犬瘟热病毒H基因的克隆表达与分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
犬瘟热(Canine distemper, CD)是由犬瘟热病毒(Canine distemper virus, CDV)引起的一种以犬为主的多种动物共患急性传染病,对动物的危害很大。CDV基因组编码核衣壳蛋白(N)、磷蛋白(P)、基质膜蛋白(M)、大蛋白(L)、融合蛋白(F)和血凝蛋白(H)6个蛋白,其中H蛋白是CDV感染细胞过程中侵袭宿主所必需的,也是产生中和抗体的主要抗原,同时也是变异最大的结构蛋白;分析和研究H蛋白的分子进化和变异情况能反映CDV的流行和进化趋势。虽然之前开发的犬瘟热弱毒疫苗已被广泛使用并取得很好的保护效果,但是近来犬瘟热又在全世界流行,疫苗免疫失败的现象越来越多。出现这种现象的原因一方面可能是在免疫压力下,CDV抗原表位可能发生漂移,尤其是主要结构蛋白H蛋白极易发生变异,从而使疫苗失去效用;另一方面也可能由于免疫失败或者动物机体的抗体水平下降而导致机体在受到CDV感染时不能产生有效的保护。本研究旨在探明杭州地区CDV的流行特征和变异趋势,为疫苗的选择或开发奠定基础;同时,表达H蛋白用于动物机体的免疫状况的监测,为犬瘟热的防治提供参考。为此,2007年1月至2008年4月间我们收集了44份临床疑似犬瘟热病料并进行PCR检测,克隆测序13株CDV H基因序列,用于遗传进化分析;同时截短表达H蛋白,并进行免疫印迹试验以确证该重组蛋白的反应原性。
     1.根据CDV N基因的保守区域设计引物,在对RT-PCR法和反转录-套式PCR扩增的N基因片段克隆测序的基础上,比较了两种检测方法的灵敏性和特异性。结果显示,PCR扩增片段和测序结果与预期一致,特异性分析表明两种检测方法对犬细小病毒阳性病料无扩增条带,具有很高的特异性,RT-PCR法和反转录-套式PCR法的阳性检出率分别为11.36%和63.64%,反转录-套式PCR法比RT-PCR法更加敏感。
     2.为了进一步探明杭州地区CDV的流行特征和变异趋势,克隆测序了13份CDV阳性病料的H基因。分子遗传进化分析显示,所有毒株可分为7个大的分支,且各分支间具有一定的地域相关性。亚洲国家主要存在CDVⅠ型和Ⅴ型,但在中国未发现Ⅴ型毒株的存在;杭州毒株除一株属于Ⅶ型外,其余与中国大部分毒株同处于Ⅰ型,而只有少量中国毒株属于Ⅵ型和Ⅶ型。潜在的天冬酰胺糖基化位点分析发现不同毒株之间的数目差距较大,疫苗株含4~7个糖基化位点,野毒株为7~9个;杭州地区的毒株除HZ005为8个和HZ011为6个外,其余均为9个。进一步分析了H基因变异情况,发现H基因整体变异较大,但氨基酸同义置换的概率大于非同义置换的概率,表明H基因同义突变的趋势更加明显。
     3.利用MDCK细胞从临床犬瘟热病犬病料中分离CDV,结果表明第3、6、9和12代感染细胞均能检测到病毒特异性条带(病毒命名为HZ026),其原代病毒和第12代病毒的H基因测序分析显示在传代过程中H基因没有发生变异。进一步截短表达H基因的两个片段,Western blot鉴定表明,表达的蛋白对于CDV阳性血清具有较强的反应原性,可用于进一步的血清学研究。
Canine distemper (CD),caused by canine distemper virus (CDV), is an acute and highly contagious viral disease of dogs as well as some other animals. The virus genome consists of genes encoding N, P, M, L, F and H proteins. Many studies have shown that Hemagglutinin protein (H) of CDV is necessary during infection and a major target antigen for the host immunesystem. In addition, H protein is the most variable structural protein which can serve as the indicator in analysis of molecular evolution and epidemic study of CDV. The use of live attenuated vaccines has successfully prevented CDV infections in domestic dogs. However, in recent years, several episodes of CD in vaccinated animals have been reported throughout the world, which might be due to the frequent variation of epitopes especially in H protein and the failure of vaccination as well as the lower level of antibodies after uncorrected vaccination strategies. This study was aimed to find out the epidemic and evolutionary trend of CDV in Hangzhou, which was usefull for vaccine development. In addition, the H protein was expressed and analyzed. Thus, during January 2007 and April 2008, fourty-four blood samples or conjunctival swabs of diseased dogs suspected of canine distemper were collected. After detection for CDV, the H gene were cloned and sequenced for analysis of genetic characterization.
     1. The diagnosis of CD infection is usually based on clinical symptoms, which may result in misdiagnosis in cases. So a sensitive and specific method for detection of CDV infection is necessary. In this stuy, an one-step RT-PCR and a nested PCR are compared for their role in CDV detection. Both the methods reacted with the CDV vaccinal strain, but not with canine parvovirus. The expected fragment of the N gene was detected in 11.36% samples by one-step RT-PCR and 63.64% by nested PCR. So the nested PCR is more reliable than the one-step RT-PCR.
