Gemini表面活性剂的性能表征及计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂由于其结构的特殊性,容易在表(界)面吸附,结果降低了表(界)面张力,改变了体系的表(界)面化学性质,从而表现出多种的应用功能。而Gemini表面活性剂的两个亲水离子头基是通过化学键连接,加强了碳氢链间的疏水结合力,且离子头基间的排斥倾向受制于化学键力而大大削弱,因此具有比传统的单基表面活性剂更高的表面活性。本文对于合成出的一系列Gemini阴离子表面活性剂分别研究了临界胶束浓度、表面张力和胶束聚集数等一系列基本物化性能;通过QSAR研究了临界胶束浓度和分子结构之间的构效关系;用耗散颗粒动力学(DPD)方法研究了Gemini表面活性剂在水溶液中形成有序聚集体的微观形貌,主要内容及结论如下:
     1、通过电导率法研究了Gemini表面活性剂的临界胶束浓度(cmc)。结果表明,其cmc比传统阴离子表面活性剂降低一个数量级左右,显示了很高的表面活性;对于同种性质的连接基,随着其长度的增加,cmc呈减小的趋势;而对于长度相同性质不同的连接基,具有亲水、柔性连接基的Gemini表面活性剂比具有刚性、疏水连接基的有更低的cmc;研究了Gemini表面活性剂的胶束形成热力学,结果表明,所研究的Gemini表面活性剂的胶束生成Gibbs自由能ΔG_(mic)皆为负值,显示了胶束的自发形成趋势,而ΔG_(mic)随着连接基的变化趋势与临界胶束浓度的测量显示了很好的一致性;C20的测量结果显示了Gemini表面活性剂突出的降低水的表面张力的效率。
     2、利用稳态荧光猝灭法研究了一系列Gemini表面活性剂的胶束聚集数。结果表明,对于相同性质的连接基,随着长度的增加,胶束聚集数减小;对于连接基长度相同,而具有柔性、亲水性质的连接基的Gemini表面活性剂在形成胶束时更容易紧密排列,有更大的聚集数;我们可以通过改变连接基的性质,获得具有不同聚集性质的胶束来适应不同的用途。
     3、利用动态光散射研究了Gemini表面活性剂在水溶液中胶束的粒径大小与分布。结果表明,具有短的连接基的Gemini表面活性剂具有较大的粒径,且为双峰,表明溶液中有不同形状的胶束共存,而具有较长连接基的Gemini A3的粒径分布为单峰,表明其仅仅形成球形胶束,即长的连接基不利于胶束的长大;利用冷冻蚀刻-透射电子显微镜(Cryo-TEM)对GeminiA3在水溶液中胶束的微观形貌进行了初探。结果表明,在低浓度时,观察不到胶束的形成,随着表面活性剂浓度的增加,逐渐观察到有球形胶束形成;且在很宽的浓度范围内皆形成球形胶束,说明了长连接基不利于胶束的长大,这与动态光散射的测量结果相一致,也说明了利用Cryo-TEM来研究此类Gemini表面活性剂在水溶液中胶束微观形貌的可行性。
     4、利用QSAR方法研究了Gemini表面活性剂的临界胶束浓度与表面活性剂结构之间的构效关系,分别用PCR-PLS和GFA两种回归模型建立了回归方程。结果表明,二种方法所得的模型方程都具有较高的精度,而通过遗传算法所得方程比PLS回归方程具有更高的精度和更强的预测能力,说明通过QSAR方法可以达到准确预测具有相似结构的Gemini表面活性剂溶液性质的目的,为具有更好表面活性的Gemini分子的合成提供指导。
     5、通过耗散颗粒动力学(DPD)方法对Gemini表面活性剂在水溶液中的聚集形态进行了模拟,DPD模拟的结果表明,在很低的浓度下,溶液中首先形成胶束预聚体,随着浓度的增加,逐渐形成球形胶束,继续增加浓度,球形胶束长大成为花生状胶束并进一步长大为棒状胶束;在更高的浓度下,棒状胶束相互交联形成层状相,且发现与传统的表面活性剂溶液不同,在胶束和层状相之间没有出现过渡的六方相结构;由于DPD方法采用了简化的DPD粒子模型,因此可以抓住此类双亲分子的主要结构特点,模拟体系的直观结果可以和实验结果相互印证,为设计实验方法提供理论的指导。
The surfactants are readily to adsorb at the surface for its special structure and reduce the surface tension. So they can change the character of the surface and put up a lot of applications. As the head groups in Gemini surfactant are connected by chemical bond and strengthen the hydrophobic effect between hydrocarbon chains, it has much higher surface activity than conventional ionic surfactant. In this paper, some basic characters including cmc, surface tension and aggregation number of a series of anionic Gemini surfactants have been investigated. The relationship between critical micelle concentration and molecular structure has been studied by Quantum Structure–Active Relationship (QSAR) method. And Dissipative Particle Dynamics (DPD) has been employed to study the microstructures of aggregates of Gemini surfactant in aqueous solutions.
