具有多孔结构和等离子共振效应的TiO_2制备及光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化是一种有效的污染控制技术,具有环境友好,污染物降解彻底等优点,近年来广受关注。光催化技术的核心是催化剂,但常用的TiO2催化剂存在着光响应范围窄、量子效率低的缺点,限制了光催化技术的进一步发展。大孔/介孔、光子晶体等结构因为具有特异的物化性质,如大比表面积、高孔容、禁带散射效应和慢光效应等,可促进催化过程中的非均相传质和实现对光的富集;贵金属纳米粒子如Au、Ag等因为具有表面等离子共振效应而在可见光范围内表现出光吸收。将贵金属纳米粒子与宽带隙半导体复合,可有效地扩展TiO2的光响应范围,同时,二者之间的异质结还可以起到促进光生电荷分离的作用。本论文围绕以上内容,主要开展了以下几个方面的工作:
     (1)采用水热与二次煅烧相结合的联合热处理法制备了具有较高热稳定性及大比表面积的分级肺状大孔/介孔TiO2催化剂。该催化剂具有规则的孔道结构,大孔的孔径范围为2-3μm,壁厚为2-3μm,孔壁上紧密团聚着直径为100-300nm的微球。水热处理方法的引入,使催化剂大孔/介孔结构的稳定性提高,同时,结晶度和比表面积也都大大增加。紫外光下对罗丹明B(RhB)的催化降解实验中,经过联合热处理的分级肺状大孔/介孔TiO2的动力学常数是直接煅烧样品的1.9倍。
     (2)以联合热处理法制得的大孔/介孔TiO2为载体,在其上沉积Au纳米粒子,制备了具有可见光响应的催化剂HT-400/Au。载体TiO2的分级多孔结构得到了充分地利用,大孔内部、孔壁、甚至微球上都有粒径为30-40nm的Au纳米粒子分布。且通过改变Au前躯体的带电状态,可实现对Au纳米粒子负载量的控制。Au纳米粒子表面等离子共振效应的引入,使催化剂在可见光范围内出现明显的光吸收。可见光(λ>420nm)下对2,4-二氯苯酚(2,4-DCP)的催化降解试验中,HT-400/Au表现出高的光催化活性,其动力学常数是未负载Au纳米粒子样品的2.2倍,是传统TiO2/Au样品的1.5倍。
     (3)采用液相沉积和原位水热还原相结合的方法制备了Au纳米粒子与TiO2光子晶体复合的可见光催化剂TiO2PC/Au NPs。TiO2光子晶体具有规则的面心立方体结构,孔径在228nm左右,厚度为2.5-3μm。粒径为15-20nm的Au纳米粒子均匀地分散在三维光子晶体的大孔表面。光子晶体的禁带散射效应和慢光效应强化了Au纳米粒子的表面等离子共振吸收,与传统的TiO2NC/Au NPs相比,TiO2PC/Au NPs表现出更强的光吸收。可见光(λ>420nm)下对RhB和2,4-DCP的催化降解实验中,TiO2PC/Au NPs的动力学常数分别是TiO2NC/Au NPs的3.5和2.3倍。对这种三维表面等离子催化剂催化机理的分析表明,这是一个羟基自由基主导的降解反应,而羟基自由基主要来源于电子与氧的二次反应。
     以上结果表明,对半导体催化剂的形貌进行合理的设计,如大孔/介孔、光子晶体等结构的引入,可有效地提高催化过程中的非均相传质和实现对光的富集;对宽带半导体进行适当的修饰,如具有表面等离子共振效应的Au纳米粒子的引入,在拓宽其光学响应范围的同时,还可以利用二者之间的异质结促进光生载流子的分离。本文为高效光催化剂的制备提供了可行的思路与手段,有利于推动光催化技术在污染控制领域的应用。
As an efficient pollution control technology, photocatalysis has attracted widespread attention because of its environmental friendly property, excellent photocatalytic activity. The catalyst serves as the core of photocatalytic reaction. However, the common photocatalyst TiO2is troubled by the shortcomings of narrow optical response and low quantum efficiency, limiting the further development of photocatalytic technology. The macro/mesoporous structure and photonic crystal (PC) could enhance the mass transfer and light absorption due to their excellent physicochemical properties, such as large surface area, high pore volume, band gap scattering effect and slow photon effect. Noble-metal nanoparticles like Au, Ag show efficient visible light absorption because of the Localized Surface Plasmon Resonance (LSPR). The incorporation of noble-metal nanoparticles with wide band gap semiconductor can efficiently enlarge the visible light response range, meanwhile, the heterojunction between this two could enhance the separation of photogenerated charge carriers. In this dissertation, several works have been done as follows:
     (1) Hierarchically lung-like macro/mesoporous TiO2with high thermal stability and specific surface area was successfully fabricated through a facile combination of hydrothermal treatment and calcination process. The catalyst exhibited relatively homogeneous and long-range periodical channels, which were arranged parallel to each other and orthogonal to one side of the monolithic particles, with pore diameter of2-3μm and pore wall thickness of2-3μm. Further observation revealed that the wall of the macroporous structure was composed of many small interconnected TiO2spheres with size of100-300nm. The introduction of hydrothermal treatment enhanced the stability of the macro/mesoporous structure, at the same time, the crystallinity and surface area was also improved. During the photocatalytic degradation of RhB under UV light irradiation, the kinetic constant of porous TiO2experienced the combined thermal treatment was1.9fold higher than that of the one calcined only.