     2. To gain insight in epidemic and evolutionary trend of CDV in Hangzhou, phylogenetic analysis based on H gene was conducted. The results revealed that all the CDV isolates were segregated into seven groups which showed relationships with regard to geographic regions. Obviusly, most isolates of Asian country were in groupⅠand groupⅤ, but no Chinese isolates was in groupⅤ. Most isolates of our study (except one in group VII) were clustered in groupⅠt ogether with the most Chinese isolates. Prediction of potential N-glycosylation sites revealed that there were different sites in different genotypes. Compared to vaccine isolates of four to seven sites and other wildtype isolates of seven to nine sites, most of the isolates from Hangzhou contain nine potential N-glycosylation sites, except for HZ005 and HZ011 (eight and six respectively). Variability of the CDV H protein was analyzed by the differences between non-synonymous (dN) and synonymous (dS) rates and the entropy values. Majority of the positions within H were subject to negative selection. Our results suggest that recent isolates from Hangzhou are predominantly of groupⅠand they have shifted away from vaccine strains used in the area.
     3. To isolate CDV, canine epithelial kidney cells (MDCK) were inoculated with lung specimens from suspected dogs. Then one isolate of CDV, designated as HZ026, was found positive at three, six, nine, twelve passages by nested PCR. Then two fragments of H gene, containing 816bp and 459bp of its 3′end, were amplified and cloned into the prokaryotic expression vector pET30a for induction, which showed two bands of 36.4ku and 22.2ku respectively as analysed by SDS-PAGE. Moreover, both of the two fusion proteins could be recognized by CDV positive serum by Western blotting, indicating that the proteins had the antigenitic epitopes of H gene of CDV and could be used in future serological studies.
引文
[1] 殷震,刘景华. 动物病毒学(第二版)[M].北京:科学出版社,1997.
    [2] 陆承平.兽医微生物学(第三版)[M].北京:中国农业出版社,2001.
    [3] Appel M JSummers B A. Pathogenicity of morbilliviruses for terrestrial carnivores[J]. Vet Microbiol, 1995, 44 (2-4): 187-191.
    [4] 王好. 犬瘟热病毒 H 蛋白基因片段的克隆与原核表达[D]. 吉林农业大学,2007.
    [5] 李金中, 夏咸柱, 邱薇,等. 小熊猫等四种动物犬瘟热病毒的分离与鉴定[J]. 中国兽医科技, 1998, 28 (8): 8-10.
    [6] 宗春苗, 王全凯, 王卓聪,等. 狐源犬瘟热病毒的分离及 RT-PCR 鉴定[J]. 经济动物学报, 2006, 10 (4): 195-198.
    [7] 韩磊, 靳兴军, 郭峰,等. 虎犬瘟热病毒的分离与初步鉴定[J]. 中国兽医杂志, 2004, 40 (2): 30-31.
    [8] 闰喜军, 柴秀丽, 罗国良,等. 貉犬瘟热病毒的分离与鉴定[J]. 特产研究, 2006, (4): 1-3.
    [9] 王建科,易立. 近期国内狐、貂、貉犬瘟热发病情况[J]. 特种经济动植物, 2007, 12 18.
    [10] Martella V, Cirone F, Elia G, et al. Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains detected in Italy[J]. Vet Microbiol, 2006, 116 (4): 301-309.
    [11] Guiserix M, Bahi-Jaber N, Fouchet D, et al. The canine distemper epidemic in Serengeti: are lions victims of a new highly virulent canine distemper virus strain, or is pathogen circulation stochasticity to blame?[J]. J R Soc Interface, 2007,
    [12] Hirayama N, Senda M, Yamamoto H, et al. Isolation and characterization of canine distemper virus-specific RNA[J]. Microbiol Immunol, 1985, 29 (1): 47-54.
    [13] Arakawa S, Muto S, Kaneko T, et al. Experimental studies on canine distemper virus (CDV). Report 1. Experiment on the isolation of the virus in mice and embroyonated eggs and the relation of the mouse-adapted CDV to mouse-fixed measles virus and others[J]. Yokohama Med Bull, 1959, 10 179-189.
    [14] Mainka S A, Qiu X, He T, et al. Serologic survey of giant pandas (Ailuropoda melanoleuca), and domestic dogs and cats in the Wolong Reserve, China[J]. J Wildl Dis, 1994, 30 (1): 86-89.
    [15] Roelke-Parker M E, Munson L, Packer C, et al. A canine distemper virus epidemic in Serengeti lions (Panthera leo)[J]. Nature, 1996, 379 (6564): 441-445.
    [16] Appel M J, Yates R A, Foley G L, et al. Canine distemper epizootic in lions, tigers, and leopards in North America[J]. J Vet Diagn Invest, 1994, 6 (3): 277-288.