     The overall results are shown below:
     1 The critical micelle concentration of Gemini surfactants has been studied by electrical conductivity method. Results showed that Gemini surfactants have much higher surface activity than traditional ionic surfactants. Cmc decreases with the increase of the spacer chain length for the spacer having almost the same nature. For the spacer has almost the same length but different nature, the surfactant with the flexible, hydrophilic spacer has the lowest cmc value. Calculation of the standard free energy (ΔG_(mic) ) of micellization is consistent with their tendency to form micelles in solution and negativeΔG_(mic) values suggested that the Gemini surfactants have great ability to form micelles in solution. C20 values show that it is more efficient in declining surface tension of the water.
     2 The steady fluorescence quenching method has been used to study the aggregation numbers (N) of Gemini surfactants in aqueous solutions. Results showed that the longer the spacer chain, the smaller the aggregation number for the same spacer nature and the Gemini with the flexible, hydrophilic spacer has the largest N for almost the same spacer length. The Gemini surfactant with hydrophilic, flexible spacer can form a well-packed micelle. Therefore, it offers us the probability to obtain Gemini surfactants with different aggregation properties by changing the nature of the spacer to need our different uses.
     3 The micellar growth of Gemini surfactants containing oxyethyl group spacer in aqueous solutions has been studied using dynamic light scattering. The size of the micelles increases with decreasing the length of the spacer chain, which suggested that long spacer chain prevents the growth of micelle. Transmission electron microscopy at cryogenic temperature (cryo-TEM) was extensively used to investigate the microstructure of Gemini surfactant in aqueous solutions. The cryo-TEM studies showed that with increasing the concentration, spherical micelle could be seen and it can exist in a very broad concentration range.
     4 The relationship between cmc and surfactant structure has been studied using QSAR models and regression models were built up by principle component analysis-partial least squares (PCR-PLS) and genetic function approximation (GFA) respectively. Results showed that the GFA models has much higher precision and predictive capacity and it suggests that QSAR methods can give us probability to predict the character of aqueous solutions of Gemini surfactants with almost the same structure and give guidance to the synthesis of newly Gemini surfactants with higher activity.
     5 The microstructure of aggregates of Gemini surfactants in aqueous solutions was investigated by dissipative particle dynamics (DPD) simulation. We found that DPD simulation can look into the assemble process. With increasing the concentration of Gemini surfactant, the aggregates can form different structures: spherical micelle, peanut micelle, mixed micelle of sphere and rod, rod-like micelle and lamellar phase. As predigested DPD particles (beads) are employed in DPD simulation, it can hold up the main structure characteristic of these amphiphile and compare with the results of experiments and give advices to the design of the experiments.