     (2) The visible-light-responded photocatalyst HT-400/Au was fabricated by depositing Au nanoparticles on macro/mesoporous TiO2prepared from the above combined thermal treatment. The porous structure of TiO2has been fully utilized, both inside and outside of the macropores, even the microspheres were decorated by the Au nanoparticles with the diameter around30-40nm. Additionally, the loading amount of Au nanoparticles could be controlled by changing the charged state of gold precursor. The HT-400/Au exhibited visible light absorption due to the LSPR of Au nanoparticles. During the2,4-DCP degradation under visible light (λ>420nm) irradiation, the HT-400presented high photocatalytic activity, whose kinetic constant was2.2fold larger than that of the sample HT-400without the decoration of Au nanoparticles;1.5fold greater than that of the sample Crushed HT-400without this macro/mesoporous structure.
     (3) The3D plasmonic photocatalyst TiO2PC/Au NPs was prepared via the liquid-phase deposition and in situ hydrothermal reduction method. The thickness of the TiO2PC structure was about2.5-3μm, and the average diameter of the hollow spheres was around223nm. The Au NPs with the size around15-20nm were uniformly distributed and anchored along the heterogeneous macroporous surface of the3D PC structure. The band gap scattering effect and slow photon effect efficiently intensified the plasmonic absorption of Au nanoparticles. Compared with TiO2NC/Au NPs, the TIO2PC/Au NPs exhibited stronger optical absorption. During the photocatalytic degradation of RhB and2,4-DCP under visible light (λ>420nm) irradiation, the kinetic constant of TiO2PC/Au NPs was3.5and2.3fold higher than that of TiO2NC/Au NPs, respectively. The hydroxyl radicals derived from the electroreduction of dissolved oxygen with electrons via chain reactions was the main reactive oxygen species and finally resulted in the efficient pollutant degradation.
     The above results illuminated that the well-designed nanostructure like macro/mesoporous, photonic crystal could enhance the mass transfer and light utilization. The proper decoration of wide band gap semiconductor such as the plasmonic Au nanoparticles could expand the light response range, and the separation of photoinduced charge carriers could also be intensified by forming the heterojunction. These studies provide a feasible approach to design photocatalyst with high activity, which would promote the application of photocatalytic technology in the environmental pollution control.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972,238(5358):37-38.
    [2]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contamination and Toxicology,1976,16(6): 697-701.
    [3]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solution at semiconductor powders [J]. Journal of Physical Chemistry,1977,81(15):1484-1488.
    [4]Schrauzer G N, Guth T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide [J]. Journal of American Chemical Society,1977,99(22):7189-7193.
    [5]Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates [J]. Journal of American Chemical Society,1978,100(13):4317-4318.
    [6]Hsiao C, Lee C L, Ollis D F. Heterogeneous photocatalysis:degradation of dilute solutions of dichloromethane, chloroform, and carbon tetrachloride with illuminated TiO2 photocatalyst [J]. Journal of Catalysis,1983,82(2):418-423.
