interconnection and Integration[R]. New England:GE Energy Applications and Systems Engineering EnerNex Corporation,2009.
    [43]Mullane A, O'Malley M. The Inertial Response of Induction-Machine-Based Wind Turbines[J]. IEEE Transactions on Power Systems,2005,20(3): 1496-1503.
    [44]Ekanayake J, Jenkins N. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion,2004,19(4):800-802.
    [45]Gautam D, Goel L, Ayyanar R, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems[C]. Proceedings of Power and Energy Society General Meeting, Perth, Australia,2011.
    [46]李立成,叶林.变风速下永磁直驱风电机组频率—转速协调控制策略[J].电力系统自动化,2011,35(17):26-31.
    [47]Aho J, Buckspan A, Laks J, et al. A tutorial of wind turbine control for supporting grid frequency through active power control[C]. Proceedings of American Control Conference, Montreal, Canada,2012.
    [48]Zhu X R, Wang Y, Xu, L, et al. Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support[C]. Proceedings of IET Conference on Renewable Power Generation, Edinburgh, UK,2011.
    [49]Morrena J, Pierikb J, Sjoerd W H. Inertial response of variable speed wind turbines [J]. Electric Power Systems Research,2006,3(2):980-987.
    [50]Jason M K, Brendan F, Tim L, et al. Validation of fixed speed induction generator models for inertial response using wind farm measurements[J]. EEE Transactions on Power Systems,2011,26(3):1454-1461.
    [51]Holdsworth L, Ekanayake J B, Jenkins N. Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines[J]. Wind Energy,2004,7:21-35.
    [52]Lalor G, Mullane A, O'Malley M. Frequency control and wind turbine technologies[J]. IEEE Transactions on Power Systems,2005,20(4): 1905-1913.
    [53]关宏亮,迟永宁,王伟胜,等.双馈变速风电机组频率控制的仿真研究[J].电力系统自动化,2007,31(7):61-65.
    [54]倪琳娜,罗吉,王少荣.含风电电力系统的频率控制[J].电工技术学报,2011,26:235-241.
    [55]Ioannis D M, Stavros A P, Nikos D H. Frequency control in autonomous power systems with high wind power penetration[J]. IEEE Transactions on Sustainable Energy,2012,3(2):189-199.
    [56]Zhang X Y, Li H M, Wang Y. Control of DFIG-based wind farms for power network frequency support[C]. Proceedings of IEEE International Conference on Power System Technology, Hangzhou, China,2010.
    [57]Zhang X Y, Wang Y, Li H M. Dynamic frequency regulation of PMSG-based wind farms for power network support[C]. Proceedings of International Conference on Electrical Machines And Systems, Incheon, Korea,2010.
    [58]Zertek A, Verbic G, Pantos M. A Novel Strategy for Variable-Speed Wind Turbines'Participation in Primary Frequency Control[J]. IEEE Transactions on Sustainable Energy,2012,4(3):791-799.
    [59]Mikel de P G, Andreas S, Oriol G B. Modeling and control of a pitch-controlled variable-speed wind turbine driven by a DFIG with frequency control support in PSS/E[C]. Proceedings of Power Electronics and Machines in Wind Applications, Ljubljana, Slovenia,2012.
    [60]朱晓荣,赵猛,王毅.双馈感应风力发电机组复合频率控制策略研究[J].电力系统保护与控制,2012,40(8):20-29.
    [61]Erlich I, Wilch M. Dynamic primary frequency control by wind turbines[C]. Proceedings of Power and Energy Society General Meeting, Duisburg, Germany,2010.
    [62]Johan M, Sjoerd W. H. de Haan, Wil L K, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power systems,2006,21(1):433-434.
    [63]Kayikci M, V. Milanovic J. Dynamic contribution of DFIG-Based wind plants to system frequency disturbances[J]. IEEE Transactions on Power systems, 2009,24(2):859-867.
    [64]Zhang Z S, Sun Y Z Lin J, et al. Coordinated frequency regulation by doubly fed induction generator-based wind power plants[J]. IET Renewable Power Generation,2012,6(1):38-47.
    [65]曹军,王虹富,邱家驹.变速恒频双馈风电机组频率控制策略[J].电力系统自动化,2007,33(13):78-82.
    [66]Xue Y C, Tai N L. System frequency regulation in doubly fed induction generators [J]. International Journal of Electrical Power and Energy Systems, 2011,43(1):977-983.
    [67]李军军,吴政球.风电参与一次调频的小扰动稳定性分析[J].中国电机工程学报,2011,31(13):1-9.