引文
[1] 赵国玺,表面活性剂物理化学,北京大学出版社,1991:4~7,240~249,270~288
    [2] Meguro K, In Nonionic Surfactants, Physical Chemistry, Surfactant Science Series 23, Marcel Dekker Inc., 1987, 138-140
    [3] Frederick C B, Verona N J, Washing Composition, US2524218, 1950-10-03
    [4] Bunton C A, Robinson L, Schack J, et al. Catalysis of nucleophilic substitutions by micelles of dicationic detergent, J Org. Chem, 1971, 36(16):2346-2350
    [5] Deinega Y, Marochko L G, Rudi V P, et al. Kolloidn. Zh. , 1974, 36, 649-653
    [6] Zhu Y-P, Double-Chain surfactants with two carboxylate groups and their relation to similar double-chain compounds, J Colloid Interf. Sci. 1993, 158: 40-45
    [7] Zhu Y-P, Masuyama A, Okahara M. Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. J Am Oil Chem Soc. 1990, 67(7):459-463
    [8] Zhu Y-P, Masuyama A, Okahara M. Preparation and surface-active properties of new amphipathic compounds with two phosphate groups and two long-chain groups. J Am Oil Chem Soc. 1991,68(4):268-271
    [9] Zhu Y-P, Masuyama A, Kirito Y l, et al. Preparation and properties of double- or triple-chain surfactants with two sulphonate groups derived from N-acyldiethanolamines. J Am Oil Chem Soc. 1991,68(7):539-543
    [10] Menger F M,Littau C A,Gemini surfactants:synthesis and properties,J Am Chem Soc ,1991,113,1451~1452
    [11] Menger F M,Littau C A,Gemini surfactants:a new class of self-assembling molecules,J Am Chem Soc,1993,115:10083~10090
    [12] Zana R, Benrraou M, Rueff R, Alkanediyl-α, ?-bis(dimethylalkylammonium bromide)surfactants 1、Effect of the Spacer Chain Lenghth on the Critical Micelle Concentration and Micelle Ionization Degree, Langmuir, 1991, 7: 1072~1075
    [13] Zana.R,Levy.H,Papoutsi.D et al.,Micellization of Two Triquaternary Ammonium Surfactants in Aqueous Solution,Langmuir,1995,11,3694~3698
    [14] Milton J.Rosen,Geminis:A new generation of surfactants,Chemtech。1993,30~33
    [15] 赵剑曦, 新一代表面活性剂: Geminis[J], 化学进展, 1999, 11(4):348~357
    [16] 唐世华,黄建滨,李子臣等,Gemini 表面活性剂研究的新进展,自然科学进展,2001,11(12):1240~1251
    [17] Menger F M, Jason S K. Gemini surfactants, Angew. Chem. Int. Ed. 2000, 39, 1906-1920
    [18] Zana R., Dimeric and Oligomeric Sufactants.Behavior at Interface and in Aqueous solution : A Review , Advances in Colloid and Interface Science, 2002,97:205-253
    [19] Zana.R,Levy.H,Papoutsi.D et al.,Micellization of Two Triquaternary Ammonium Surfactants in Aqueous Solution,Langmuir,1995,11,3694~3698
    [20] Bhattacharya S,De S,Vesicle formation from dimeric surfactants through ion-pairing:Adjustment of polar headgroup separation leads to control over vesicular thermotropic properties ,J Chem Soc,Chem Commun,1995,651~655
    [21] Devinsky F L,Lacko I,Imam T,Relation between structure and solubilization properties of some bisquaternary ammonium amphiphiles ,J Colliod Interface Sci,1991,143:336~342
    [22] Esumi K,Goino M,Koide Y et al,Adsorption and adsolubilization by monomeric,dimeric,or trimeric quaternary ammonium surfactant at silica/water interface,J Colloid Interf Sci,1996,183:539~545
    [23] Esumi, K, Hara, J, Aihara, N, et al. Preparation of Anisotropic Gold Particles Using a Gemini Surfactant Template,J Colloid Interf Sci,1998,208:578~581
    [24] Soma De,Viand K A,Prem S G,et al.Novel Gemini micelles from dimeric surfactants with oxyethylene spacer chain.small angle neutron scattering and fluorescence studies.J Phys Chem B,1998,102:6152-6160