    [17] Cranfield M R, Barker I K, Mehren K G, et al. Canine Distemper in Wild Raccoons (Procyon lotor) at the Metropolitan Toronto Zoo[J]. Can Vet J, 1984, 25 (2): 63-66.
    [18] Gese E M, Schultz R D, Rongstad O J, et al. Prevalence of antibodies against canine parvovirus and canine distemper virus in wild coyotes in southeastern Colorado[J]. J Wildl Dis, 1991, 27 (2): 320-323.
    [19] Courtenay O, Quinnell R J, Chalmers W S. Contact rates between wild and domestic canids: no evidence of parvovirus or canine distemper virus in crab-eating foxes[J]. VetMicrobiol, 2001, 81 (1): 9-19.
    [20] Deem S L, Spelman L H, Yates R A, et al. Canine distemper in terrestrial carnivores: a review[J]. J Zoo Wildl Med, 2000, 31 (4): 441-451.
    [21] Mos L, Ross P S, McIntosh D, et al. Canine distemper virus in river otters in British Columbia as an emergent risk for coastal pinnipeds[J]. Vet Rec, 2003, 152 (8): 237-239.
    [22] Yamanouchi K, Yoshikawa Y, Sato T A, et al. Encephalomyelitis induced by canine distemper virus in non-human primates[J]. Jpn J Med Sci Biol, 1977, 30 (5): 241-257.
    [23] Yoshikawa Y, Yamanouchi K, Morikawa Y, et al. Characterization of canine distemper viruses adapted to neural cells and their neurovirulence in mice[J]. Microbiol Immunol, 1983, 27 (6): 503-518.
    [24] Morikawa Y, Yoshikawa Y, Yamanouchi K. Characterization of canine distemper viruses adapted to human neural cells[J]. Microbiol Immunol, 1988, 32 (12): 1211-1220.
    [25] Appel M J, Reggiardo C, Summers B A, et al. Canine distemper virus infection and encephalitis in javelinas (collared peccaries)[J]. Arch Virol, 1991, 119 (1-2): 147-152.
    [26] Mee A P, Dixon J A, Hoyland J A, et al. Detection of canine distemper virus in 100% of Paget's disease samples by in situ-reverse transcriptase-polymerase chain reaction[J]. Bone, 1998, 23 (2): 171-175.
    [27] Noon T H, Heffelfinger J R, Olding R J, et al. Serologic survey for antibodies to canine distemper virus in collared peccary (Tayassu tajacu) populations in Arizona[J]. J Wildl Dis, 2003, 39 (1): 221-223.
    [28] 潘耀谦. 犬瘟热发病机理的免疫及分子病理学研究[D]. 中国农业大学,2005.
    [29] 肖定福, 张汇东, 温海,等. 犬瘟热病毒的分离鉴定[J]. 中国兽医杂志, 2007, 43 (1): 38-42.
    [30] Ho C K,Babiuk L A. A new plaque system for canine distemper: characteristics of the green strain of canine distemper virus[J]. Can J Microbiol, 1979, 25 (6): 680-685.
    [31] 马丽,彭广能. 犬瘟热流行病学调查[J]. 中国兽医杂志, 2007, 43 (10): 88-89.
    [32] 蔡宝祥.家畜传染病学(第三版)[M].北京:中国农业出版社,2001.
    [33] Vandevelde M,Zurbriggen A. Demyelination in canine distemper virus infection: a review[J]. Acta Neuropathol (Berl), 2005, 109 (1): 56-68.
    [34] Appel M J. Pathogenesis of canine distemper[J]. Am J Vet Res, 1969, 30 (7): 1167-1182.
    [35] Krakowka S. Mechanisms of in vitro immunosuppression in canine distemper virus infection[J]. J Clin Lab Immunol, 1982, 8 (3): 187-196.
    [36] Krakowka S, Higgins R J, Koestner A. Canine distemper virus: review of structural and functional modulations in lymphoid tissues[J]. Am J Vet Res, 1980, 41 (2): 284-292.
    [37] Iwatsuki K, Okita M, Ochikubo F, et al. Immunohistochemical analysis of the lymphoid organs of dogs naturally infected with canine distemper virus[J]. J Comp Pathol, 1995, 113 (2): 185-190.
    [38] Tipold A, Vandevelde M, Wittek R, et al. Partial protection and intrathecal invasion of CD8(+) T cells in acute canine distemper virus infection[J]. Vet Microbiol, 2001, 83 (3): 189-203.
    [39] Kumagai K, Yamaguchi R, Uchida K, et al. Lymphoid apoptosis in acute canine distemper[J]. J Vet Med Sci, 2004, 66 (2): 175-181.
    [40] Moro L, de Sousa Martins A, de Moraes Alves C, et al. Apoptosis in canine distemper[J]. Arch Virol, 2003, 148 (1): 153-164.
    [41] Sakaguchi M, Yoshikawa Y, Yamanouchi K, et al. Growth of measles virus in epithelial and lymphoid tissues of cynomolgus monkeys[J]. Microbiol Immunol, 1986, 30 (10): 1067-1073.