    [68]Miao Z X, Fan L L, Osborn D. Wind farms with HVdc delivery in inertial response and primary frequency control[J]. IEEE Transactions on Energy Conversion,2010,25(4):1171-1178.
    [69]Mauricio J M, Marano A, Exposito A G, et al and J. L. M. Ramos. Frequency regulation contribution through variable-speed wind energy conversion systems[J]. IEEE Transactions on Power systems,2009,24(1):173-180.
    [70]Slootweg J G, Kling W L. The impact of large scale wind power generation on power system oscillations[J]. Electric Power Systems Research,2003,67(1): 9-20.
    [71]Caliao N D, Ramtharan G, EkanayakeJ. Power oscillation damping controller for fully rated converter wind turbines[C]. Proceedings of Universities Power Engineering Conference, Mindanao, Philippines,2010.
    [72]Jose L D G, Oriol G B, Fernando D B, et al. Power oscillation damping supported by wind power:A review[J]. Renewable and Sustainable Energy Reviews,2012,16:4994-5006.
    [73]Hagstrom E, Norheim I, Uhlen K. Large-scale wind power integration in Norway and impact on damping in the Nordic grid[J]. Wind Energy,2005,8(3): 375-384.
    [74]Modi N, Tapan K. Saha, Mithulananthan N. Effect of wind farms with doubly fed induction generators on small-signal stability-A case study on australian equivalent system[C]. Proceedings of Innovative Smart Grid Technologies, Brisbane, Australia,2011.
    [75]Tsourakisa G, Nomikosb B M, Vournasa C D. Effect of wind parks with doubly fed asynchronous generators on small-signal stability[J]. Electric Power Systems Research,2009,79:190-200.
    [76]张红光,张粒子,陈树勇,等.大容量风电场对电力系统小干扰稳定和阻尼特性的影响[J].电网技术,2007,31(13):75-80.
    [77]方思立,朱方.快速励磁系统对电力系统稳定的影响[J].中国电机工程学报,1986,6(1):20-28.
    [78]刘增煌,方思立.电力系统稳定器对电力系统动态稳定的作用及与其他控制方式的比较[J].电网技术,1998,22(3):4-10.
    [79]张玫,方思立.电力系统稳定器(PSS)参数的选择[J].中国电机工程学报,1992,12(3):53-58.
    [80]周二专,王宗淦,陈寿荪.多机电力系统PSS设计综合理论和方法研究[J].中国电机工程学报,1988,8(5):28-36.
    [81]冯治鸿,刘取,倪以信,等.多机电力系统电压动态稳定性的分析研究[J].中国电机工程学报,1992,12(3):29-39.
    [82]Clemens J, Syed M I, Poul S, et al. Design of a wind turbine pitch angle controller for power system stabilisation[J]. Renewable Energy,2007,32: 2334-2349.
    [83]Li P, Keung P K, Ooi B T. Development and simulation of dynamic control strategies for wind farms [J]. IET Renewable Power Generation,2009,3(2): 180-189.
    [84]Clemens J. Transient and dynamic control of a variable speed wind turbine with synchronous generator[J]. Wind Energy,2009,10:247-269.
    [85]Carlos F, Gallardo Q, Pablo L L. Damping of inter-area mode oscillations with high penetration of the power system in wind[C]. Proceedings of IEEE Annual Conference of Industrial Electronics, Florida, USA,2010.
    [86]Ledesma P, Gallardo, C. Contribution of variable-speed wind farms to damping of power system oscillations[C]. Proceedings of IEEE Power Technology, Lausanne, Switzerland,2011.
    [87]Miao Z X, Fan L L, Dale O. Control of DFIG-Based wind generation to improve interarea oscillation damping[J]. IEEE Transactions on Energy Conversion, 2009,24(2):415-422.
    [88]Tsourakis G, Vournas C. A controller for wind generators to increase damping of power oscillations[C]. Proceedings of IEEE Circuits and Systems, paris, france, 2010.
    [89]Tsourakis G, Nomikos B M, Vournas C D. Contribution of doubly fed wind generators to oscillation damping[J]. IEEE Transactions on Energy Conversion, 2009,24(3):783-791.
    [90]关宏亮,迟永宁,戴慧珠,等.并网风电场改善系统阻尼的仿真[J].电力系统自动化,2008,32(13):81-85.
    [91]关洪亮.大规模风电场接入电力系统的小干扰稳定性研究[D].河北:华北电力大学,2008.
    [92]Mishra Y, Mishra S, Tripathy M, et al. Improving stability of a DFIG-Based wind power system with tuned damping controller[J]. IEEE Transactions on Energy Conversion,2009,24(3):650-660.