    [7]Pruden A L, Ollis D F. Photoassisted heterogeneous catalysis:the degradation of trichloroethylene in water [J]. Journal of Catalysis,1983,82(2):404-417.
    [8]Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectro-chemical sterillization of microbial cells by semiconductor powders [J]. Microbiological Letters,1985,29(1):211-214.
    [9]Takao Y, Shimizu Y, Egashiram M. Variation in trimethyamine sensitivity of semiconductor Ru/TiO2 gas sensor with the amount of Ru [J]. Denki Kagaku,1989,57(3):257-258.
    [10]Yeh Y C, Tseng T Y, Chang D A. Electrical-properties of TiO2-K2Ti6O13 porous ceramic humidity sensor [J]. Journal of American Chemical Society,1990,73(7):1992-1998.
    [11]O'Regan B, Graetzal M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:737-740.
    [12]Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces [J]. Nature,1997,388: 431-432.
    [13]钟璟,邢卫红,徐南平等.废水中有机污染物高级氧化过程的降解[J].化工进展,1998,4:51-53.
    [14]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews,2009,38:253-278.
    [15]杨合,薛向欣,赵娜等.半导体多项光催化技术研究进展[J].环境保护.2003.6:22-23.
    [16]李广勤.二氧化钛光催化材料的可控制备及性能研究[D].长沙:湖南大学,2005.
    [17]Linsebigler A L. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chemcal reviews,1995,95:735-758.
    [18]黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究[J].现代化工,2001,21(4):45-48.
    [19]王红娟,李忠.半导体多相光催化氧化技术[J].现代化工,2002,22(2):56-60.
    [20]Wu T X, Liu G M, Zhao J C, et al. Photoassisted degradation of dye pollutants V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersion [J]. Journal of Physical Chemistry B,1998,102(30):5845-5851.
    [21]Fujishima A, Rao N T, Tryk A D. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [22]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews,1995,95(1):69-96.
    [23]付贤智,李旦振.提高多相光催化氧化过程效率的新途径[J].福州大学学报(自然科学版),2001,29(6):104-114.
    [24]鄂磊.可见光活性TiO2光催化剂的制备及其光催化性能的研究[D].天津:天津大学材料科学与工程,2005.
    [25]Legrini O, Oliveros E, Braum A M. Photochemical process for Water treatment [J]. Chemical Reviews, 1993,93:671-698.
    [26]任成军,李大成,周大利.纳米TiO2的光催化原理及其应用[J].四川有色金属,2004,2:19-24.
    [27]Skinner D E, Colombo D P, Cavaleri J J, et al. Femtosecond investigation of electron trapping in semiconductor nanoclusters [J]. Journal of Physical Chemistry,1995,99(20):7853-7856.
    [28]Bickley R I, Gonzalez C T, Lees J S, et al. A structure investigation of titanium dioxide photocatalysts [J]. Journal of Solid State Chemistry,1991,92(1):178-190.
    [29]张海,杨绪杰,陆路德等.纳米TiO2一种性能优良的光催化剂[J].化工新型材料,2000,28(4):11-13.
    [30]International Union of Pure and Applied Chemistry. Recommendations for the characterization of porous solids [R]. IUPAC,1994.
    [31]Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro/mesoporous titania [J]. Advanced Functional Materials,2007,17 (2):1984-1990.
    [32]Frank A J, Zhu K, Neale N R, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano Letters,2007,7(1):69-74.
    [33]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Physical Review Letters,1987,58(20):2059-2062.
    [34]John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters.1987,58(23):2486-2489.
    [35]Carlson R J, Asher S A. Characterization of optical diffraction and crystal structure in monodisperse polystyrene colloids [J]. Applied Spectroscopy,1984,38(3):297-304.
    [36]Flaugh P L. O'Donnell S E, Asher S A. Development of a new optical wavelength rejection filter: demonstration of its utility in Raman spectroscopy [J]. Applied Spectroscopy,1984,38(3):847-850.
    [37]Chen J L, Freymann G, Choi S Y, et al. Amplified photochemistry with slow photons [J]. Advanced Materials,2006,18(14):1915-1919.