    [42] Blixenkrone-Moller M. Detection of intracellular canine distemper virus antigen in mink inoculated with an attenuated or a virulent strain of canine distemper virus[J]. Am J Vet Res, 1989, 50 (9): 1616-1620.
    [43] Okita M, Yanai T, Ochikubo F, et al. Histopathological features of canine distemper recently observed in Japan[J]. J Comp Pathol, 1997, 116 (4): 403-408.
    [44] Summers B A, Greisen H A, Appel M J. Canine distemper encephalomyelitis: variation with virus strain[J]. J Comp Pathol, 1984, 94 (1): 65-75.
    [45] von Messling V, Springfeld C, Devaux P, et al. A ferret model of canine distemper virus virulence and immunosuppression[J]. J Virol, 2003, 77 (23): 12579-12591.
    [46] Summers B A, Greisen H A, Appel M J. Early events in canine distemper demyelinating encephalomyelitis[J]. Acta Neuropathol, 1979, 46 (1-2): 1-10.
    [47] McCullough B, Krakowka S, Koestner A. Experimental canine distemper virus-induced demyelination[J]. Lab Invest, 1974, 31 (3): 216-222.
    [48] Baron M D,Barrett T. Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs[J]. J Virol, 2000, 74 (6): 2603-2611.
    [49] Zurbriggen A, Vandevelde M, Bollo E. Demyelinating, non-demyelinating and attenuated canine distemper virus strains induce oligodendroglial cytolysis in vitro[J]. J Neurol Sci, 1987, 79 (1-2): 33-41.
    [50] 赵长城, 李福宝, 钟志刚. 50 例犬瘟热病例的诊疗报告[J]. 中国动物检疫, 2007, 24 (1): 38-40.
    [51] 贺永明, 刘艳红, 刘淑芳. 犬瘟热临床诊治[J]. 安徽农业科学, 2007, 35 (13): 39.
    [52] 遇秀玲, 郑振峰, 田克恭,等. 犬瘟热脏器组织中的抗原定位及病理形态学观察[J]. 中国善医杂志, 1994, 20 (6):
    [53] An D J, Kim T Y, Song D S, et al. An immunochromatography assay for rapid antemortem diagnosis of dogs suspected to have canine distemper[J]. J Virol Methods, 2008, 147 (2): 244-249.
    [54] Kapil S, Allison R W, Johnston L, 3rd, et al. Canine Distemper Viruses Circulating in North American Dogs[J]. Clin Vaccine Immunol, 2008,
    [55] Imagawa D T, Howard E B, Van Pelt L F, et al. Isolation of canine distemper virus from dogs with chronic neurological diseases[J]. Proc Soc Exp Biol Med, 1980, 164 (3): 355-362.
    [56] Elia G, Decaro N, Martella V, et al. Detection of canine distemper virus in dogs by real-time RT-PCR[J]. J Virol Methods, 2006, 136 (1-2): 171-176.
    [57] 程世鹏, 吴威, 闫新华,等. 狐貉犬瘟热病综合诊断技术研究[J]. 特产研究, 1999, (2): 40-41.
    [58] 吴开波, 王成东, 杨光友. 犬瘟热实验室诊断方法研究进展[J]. 中国动物检疫, 2006, 23 (3): 45-48.
    [59] 常国权,杨盛华. 用离子捕获电镜技术快速检测犬瘟热病毒[J]. 畜牧与兽医, 1994, 26 (6): 243-244.
    [60] 任文陟, 陈秀芬, 母连志,等. 犬瘟热琼脂扩散试验方法的建立及初步应用[J]. 中国兽医学报, 1994, 14 (4): 398- 400.
    [61] 刘鼎新,徐邦祯. 犬瘟热和犬细小病毒的特异性诊断和防治[J]. 中国畜禽传染病, 1994, (4):38-40.
    [62] Schroeder J P,Bordt D E. Influence of amount of test virus on quantitative in ovo canine distemper virus neutralization test[J]. Proc Soc Exp Biol Med, 1962, 109 979-982.
    [63] Appel M,Robson D S. A microneutralization test for canine distemper virus[J]. Am J Vet Res, 1973, 34 (11): 1459-1463.
    [64] Sobrino R, Arnal M C, Luco D F, et al. Prevalence of antibodies against canine distemper virus and canine parvovirus among foxes and wolves from Spain[J]. Vet Microbiol, 2008, 126 (1-3): 251-256.
    [65] Confer A W, Kahn D E, Koestner A, et al. Biological properties of a canine distemper virus isolate associated with demyelinating encephalomyelitis[J]. Infect Immun, 1975, 11 (4): 835-844.
    [66] Kristensen BV and evelde M. Immunofluorescence studies of canine distemper encephalitis on paraffin-embedded tissue[J]. Am J Vet Res, 1978, 39 (6): 1017-1021.