    [25] 游毅,郑欧,邱羽等,Gemini 阳离子表面活性剂的合成及胶束生成,物理化学学报,2001,17(1):74~78
    [26] 付冀峰,杨建新,徐宝财,二聚表面活性剂的制备、性质和应用,精细化工,2001,18(1),14~17
    [27]Makowska Danuta,Hreczuch Wieslaw,Zimoeh Jolanta,et al.Surface activity of mixtures of oxyethylated methyl dodecanoate and sodium d~ ylbenscnesulfonate.J Surfact Deterg,2001,4(2):12l-126
    [28] 范歆,方云,双亲油基—双亲水基型表面活性别,日用化学工业,2000,30(3):20~24
    [29] Francis L D, Martinus C F, et al, Synthesis and properties of di-n-dodecyl α,ω-alkyl bisphosphate surfactants, Langmuir,1997,13:3737~3743
    [30] Mariano J , CastroL , Kovensky J , et aLGemini surfactantsfromalk glucesides.Tetrahedron Letters,1997,38(23):3995—399
    [31] Th Dam. Gemini surfactants from alkyl glucosides. Colloids and Surfaces A, 1996, 118: 41-49
    [32] Michael D. Cationic amphitropic gemini surfactants with hydrophilic oligo (oxyethylene) spacer chains, Chem Commun, 1997,2105-2106
    [33] Devinsky F L,Lacko I,Imam T,Relation between structure and solubilizationproperties of some bisquaternary ammonium amphiphiles ,J Colliod Interface Sci,1991,143:336~342
    [34] Song L,Surface properties,,micellization,and premicellar aggregation of Gemini surfactants with rigid and flexible spacers,Langmuir,1996,12:1149~1153
    [35] Karaborni S, Esselink K, Hilbers P. Simulating the Self-Assembly of Gemini (Dimeric) Surfactants, Science, 1994,266(14):254-255
    [36] Hua X Y, Rosen M J. Synergism in binary mixture of surfactants containing mono- and disulfonated alky- and dialkyldiphenylethers. J Colloid Interface Sci. 1993,157:254-259
    [37]Danino,D;Talmon,Y,Zana,R.Alkanediyl-α,ω-bis(dimethylalkylammonium bromide)surfactants(dimeric surfactants).5.Aggregation and microstructure in aqueous solutions.Langmuir,1995, 11:1448-1456.
    [38] Chorro C,Chorro M,Dolladille O,et al.Adsorption of dimeric(gemini) surfactants at the aqueous solution/silica interface. J.Colloid Interface Sci., 1998, 199: 169-176
    [39] Asual V K, Small-angle neutron scattering study of micellar structure of dimeric surfactants. Physical Review E, 1998, 57(1):776-780
    [40] Asual V K, Micellar structure of dimeric surfactants with phosphate head groups and wettable spacers:A small-angle neutron scattering study. Phys Rev. E. 1999, 59(3):116-121
    [41] Knaebel A, Lamellar structures in aqueous solutions of a dimeric surfactant, Langmuir, 2000, 16: 2489-2492
    [42] Asual V K, Transition from dose to rod-like shape: 16-3-16 dimeric micelles in aqueous solutions, J Chem Soc. Faraday Trans. 1998, 94(19):2965-2976
    [43] Oda R, Huc I, Candau S J, Gemini surfactants, the effect of hydrophobic chain length and dissymmetry, Chem Commun, 1997, 2105-2107
    [44] Michael D, Susanne Gramberg, Cationic amphitropic gemini surfactants with hydrophilic oligo (oxyethylene) spacer chains, Chem Commun, 1998, 1371-1375
    [45] Tsiourvas D, Paleos C M, Skoulios A, Structural Study of Liquid Crystalline Long-Chain n-Alkylammonium Polyacrylates, Macromolecules, 1997, 30: 7191-7195
    [46] Zana R, Micellization of amphiphiles: selected aspects, Colloids and Surfaces A, 1997, (123-124): 27-35
    [47] Liang Z Y, Wang C, Huang J, The research on the vesicle formation and transformation in novel Gemini surfactant systems, Colloids and Surfaces A, 2003, 224: 213-220