    [38]Chen J L. Freymann G, Choi S Y, et al. Slow photons in the fast lane in chemistry [J]. Journal of Materials Chemistry,2008, (4):369-373.
    [39]Chen J L, Loso E, Ebrahim N, et al. Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals [J]. Journal of American Chemical Society,2008, 130(16):5420-5421.
    [40]Guldin S, Huttner S, Kolle M, et al. Dye-sensitized solar cell based on a three-dimensional photonic crystal [J]. Nano Letters,2010,10(7):2303-2309.
    [41]Chen X Q, Ye J H, Ouyang S X, et al. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design [J]. ACS Nano,2011,5(6): 4310-4318.
    [42]Choi W K, Hoffmarnn M R. The role of metal ion dopants in Quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. Journal of Physical Chemistry, 1994,98(51):13669-13679.
    [43]Wang Y Q, Cheng H M, Zhang L, et al. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles [J]. Journal of Molecular Catalysis A:Chemical,2000,151(1-2):205-216.
    [44]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [45]Lu N, Quan X, Li J Y, et al. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability [J]. Journal of Physical Chemistry C,2007,111(32): 11836-11842.
    [46]Shen M, Wu Z Y, Huang H, et al. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation [J]. Materials Letters,2006,60(5):693-697.
    [47]Colon G, Hidalgo M C, Munuera G, et al. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst [J]. Applied Catalysis B:Environmetal,2006, 63(1-2):45-59.
    [48]Yu H F. Phase development and photocatalytic ability of gel-derived P-doped TiO2 [J]. Journal of Materials Research,2007,22(9):2565-2572.
    [49]Li D, Haneda H, Labhsetwar N K, et al. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies [J]. Chemical Physics Letters,2005,401(4-6): 579-584.
    [50]Fittipaldi M, Gombac V, Montini T, et al. A high-frequency electron paramagnetic resonance study by B-doped TiO2 photocatalysts [J]. Inorganica Chimica Acta,2008,361(14-15):3980-3987.
    [51]Gopal N O, Lo H H, Ke S C. Chemical state and environment of boron dopant in B, N-codoped TiO2 nanoparticles:an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy [J]. Journal of the American Chemical Society,2008,130(9):2760-2761.
    [52]Lee Y, Lo Y. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Advanced Functioanl Materials,2009,19(4):604-609.
    [53]Reutergardh L B, Langphasuk M. Photocatalytic decolourization of reactive azo dye:a comparison between TiO2 and CdS photocatalysis [J]. Chemosphere,1997,35(3):585-596.
    [54]Zhang X W, Lei L C. Preparation of photocatalytic Fe2O3-TiO2 coatings in one step by metal organic chemical vapor deposition [J].2008,254(8):2406-2412.
    [55]Zhang S S, Zhang S Q, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic perfprmance [J]. Elecrochemistry Communications,2011, 13(8):861-864.
    [56]Akurati K K, Vital A, Dellemann J P, et al. Flame-made WO3/TiO2 nanoparticles:Relation between surface acidity, structure and photocatalytic activity [J]. Applied Catalysis B:Environmental,2008, 79(1-2):53-62.
    [57]Lo S C, Lin C F, Wu C H, et al. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol [J]. Journal of Hazardous Materials,2004,114(1-4):183-190.
    [58]Hou Y, Li X Y, Zhao Q D, et al. Electrochemically assisted photocatalytic degradation of 4-Chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation [J]. Environmental Science & Technology,2010,44(13):5098-5103.
    [59]Cao J, Xu B Y, Luo B D, et al. Preparation, characterization and visible-light photocatalytic activity of Ag/AgCl/TiO2 [J]. Applied Surface Science,2011,257(16):7.83-7089.
    [60]Zhao J C, Chen C C, Ma W H. Photocatalytic degradation of organic pollutants under visible light irradiation [J]. Topics in Catalysis,2005,35(3-4):269-278.
    [61]Wang P, Huang B B, Qin X Y, et al. Ag/AgCl:a highly efficient and stable photocatalyst active under visible light [J]. Angewandte Chemie International Edition,2008,47(41):7931-7933.