    [67] Liu C,Coffin D L. Studies of canine distemper infection by means of fluorescein-labeled antibody. I. The pathogenesis, pathology, and diagnosis of the disease in experimentally infected ferrets[J]. Virology, 1957, 3 (1): 115-131.
    [68] 袁书智,夏咸柱. 犬瘟热荧光抗体技术的应用研究[J]. 中国兽医学报, 1994, 14 (2): 146 - 149.
    [69] Miry C, Ducatelle R, Thoonen H, et al. Immunoperoxidase study of canine distemper virus pneumonia[J]. Res Vet Sci, 1983, 34 (2): 145-148.
    [70] Raw M E, Pearson G R, Brown P J, et al. Canine distemper infection associated with acute nervous signs in dogs[J]. Vet Rec, 1992, 130 (14): 291-293.
    [71] von Messling V, Harder T C, Moennig V, et al. Rapid and sensitive detection of immunoglobulin M (IgM) and IgG antibodies against canine distemper virus by a new recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay[J]. J Clin Microbiol, 1999, 37 (4): 1049-1056.
    [72] 杨敬, 乌仁高娃, 范薇,等. 间接 EL ISA 检测犬瘟热血清抗体方法的建立[J]. 动物医学进展, 2005, 26 (11): 61-64.
    [73] Blixenkrone-Moller M, Pedersen I R, Appel M J, et al. Detection of IgM antibodies against canine distemper virus in dog and mink sera employing enzyme-linked immunosorbent assay (ELISA)[J]. J Vet Diagn Invest, 1991, 3 (1): 3-9.
    [74] Waner T, Mazar S, Nachmias E, et al. Evaluation of a dot ELISA kit for measuring immunoglobulin M antibodies to canine parvovirus and distemper virus[J]. Vet Rec, 2003, 152 (19): 588-591.
    [75] Hoyland J A, Dixon J A, Berry J L, et al. A comparison of in situ hybridisation, reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ-RT-PCR for the detection of canine distemper virus RNA in Paget's disease[J]. J Virol Methods, 2003, 109 (2): 253-259.
    [76] Gaedke K, Zurbriggen A, Baumgartner W. In vivo and in vitro detection of canine distemper virus nucleoprotein gene with digoxigenin-labelled RNA, double-stranded DNA probes and oligonucleotides by in situ hybridization[J]. Zentralbl Veterinarmed B, 1997, 44 (6): 329-340.
    [77] Oglesbee M, Jackwood D, Perrine K, et al. In vitro detection of canine distemper virus nucleic acid with a virus-specific cDNA probe by dot-blot and in situ hybridization[J].J Virol Methods, 1986, 14 (3-4): 195-211.
    [78] Demeter Z, Lakatos B, Palade E A, et al. Genetic diversity of Hungarian canine distemper virus strains[J]. Vet Microbiol, 2007, 122 (3-4): 258-269.
    [79] 乔军, 盂庆龄, 夏咸柱. 犬瘟热、犬冠状病毒联合 RT-PCR 检测方法的建立及应用[J]. 西南农业学报, 2002, 15 (1): 93-95.
    [80] Shin Y J, Cho K O, Cho H S, et al. Comparison of one-step RT-PCR and a nested PCR for the detection of canine distemper virus in clinical samples[J]. Aust Vet J, 2004, 82 (1-2): 83-86.
    [81] Kim Y H, Cho K W, Youn H Y, et al. Detection of canine distemper virus (CDV) through one step RT-PCR combined with nested PCR[J]. J Vet Sci, 2001, 2 (1): 59-63.
    [82] Stanton J B, Poet S, Frasca S, Jr., et al. Development of a semi-nested reverse transcription polymerase chain reaction assay for the retrospective diagnosis of canine distemper virus infection[J]. J Vet Diagn Invest, 2002, 14 (1): 47-52.
    [83] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28 (12): E63.
    [84] Cho H S,Park N Y. Detection of canine distemper virus in blood samples by reverse transcription loop-mediated isothermal amplification[J]. J Vet Med B Infect Dis Vet Public Health, 2005, 52 (9): 410-413.
    [85] 刘澜澜. 狐貉源犬瘟热病毒分离株 H、N 基因序列分析及真核表达载体的构建[D]. 东北林业大学,2007.
    [86] 李惠敏. 犬瘟热病毒的分离、鉴定及其抗原蛋白的研究[D]. 四川农业大学,2006.
    [87] Cocks B G, Chang C C, Carballido J M, et al. A novel receptor involved in T-cell activation[J]. Nature, 1995, 376 (6537): 260-263.
    [88] Sidorenko S P,Clark E A. The dual-function CD150 receptor subfamily: the viral attraction[J]. Nat Immunol, 2003, 4 (1): 19-24.
    [89] Ono N, Tatsuo H, Hidaka Y, et al. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor[J]. J Virol, 2001, 75 (9): 4399-4401.
    [90] Seki F, Ono N, Yamaguchi R, et al. Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells[J]. J Virol, 2003, 77 (18): 9943-9950.