    [48] Soma D, Aswal V K, Goyal Prem, S, Role of Spacer Chain Length in Dimeric Micellar Organization. Small Angle Neutron Scattering and Fluorescence Studies,J. Phys. Chem., 1996, 100 (28), 11664 –11671
    [49] Van der Voort,Synthesis of high-quality MCM-48 and MCM-41 by means of the Gemini surfactant method,J Phys Chem B,1998,102(44):8847~8851
    [50] Chen Kangmin,Locke David C,Maldacker Thomas et al,Separation of ergot alkaloids by micellar electrokinetic capillary chromatography using cationic Gemini surfactants,J Chromatogr A,1998,822(2):281~290
    [51] Morey M S, Stucky G D, Schwarz S, Isomorphic Substitution and Postsynthesis Incorporation of Zirconium into MCM-48 Mesoporous Silica, J. Phys. Chem. B, 1999,103 ( 12 ), 2037 - 2041
    [52] Achouri M E, Infante MR, Izquierdo F, et al. Some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid, Corrosion Science, 2001, 43: 19-35
    [53] Choi T S, Shimizu Y, Shirai H, et al. Solubilization of disperse dyes in cationic Gemini surfactant micelles, Dyes and Pigments, 2000, 45(2): 145-157
    [54] Choi T S, Shimizu Y, Shirai H, et al. Disperse dyeing of polyester fiber using Gemini surfactants containing ammonium cations as auxiliaries, Dyes and pigments, 2001, 50(1):55-65
    [55] Peresypkin A V, Menger F M, Zwitterionic Geminis Coacervate Formation from a single organic compound, Org Letter, 1999, 1(9):1347-1352
    [56] Layn K M, A theoretical study of Gemini surfactant phase behavior, J Chem Phys, 1998, 109(13): 5651
    [57] 王连生, 韩朔暌, 分子结构-性质与活性, 北京:化学工业出版社,1997, p120
    [58] Katritzky A R, Lobanov V S, Karelson M, Quantum-chemical descriptors in QSAR/QSPR studies, Chem Rev, 1996, 96: 1027-1043
    [59] Thiel W, Voityuk A A, Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group, J Phys Chem. 1996, 100: 616-626
    [60] Absalana G., Hemmateenejadb B., Soleimania M., Quantitative Structure - Micellization Relationship Study of Gemini Surfactants Using Genetic-PLS and Genetic-MLR, QSAR & combinatorial science, 2004,23:416-425
    [61] Tarek M, Bandyopadhyay S, Klein ML, et al. The International Conferences on Solution Chemistry, J. Mol. Liq., 1998,78:1
    [62] BANDYOPADHYAY S, TAREK M, KLEIN M L, Computer simulation studies of amphiphilic interfaces: Thermodynamic and theoretical aspects, Current opinion in colloid & interface science, 1998, 3:242
    [63] Kariborni S, Smit B, Current awareness on comparative and functional genomics, Current opinion in colloid & interface science, 1996, 1:411
    [64] Smit, B.; Krishna, R., Monte Carlo simulations in zeolites, Curr. Opin. Solid State Mat. Sci. , 2001, 455-461
    [65] Maiti P K, Kremer K, Cross-linking of micelles by gemini surfactants, Langmuir, 2000, 16: 3784
    [66] Oda, R., Laguerre, M., Huc, I., et al. Molecular Organization of Gemini Surfactants in Cylindrical Micelles: An Infrared Dichroism Spectroscopy and Molecular Dynamics Study, Langmuir, 2002; 18(25): 9659-9667
    [67] Sen Zhu, Fa Cheng, Jun Wang, et al. Anionic Gemini surfactants: Synthesis and aggregation properties in aqueous solutions, Colloids and Surfaces A, 2006,281:35-39
    [68] 朱森,程发,郑宝江等,Gemini阴离子表面活性剂水溶液的聚集性质,物理化学学报,2004,20(10):1245-1248
    [69] Rosen M J, Surfactants and interfacial phenomena, Second Edition, Wiley, New York, 1989, p220
    [70] Zana R, Critical micellization concentration of surfactants in aqueous solution and free energy of micellization, Langmuir, 1996, 12:1208-1211