    [62]Hu C, Peng T W, Hu X X, et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgCl/Al2O3 under visible-light irradiation [J]. Journal of American Chemical Society,2010, 132(18):6292-6293.
    [63]Naya S I, Inoue A, Tada H. Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium dioxide and surfactant [J]. Journal of American Chemical Society, 1978,132(18):6292-6293.
    [64]Ide Y, Matsuoka M, Ogawa M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate [J]. Journal of American Chemical Society,2010,132(47): 16762-16764.
    [65]Zhu H Y, Chen X, Zheng Z F. Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation [J]. Chemical Communications,2009, (48):7524-7526.
    [66]Uddin M J, Cesano F, Scarano D, et al. Cotton textile fibres coated by Au/TiO2 films:synthesis, characterization and self cleaning properties [J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,199(1):64-72.
    [67]Chen X, Zhu H Y, Zhao J C, et al. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports [J]. Angewandte Chemie International Edition.2008, 120(29):5353-5356.
    [68]Gonzalez V R, Zanella R, Angel G D, et al. MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2-Al2O3 sol-gel prepared catalysts [J]. Journal of Molecular Catalysis A:Chemical, 2008,281(1-2):93-98.
    [69]Alvaro M, Cojocaru B, Ismail A A, et al. Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman [J]. Applied Catalysis B:Environmental,2010,99(1-2):191-197.
    [70]刘恩科,朱秉升,罗晋升.半导体物理学[M].北京:电子工业出版社,2003.
    [71]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化工进展,2009,21(2-3):406-419.
    [72]Vinodgopal K, Hotechandani S, Kamat P. Electrochemically assisted photocatalysis. TiO2 particulate film electrode for photocatalytic degradation of 4-chorophenol [J]. Journal of Physical Chemistry,1993, 97(35):9040-9044.
    [73]Vinodgopal K, Satfford U, Gray U K, et al. Electrochemically assisted photocatalysis 2. The role of oxygen and reaction intermediates in the degradation of 4-chorophenol [J]. Journal of Physical Chemistry,1994,98(27):6797-6821.
    [74]Barrer R M. Hydrothermal chemistry of zeolites [M]. Academic Press, London, New York,1982.
    [75]Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402(6759):276-279.
    [76]Cote A P, Benin A L, Ockwig N W, et al. Porous, crystalline, covalent organic framenwork [J]. Science,2005,310(5751):1166-1170.
    [77]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    [78]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994,368(6469):321-323.
    [79]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating [J]. Nature,1997. 389(6654):948-951.
    [80]Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization [J]. Nature,1997, 389(6650):447-448.
    [81]Wijnhoven J E, Vos W L. Preparation of photonic crystals made of air spheres in titania [J]. Science, 1998,281(5378):802-804.
    [82]Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science,1998,281(5376):538-540.
    [83]Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates [J]. Chemical Reviews,2007,107(7):2821-2860.
    [84]Zhang Z, Han Y, Xiao F, et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures [J]. Journal of the American Chemical Society,2001,123 (21):5015-5021.
    [85]Han Y, Li D, Zhao L, et al. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures [J]. Angewandte Chemie International Edition,2003,42 (31):3633-3637.
    [86]王利丰.多级孔材料的合成、表征及催化性能初探[D].吉林:吉林大学,2007.
    [87]Sajeev U S, Anand K A. Menon D, et al. Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning [J]. Bulletin of Materials Science,2008,31(3):343-351.
    [88]Zhan S H, Chen D R, Jiao M L. Co-electrospun SiO2 hollow nanostructured fibers with hierarchical walls [J]. Journal of Colloid and Interface Science,2008,318(2):331-336.
    [89]Yang H F, Zhao D Y. Synthesis of replica mesostructure by the nanocasting stratrgy [J]. Journal of Materials Chemistry,2005,15(12):1217-1231.
    [90]Xu J, Han S H, Dang W X, et al. Synthesis of high-quality MCM-48 mesoporous silica using cationic gemini surfactant C12-2-12 [J]. Colloids and Surfaces A:Physicochemical and Engineering,2004, 248(1-3):75-78.
    [91]Ulagappan N, Rao C N R, Mesoporous phases based on SnO2 and TiO2 [J]. Chemical Communications,1996,(14):1685-1686.