    [91] Tatsuo H, Ono N, Yanagi Y. Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors[J]. J Virol, 2001, 75 (13): 5842-5850.
    [92] Yanagi Y, Ono N, Tatsuo H, et al. Measles virus receptor SLAM (CD150)[J]. Virology, 2002, 299 (2): 155-161.
    [93] Nichols K E, Ma C S, Cannons J L, et al. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease[J]. Immunol Rev, 2005, 203 180-199.
    [94] Hsu E C, Iorio C, Sarangi F, et al. CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus[J]. Virology, 2001, 279 (1): 9-21.
    [95] Tatsuo H, Ono N, Tanaka K, et al. SLAM (CDw150) is a cellular receptor for measles virus[J]. Nature, 2000, 406 (6798): 893-897.
    [96] von Messling V, Oezguen N, Zheng Q, et al. Nearby clusters of hemagglutinin residuessustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells[J]. J Virol, 2005, 79 (9): 5857-5862.
    [97] von Messling V, Milosevic D, Devaux P, et al. Canine distemper virus and measles virus fusion glycoprotein trimers: partial membrane-proximal ectodomain cleavage enhances function[J]. J Virol, 2004, 78 (15): 7894-7903.
    [98] 袁文. 犬瘟热病毒南京分离株核蛋白基因的克隆_表达及其免疫小鼠诱导的免疫应答[D]. 南京农业大学,2006.
    [99] Appel M J, Pearce-Kelling S, Summers B A. Dog lymphocyte cultures facilitate the isolation and growth of virulent canine distemper virus[J]. J Vet Diagn Invest, 1992, 4 (3): 258-263.
    [100] Wright N G, Cornwell H J, Thompson H, et al. Canine distemper: current concepts in laboratory and clinical diagnosis[J]. Vet Rec, 1974, 94 (5): 86-92.
    [101] Lednicky J A, Meehan T P, Kinsel M J, et al. Effective primary isolation of wild-type canine distemper virus in MDCK, MV1 Lu and Vero cells without nucleotide sequence changes within the entire haemagglutinin protein gene and in subgenomic sections of the fusion and phospho protein genes[J]. J Virol Methods, 2004, 118 (2): 147-157.
    [102] 田克恭, 遇秀玲, 吴娜,等. 犬瘟热病毒强毒株的分离与鉴定[J]. 畜牧兽医学报, 1998, 29 (2): 151-154.
    [103] Sidhu M S, Husar W, Cook S D, et al. Canine distemper terminal and intergenic non-protein coding nucleotide sequences: completion of the entire CDV genome sequence[J]. Virology, 1993, 193 (1): 66-72.
    [104] 王卓聪. 水貂犬瘟热病毒 F 基因的克隆及序列分析和表达[D]. 吉林农业大学,2007.
    [105] Barrett T, Clarke D K, Evans S A, et al. The nucleotide sequence of the gene encoding the F protein of canine distemper virus: a comparison of the deduced amino acid sequence with other paramyxoviruses[J]. Virus Res, 1987, 8 (4): 373-386.
    [106] Wild T F, Malvoisin E, Buckland R. Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion[J]. J Gen Virol, 1991, 72 ( Pt 2) 439-442.
    [107] Iwatsuki K, Miyashita N, Yoshida E, et al. The nucleotide and predicted amino acid sequence of the fusion protein of recent isolates of canine distemper virus in Japan[J]. J Vet Med Sci, 1998, 60 (3): 381-385.
    [108] Visser I K, van der Heijden R W, van de Bildt M W, et al. Fusion protein gene nucleotide sequence similarities, shared antigenic sites and phylogenetic analysis suggest that phocid distemper virus type 2 and canine distemper virus belong to the same virus entity[J]. J Gen Virol, 1993, 74 ( Pt 9) 1989-1994.
    [109] Wild T F,Buckl and R. Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein[J]. J Gen Virol, 1997, 78 ( Pt 1) 107-111.
    [110] Evans S A, Belsham G J, Barrett T. The role of the 5' nontranslated regions of the fusion protein mRNAs of canine distemper virus and rinderpest virus[J]. Virology, 1990, 177 (1): 317-323.
    [111] Cherpillod P, Beck K, Zurbriggen A, et al. Sequence analysis and expression of the attachment and fusion proteins of canine distemper virus wild-type strain A75/17[J]. J Virol, 1999, 73 (3): 2263-2269.
    [112] Yoshida E, Iwatsuki K, Miyashita N, et al. Molecular analysis of the nucleocapsid protein of recent isolates of canine distemper virus in Japan[J]. Vet Microbiol, 1998, 59 (2-3): 237-244.
    [113] 王琛, 袁宝, 任文陟,等. 犬瘟热病毒 R/20-8 株核衣壳蛋白基因的克隆和表达[J]. 中国兽医科学, 2007, 37 (5): 378-381.
    [114] Saito T B, Alfieri A A, Wosiacki S R, et al. Detection of canine distemper virus by reverse transcriptase-polymerase chain reaction in the urine of dogs with clinical signs of distemper encephalitis[J]. Res Vet Sci, 2006, 80 (1): 116-119.