    [93]Hughes F M, Olimpo A L, Jenkins N, et al. Control of DFIG-Based Wind Generation for Power Network Support[J]. IEEE Transactions on Power Systems,2005,20(4):1958-1966.
    [94]Hughes F M, Olimpo A L, Jenkins N, et al. A Power System Stabilizer for DFIG-Based Wind Generation[J]. IEEE Transactions on Power Systems,2006, 21(2):763-772.
    [95]KeDP, Chung C Y, Xue Yusheng. Controller design for DFIG-based wind power generation to damp interarea oscillation[C]. Proceedings of International Conference on Critical Infrastructure, Hong Kong, China,2010.
    [96]Gautam D, Vittal V, Ayyanar R, et al. Supplementary control for damping power oscillations due to increased penetration of doubly fed induction generators in large power systems[C]. Proceedings of IEEE PES Power Systems Conference and Exposition, Phoenix, USA,2011.
    [97]Mendonca A, Pecas Lopes J A. Simultaneous Tuning of Power System Stabilizers Installed in DFIG-Based Wind Generation[C]. Proceedings of IEEE Power Tech, Lausanne, Switzerland,2007.
    [98]Kniippel T, Nielsen J N, Jensen K H, et al. Power oscillation damping controller for wind power plant utilizing wind turbine inertia as energy storage[C]. Proceedings of IEEE Power and Energy Society General Meeting, detroit Michigan, USA,2011.
    [99]Fan L L, Yin H P, Miao Z X. On active/reactive power modulation of DFIG-based wind generation for interarea oscillation damping[J]. IEEE Transactions on Energy Conversion,2011,26(2):513-521.
    [100]Adamczyk A, Teodorescu R, Rodriguez P. Control of full-scale converter based wind power plants for damping of low frequency system oscillations[C]. Proceedings of IEEE Trondheim PowerTech, Aalborg, Denmark,2011.
    [101]栗春,姜齐荣,王仲鸿.基于规则的STATCOM的控制器设计[J].中国电机工程学报,1999,14(2):56-59.
    [102]栗春,姜齐荣,王仲鸿,等.静止同步补偿器多目标协调控制器的设计[J].电工技术学报,1999,14(2):21-24.
    [103]栗春,姜齐荣,王仲鸿,等.STATCOM提高系统暂态稳定及阻尼的动模实 验研究[J].中国电机工程学报,1999,19(12):36-40.
    [104]胡晓波,陈中,杜文娟,等.利用含储能装置的STATCOM阻尼电力系统多模态振荡[J].电力自动化设备,2008,28(11):9-12.
    [105]Mohamed S E M, Birgitte B J, Mansour H A R. Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park[J]. IEEE Transactions on Power Electronics,2010,25(2):429-441.
    [106]Wang L, Huang W. Dynamic-stability enhancement and reactive power/voltage control of a large-scale wind farm using a STATCOM[C]. Proceedings of North American Power Symposium, Arlington, America,2010.
    [107]Cai L J, Erlich I. Simultaneous coordinated tuning of PSS and FACTS damping controllers in large power systems[J]. IEEE Transactions on Power Systems, 2005,20(1):294-299.
    [108]马幼捷,周雪松.静止无功补偿器非线性控制对系统功角稳定的影响[J].中国电机工程学报,2003,23(12):84-88.
    [109]刘隽,李兴源,汤广福.SVC电压控制与阻尼调节间的相互作用机理[J].中国电机工程学报,2008,28(1):12-17.
    [110]Xia J, Dysko A, O'Reilly J. Impact of induction machine based wind generation on power system voltage and oscillatory stability[C]. Proceedings of Universities' Power Engineering Conference, Soest, Germany,2011.
    [111]陈柔伊,张尧,蔡广林.PSS与HVDC调制器的在线协调控制策略[J].电网技术,2009,33(6):29-32.
    [112]Wang Y, Zhu X R, Xu L, et al. Contribution of VSC-HVDC connected wind farms to grid frequency regulation and power damping[C]. Proceedings of IEEE Industry Electronic, Glendale, America,2010.
    [113]Ackermann T. Wind power in power systems[M]. Chichester:John Wiley and Sons Ltd,2005.
    [114]Edstrom A. Dynamiska ekvivalenter for stabilitetsstudier[M]. Vattenfall, Systemteknik, Sweden,1985.
    [115]汤蕴璆,张奕黄,范瑜,等.交流电机动态分析[M].北京:机械工业出版社,2004:39-54.
    [116]Murdoch A, Barton R S, Winkelman J R, et al. Control design and performance analysis of a 6 MW wind turbine-generator[J]. IEEE Transations on Power Apparatus and Systems,1983,102(5):1340-1347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700