    [92]Yada M, Takenaka H, Machida M, et al. Mesostructured gallium oxides templated by dodecyl sulfate assemblies [J]. Dalton Transactions,1998, (10):1547-1550.
    [93]Che S, Liu Z, Ohsuma T,et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004,429(6989):281-284.
    [94]Che S, Garcia A E, Yokoi T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure [J]. Nature Materials,2003,2(12):801-805.
    [95]Garcia A E, Terasaki O, Che S. Structural investigations of AMS-n mesoporous materials by transmission electron microscopy [J]. Chemistry of Materials,2004,16(5):813-821.
    [96]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants [J]. Science,1995,269:1242-1244.
    [97]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular-sieves [J]. Science, 1995,267(5228):865-867.
    [98]Zhao D Y, Huo Q S, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. Journal of American Chemical Society,1998,120(24):6024-6036.
    [99]Zhao D Y, Huo Q S, Fredrickson G H, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-552.
    [100]Hartono S B, Qiao S Z, Bradley P L, et al. Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption [J]. Langmuir,2009,25(11): 6413-6424.
    [101]Kim T W, Ryoo R. MCM-48-like large mesoporous silicas with tailored pore structure:facile synthesis domain in a ternary triblock copolymer-butanol-water system [J]. Journal of American Chemical Society,2005,127(20):7601-7610.
    [102]Yang S, Zhou X F, Yu M H, et al. Siliceous nanopods from a compromised dual-templating approach [J]. Angewandte Chemie International Edition,2007,46(45):8579-8582.
    [103]Djojoputro H, Qiao S Z, Wang L Z, et al. Periodic mesoporous organosilica hollow spheres with tunable wall thickness [J]. Journal of American Chemical Society,2006,128(9):6320-6321.
    [104]Tuysuz H, Weidenthaler C, Schuth F. Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol [J]. Journal of American Chemical Society,2008,130(43): 14108-14110.
    [105]Jiao F, Harrison A, Chadwick A V, et al. Ordered mesoporous Fe2O3 with crystalline walls [J]. Journal of American Chemical Society,2006,128(16):5468-5474.
    [106]Jun S, Joo S H, Kruk M, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. Journal of American Chemical Society,2000,122(43):10712-10713.
    [107]Kruk M, Jaroniec M, Joo S H. Characterization of ordered mesoporous carbons synthesized using MCM-48 silica as templates [J]. Journal of Physical Chemistry B,2000,104(33):7960-7968.
    [108]Sujandi, Park S E, Han S C, et al. Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology [J]. Chemical Communications,2006, (33):4131-4133.
    [109]Balas F, Horcajada P, Vallet-Regi M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-Based materials [J]. Journal of American Chemical Society,2006,128(8): 8116-8117.
    [110]Asefa T, MacLachlan M J, Coombs N, et al. Periodic mesoporous organosilicas with organic groups inside the channel walls [J]. Nature,1999,402:867-871.
    [111]Inagaki S J, Guan S Y, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J]. Nature,2002,416 (6878):304-307.
    [112]Zhang Z T, Han Y, Wang R W, et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure [J]. Angewandte Chemie International Edition,2001,40:1258-1263.
    [113]Yuan Q, Sun L D, Zhang Y W, et al. Facile synthesis for ordered mesoporous y-aluminas with high thermal stability [J]. Journal of American Chemical Society,2008,130(8):3465-3472.
    [114]Jiao F, Hill A H, Bruce P G. Mesoporous Mn2O3 and Mn3O4 with crystalline walls [J]. Advanced Materials,2007,19:4063-4066.
    [115]Rangan K K, Trikalitis P N. Light-emitting meso-structured sulfides with hexagonal symmetry: supramolecular assembly of [Ge4S10]4- clusters with trivalent metal ions and cetylpyridinium surfactant [J]. Journal of American Chemical Society,2000,122:10230-10230.
    [116]Trikalitis P N, Bakas T, Kanatzidis M G. Supramolecular assembly of hexagonal mesostructured germanium sulfide and selenide nanocomposites incorporating the biologically relevant Fe4S4 cluster [J]. Angewandte Chemie International Edition,2000,39:4558-4562.