    [115] Stettler M,Zurbriggen A. Nucleotide and deduced amino acid sequences of the nucleocapsid protein of the virulent A75/17-CDV strain of canine distemper virus[J]. Vet Microbiol, 1995, 44 (2-4): 211-217.
    [116] Brown D D, Collins F M, Duprex W P, et al. 'Rescue' of mini-genomic constructs and viruses by combinations of morbillivirus N, P and L proteins[J]. J Gen Virol, 2005, 86 (Pt 4): 1077-1081.
    [117] Yoshida E, Shin Y S, Iwatsuki K, et al. Epitopes and nuclear localization analyses of canine distemper virus nucleocapsid protein by expression of its deletion mutants[J]. Vet Microbiol, 1999, 66 (4): 313-320.
    [118] Schadeck E B, Partidos C D, Fooks A R, et al. CTL epitopes identified with a defective recombinant adenovirus expressing measles virus nucleoprotein and evaluation of their protective capacity in mice[J]. Virus Res, 1999, 65 (1): 75-86.
    [119] Bellini W J, Englund G, Richardson C D, et al. Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences[J]. J Virol, 1986, 58 (2): 408-416.
    [120] Diallo A. Morbillivirus group: genome organisation and proteins[J]. Vet Microbiol, 1990, 23 (1-4): 155-163.
    [121] Liermann H, Harder T C, Lochelt M, et al. Genetic analysis of the central untranslated genome region and the proximal coding part of the F gene of wild-type and vaccine canine distemper morbilliviruses[J]. Virus Genes, 1998, 17 (3): 259-270.
    [122] Merz D C, Scheid A, Choppin P W. Importance of antibodies to the fusion glycoprotein of paramyxoviruses in the prevention of spread of infection[J]. J Exp Med, 1980, 151 (2): 275-288.
    [123] Lamb R A. Paramyxovirus fusion: a hypothesis for changes[J]. Virology, 1993, 197 (1): 1-11.
    [124] Varsanyi T M, Jornvall H, Orvell C, et al. F1 polypeptides of two canine distemper virus strains: variation in the conserved N-terminal hydrophobic region[J]. Virology, 1987, 157 (1): 241-244.
    [125] Fischer L, Tronel J P, Minke J, et al. Vaccination of puppies with a lipid-formulated plasmid vaccine protects against a severe canine distemper virus challenge[J]. Vaccine, 2003, 21 (11-12): 1099-1102.
    [126] Sheshberadaran H, Norrby E, McCullough K C, et al. The antigenic relationship between measles, canine distemper and rinderpest viruses studied with monoclonal antibodies[J]. J Gen Virol, 1986, 67 ( Pt 7) 1381-1392.
    [127] Curran M D, Clarke D K, Rima B K. The nucleotide sequence of the gene encoding theattachment protein H of canine distemper virus[J]. J Gen Virol, 1991, 72 ( Pt 2) 443-447.
    [128] Kovamees J, Blixenkrone-Moller M, Norrby E. The nucleotide and predicted amino acid sequence of the attachment protein of canine distemper virus[J]. Virus Res, 1991, 19 (2-3): 223-233.
    [129] Bolt G, Jensen T D, Gottschalck E, et al. Genetic diversity of the attachment (H) protein gene of current field isolates of canine distemper virus[J]. J Gen Virol, 1997, 78 ( Pt 2) 367-372.
    [130] Calderon M G, Remorini P, Periolo O, et al. Detection by RT-PCR and genetic characterization of canine distemper virus from vaccinated and non-vaccinated dogs in Argentina[J]. Vet Microbiol, 2007, 125 (3-4): 341-349.
    [131] Blixenkrone-Moller M, Svansson V, Have P, et al. Studies on manifestations of canine distemper virus infection in an urban dog population[J]. Vet Microbiol, 1993, 37 (1-2): 163-173.
    [132] Iwatsuki K, Tokiyoshi S, Hirayama N, et al. Antigenic differences in the H proteins of canine distemper viruses[J]. Vet Microbiol, 2000, 71 (3-4): 281-286.
    [133] Lan N T, Yamaguchi R, Kawabata A, et al. Comparison of molecular and growth properties for two different canine distemper virus clusters, Asia 1 and 2, in Japan[J]. J Vet Med Sci, 2007, 69 (7): 739-744.
    [134] Iwatsuki K, Miyashita N, Yoshida E, et al. Molecular and phylogenetic analyses of the haemagglutinin (H) proteins of field isolates of canine distemper virus from naturally infected dogs[J]. J Gen Virol, 1997, 78 ( Pt 2) 373-380.
    [135] Sixt N, Cardoso A, Vallier A, et al. Canine distemper virus DNA vaccination induces humoral and cellular immunity and protects against a lethal intracerebral challenge[J]. J Virol, 1998, 72 (11): 8472-8476.