    [71] Wettig S D, Verrall R E, Thermodynamic Studies of Aqueous msm Gemini Surfactant Systems, J.Colloid Interf. Sci. 2001, 235(2):310-316
    [72] Wettig S D, Nowak P, Verall R E, Thermodynamic and Aggregation Properties of Gemini Surfactants with Hydroxyl Substituted Spacers in Aqueous Solution, Langmuir, 2002, 18: 5354-5359
    [73] Menger F M, Keiper J S, Azov V, Gemini Surfactants with Acetylenic Spacers, Langmuir, 2000, 16:2062-2067
    [74] Mathias J H, Rosen M J, Davenport L, Fluorescence Study of Premicellar Aggregation in Cationic Gemini Surfactants, langmuir, 2001, 17: 6148-6154
    [75] 陈景元,李干佐,茹淼焱等,十二烷基磺酸盐胶束尺寸的研究-稳态荧光猝灭法[J],精细化工,1987,4:25~29
    [76] 毕只初,自身荧光猝灭法研究十二烷基苯磺酸钠水溶液的聚集性质[J],油田化学,1988,5(3):222~225
    [77] 陈国珍,荧光分析法,科学出版社,1990,3~28
    [78] Zana R, In M, Levy H, et al. Fluorescene probiny Studies of micelle micellemicropolarity and microviscosity , Langmuir,1997,13 ,5556~5557
    [79] Mathias J H, Rosen M J, Davenport L, Reply to comments on fluorescence study of premicellar aggregation in cationic gemini surfactants, Langmuir, 2002, 18:7761
    [80] 苑世领,蔡政亭,徐桂英,表面活性剂在溶液中聚集形态的动力学模拟,化学学报,2OO2,60:241-245
    [81] 朱永平,赵剑曦,游毅,低碳醇对季铵盐二聚表面活性剂C12-2-C12·2Br胶团化行为的影响, 化学学报,2002,60,1001-1005
    [82] Dorshow, R, Briggs, J, Bunton, C,A, et al. Dynamic Light Scattering from Cetyltrimethylammonium Bromide Micelles: Intermicellar Interactions at LowIonic Strengths, J. Phys. Chem. 1982, 86: 2388-2395
    [83] Mazer, N. A., Benedek, G. B., Carey, M.C., An Investigation of the Micellar Phase of Sodium Dodecyl Sulfate in Aqueous Sodium Chloride Solutions Using Quasielastic Light Scattering Spectroscopy, J. Phys. Chem. 1976,80(10):1075-1085
    [84] Porte, G., AppeU, J., Growth and size distributions of cetylpyridinium bromide micelles in high ionic strength aqueous solutions J. Phys. Chem., 1981, 85(17): 2511-2519
    [85] Danino D., almon,Y. T, Zana R. Alkanediyl.-. Alpha.-,. omega.- Bis(Dimethylalkylammonium Bromide) Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir, 1995, 11(5): 1448-1456
    [86] Hattori N, Hirata H, Okabayashi H, Small-angle neutron-scattering study and micellar model of the gemini (phenylenedimethylene) bis(n-octylammonium) dibromide surfactant micelles in water, Colloid & Polymer Science, 1999, 277: 361-371
    [87] Hattori N, Hirata H, Okabayashi H, Small-angle neutron-scattering study of bis(quaternaryammonium bromide) surfactant micelles in water. Effect of the long spacer chain on micellar structure, Colloid & Polymer Science, 1999, 277: 95-100
    [88] Israelachvili J, Mitchell D J, Ninham B, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J Chem Soc. Faraday Trans. 2, 1976, 72: 1525-1568
    [89] Zana R, Talmon Y, Dependence of aggregate morphology on structure of dimeric surfactants, Nature, 1993, 362:228-230
    [90] Cochin D, Candau F, Zana R, et al. Direct imaging of microstructures formed in aqueous solutions of polyamphiphiles, Macromolecules, 1992, 25(16): 4220-4223
    [91] Zana R, Kaplun A, Talmon Y, Microstructural aspects of polysoap/sodium dodecyl sulfate interactions, langmuir, 1993, 9(8):1948-1950
    [92] Clausen T M, Vinson P K, Minter J R, et al. Viscoelastic micellar solutions: microscopy and rheology, J Phys. Chem. 1992, 96(1): 474-484
    [93] Laughlin R. G., Munyon R. L., Burns J. L., et al. Physical science of the dioctadecyldimethylammonium chloride-water system. 3. Colloidal aspects, J. Phys. Chem., 1992, 96(1): 374-383.