    [136] Hirama K, Togashi K, Wakasa C, et al. Cytotoxic T-lymphocyte activity specific for hemagglutinin (H) protein of canine distemper virus in dogs[J]. J Vet Med Sci, 2003, 65 (1): 109-112.
    [137] Rivals J P, Plattet P, Currat-Zweifel C, et al. Adaptation of canine distemper virus to canine footpad keratinocytes modifies polymerase activity and fusogenicity through amino acid substitutions in the P/V/C and H proteins[J]. Virology, 2007, 359 (1): 6-18.
    [138] Wild T F, Naniche D, Rabourdin-Combe C, et al. Mode of entry of morbilliviruses[J]. Vet Microbiol, 1995, 44 (2-4): 267-270.
    [139] Stern L B, Greenberg M, Gershoni J M, et al. The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis[J]. J Virol, 1995, 69 (3): 1661-1668.
    [140] Takimoto T, Murti K G, Bousse T, et al. Role of matrix and fusion proteins in budding of Sendai virus[J]. J Virol, 2001, 75 (23): 11384-11391.
    [141] von Messling V, Zimmer G, Herrler G, et al. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity[J]. J Virol, 2001, 75 (14): 6418-6427.
    [142] Sidhu M S, Menonna J P, Cook S D, et al. Canine distemper virus L gene: sequence and comparison with related viruses[J]. Virology, 1993, 193 (1): 50-65.
    [143] Curran M D,Rima B K. The genes encoding the phospho- and matrix proteins of phocine distemper virus[J]. J Gen Virol, 1992, 73 ( Pt 6) 1587-1591.
    [144] Patterson J B, Thomas D, Lewicki H, et al. V and C proteins of measles virus function as virulence factors in vivo[J]. Virology, 2000, 267 (1): 80-89.
    [145] Dhivya S, Madhavan H N, Rao Ch M, et al. Comparison of a novel semi-nested polymerase chain reaction (PCR) with a uniplex PCR for the detection of Acanthamoeba genome in corneal scrapings[J]. Parasitol Res, 2007, 100 (6): 1303-1309.
    [146] Mobius P, Hotzel H, Rassbach A, et al. Comparison of 13 single-round and nested PCR assays targeting IS900, ISMav2, f57 and locus 255 for detection of Mycobacterium avium subsp. paratuberculosis[J]. Vet Microbiol, 2008, 126 (4): 324-333.
    [147] Rima B K, Wishaupt R G, Welsh M J, et al. The evolution of morbilliviruses: a comparison of nucleocapsid gene sequences including a porpoise morbillivirus[J]. Vet Microbiol, 1995, 44 (2-4): 127-134.
    [148] Lednicky J A, Dubach J, Kinsel M J, et al. Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA[J]. Virol J, 2004, 1 2.
    [149] 鞠会艳, 夏咸柱, 高玉伟,等. 用 RT-PCR 检测病料中犬瘟热病毒的研究[J]. 吉林农业大学学报, 2006, 28 (3 ): 317-320.
    [150] 王凤雪, 闫喜军, 柴秀丽,等. 犬瘟热病毒 RT-nested PCR 检测方法的建立与应用[J]. 中国兽医科学, 2007, 37 (11): 955-959.
    [151] Uema M, Ohashi K, Wakasa C, et al. Phylogenetic and restriction fragment length polymorphism analyses of hemagglutinin (H) protein of canine distemper virus isolates from domestic dogs in Japan[J]. Virus Res, 2005, 109 (1): 59-63.
    [152] Haas L, Martens W, Greiser-Wilke I, et al. Analysis of the haemagglutinin gene of current wild-type canine distemper virus isolates from Germany[J]. Virus Res, 1997, 48 (2): 165-171.
    [153] Ek-Kommonen C, Sihvonen L, Pekkanen K, et al. Outbreak off canine distemper in vaccinated dogs in Finland[J]. Vet Rec, 1997, 141 (15): 380-383.
    [154] Chen N, Hu H, Zhang Z, et al. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus: recent isolates branched away from historical and vaccine strains[J]. Vet Microbiol, 2008, 127 (3-4): 286-299.
    [155] 乔军, 孟庆龄, 夏咸柱,等. 犬瘟热病毒 XJ 株的分离鉴定[J]. 微生物学通报, 2002, 29 (1): 56-59.
    [156] Mochizuki M, Hashimoto M, Hagiwara S, et al. Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan[J]. J Clin Microbiol, 1999, 37 (9): 2936-2942.
    [157] 陈培富, 郭爱珍, 陆承平. 犬瘟热病毒南京分离株的生物学特性鉴定[J]. 中国兽医学报, 2000, 20 (3): 231-234.
    [158] 苏凤艳, 宗春苗, 王卓聪,等. 水貂源犬瘟热病毒的分离鉴定[J]. 吉林农业大学学报, 2006,28 (6): 674-677.
    [159] 莫小见, 郭爱珍, 陆承平. 犬瘟热病毒南京株 H 蛋白基因的克隆与表达[J]. 中国病毒学, 2004, 19 (5): 487-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700