    [94] 李干佐, 隋华, 表面活性剂研究新进展, 日用化学工业, 1999, 1: 24-26
    [95] Fendler J H, Atomic and molecular clusters in membrane mimetic chemistry, Chem Rev., 1987, 87(5): 877-899
    [96] 王连生, 有机污染物化学(下册),北京,科学出版社,1991,202-208
    [97] Thiel, W., Voityuk, A. A., Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group, J. Phys. Chem.,1996,100(2): 616-626.
    [98] Wang Z W, Li G Z, Zhang X Y, et al., A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic surfactants, Colloids Surf . A, 2002,197: 37-45
    [99] Topliss J G, Chance Factors in Studies of QSAR, J.M.C., 1979, 22(10): 1238-1245
    [100] 许禄, 化学计量学方法,北京,科学技术出版社,1995,p1-p20
    [101] Paul D T, Huibers T, Jacobs P T, The Effect of Polar Head Charge Delocalization on Micellar Aggregation Numbers of Decylpyridinium Salts, Revisited, J Colloid Interface Sci, 1998, 206:342-345
    [102] Friberg S E, Flaim T D, In macro- and microemulsions: Theory and Applications, Shah D.O. Ed., ACS Press: Washington DC, 1985
    [103] Todeschini R, Consonni V, Handbook of molecular descriptors, Wiley-VCH, Weiheim, 2000, p195
    [104] Kostantinora E V, Exploring Functional Group Transformations on CASREACT, J. Chem. Inf. Comput. Sci, 1997,36: 54-57
    [105] Hemmateenejad B, Akhond M, Miri R, et al. Genetic Algorithm Applied to the Selection of Factors in Principal Component-Artificial Neural Networks: Application to QSAR Study of Calcium Channel Antagonist Activity of 1,4-Dihydropyridines (Nifedipine Analogous), J. Chem. Inf. Comput. Sci, 2003, 43(4): 1328-1334
    [106] Hemmateenejad B, Safarpour M A, Taghavi F, Application of ab initio theory for the prediction of acidity constants of some 1-hydroxy-9,10-anthraquinone derivatives using genetic neural network. Journal of Molecular Structure (THEOCHEM), 2003, 635: 183-190
    [107] Shelley J C, Shelley M Y, Computer simulation of surfactant solutions., Current Opinion in Colloids and Interface Science, 2000, 5(1):101-110
    [108] 李有勇,郭森立,王凯旋等,介观层次上的计算机模拟和应用,化学进展, 2000,12(4):361-375
    [109] Conella G, Orlanini E, Yeomans J M, Surfactant effect and dissolution of ultrathin Fe films on Ag (001), Phys Rev Lett. 1997, 78: 1695-1703
    [110] Hoogerbrugge P J, Koelman J M V A, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhysics Letters, 1992,19: 155-160
    [111] Koelman J M V A, Hoogerbrugge P J, Dynamic simulations of hard-sphere suspensions under steady shear, Europhysics Letters, 1993,21:363-368
    [112] Espagnol P, Warren P, Statistical mechanics of dissipative particle dynamics, Europhysics Letters, 1995, 30: 191-196
    [113] Groot R D, Warren P B, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J Chem. Phys. 1997, 107(11):4423-4435
    [114] Groot R D, Madden T J, Dynamic simulation of diblock copolymer microphase separation., J Chem Phys, 1998, 108: 8713-8724.
    [115] Jury S, Bladon P, Cates M, et al. Simulation of amphiphilic mesophases using dissipative particle dynamics, Phys. Chem. Chem. Phys, 1999, 1: 2051-2056
    [116] Groot R D, Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants., J.Chem.Phys, 2003, 118:11265-11277
    [117] Bicerano J, Prediction of polymer properties, 2nd Ed. Marcel Dekker Press, New York, 1996, P201
    [118] Groot R D, Mesoscopic Simulation of Polymer-Surfactant Aggregation, Langmuir 2000,16(19): 7493-7502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700