    [117]Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline phases [J]. Science,1997,278:838-840.
    [118]Goltner C G, Antonietti M. Mesoporous materials by templating of liquid crystalline phases [J]. Advanced Materials,1997,9:431-436.
    [119]Kimura T, Sugahara Y, Kuroda K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using methylammonium cations as structure-directing agents [J]. Chemistry of Materials,1999,11:508-518.
    [120]Tiemann M, Frba M, Funari S S. Nonaqueous synthesis of mesostructured aluminophosphate/surfactant composites:synthesis, characterization, and in-situ SAXS studies [J]. Chemistry of Materials,2000,12:1342-1348.
    [121]Jun S, Ryoo R, Kruk M, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. Journal of American Chemical Society,2000,122:10712-10713.
    [122]Kim T W, Park I S, Ryoo R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls [J]. Angewandte Chemie International Edition,2003,42:4375-4379.
    [123]Fang Q R, Zhu G S, Jin Z, et al. Mesoporous metal-organic framework with rare topology for hydrogen storage and dye assembly [J]. Angewandte Chemie International Edition,2007.46: 6638-6642.
    [124]Wang Y G, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical vapacitance performance [J]. Advanced Materials,2006,18:2619-2623.
    [125]Xiao X Y, Li Z Q, Liu B, et al. "Fish-in-net" encapsulation of enzymes in macroporous cages as stable, reusable, and active heterogeneous biocatalysts [J]. Advanced Materials,2005,18(4):410-414.
    [126]Yang Q Y, Zhong C L. Electristatic-field-induced enhancement of gas mixture separation in metal-organic framework:a computational study [J]. Chemical Physics and Physical Chemistry,2006, 7(1):1417-1421.
    [127]Northcott K A, Miyakawa K, Oshima S, et al. The adsorption of divalent metal cations on mesoporous silicate MCM-41 [J]. Chemical Engineering Journal,2010,157(1):25-28.
    [128]Chiu J J, Pine D J, Bishop S T, et al. Friedel-crafts alkylation properties of aluminosilica SB A-15 meso/macroporous monoliths and mesoporous powders [J]. Journal of Catalysis,2004,221(2): 400-412.
    [129]Su L L, Liu L, Zhuang J Q. et al. Creating mesopores in ZSM-5 zeolite by alkali treatment:a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts [J]. Catalysis Letters,2003,91:155-167.
    [130]Tidahy H L, Siffert S, Lamonier J F, et al. New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation [J]. Applied Catalysis A:General,2006,310:61-69.
    [131]Fan J, Wang T, Yu C Z, et al. Ordered, nanostructured tin-based oxides/carbon composites as the negative-electrode material for lithium-ion batteries [J]. Advanced Materials,2004,16(16):1432-1436.
    [132]Zhu S, Zhou, H, Miyoshi T, et al. Self-assembly of the mesoporous electrode material Li3Fe2(PO4)3 using a cationic surfactant as the template [J]. Advanced Materials,2004,16(22):2012-2017.
    [133]Joo J B, Kim W, Kim P, et al. Preparation of mesoporous carbon templated by silica particles for use as a catalyst support in polymer electrolyte fuel cells [J]. Catalysis Today,2005,111(3-4):171-175.
    [134]Chai G S, Shin I S, Yu J S. Synthesis of ordered, uniform, maceoporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells [J]. Advanced Materials,2004,16(22):2057-2061.
    [135]Grosso D, Soler G J, Crepaldi E L, et al. Nanocrystalline transition-metal oxide spheres with controlled multiscale porosity [J]. Advanced Functional Materials,2003,13(1):37-42.
    [136]Lee J, Kim J, Jia H, et al. Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates [J]. Small,2005,1(7):744-753.
    [137]Caruso R A, Antonietti M. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens [J]. Advanced Functional Materials,2002,12(4):307-312.
    [138]Zhao D, Yang P, Chmelka B F, et al. Multiphase assembly of mesoporous-macroporous membranes [J]. Chemistry of Materials,1999,11(5):1174-1178.
    [139]Joannopoulos J D, Mead R D, Winn J N. Photonic crystals:molding the flow of light [M]. Princeton: Princeton University Press,1955.
    [140]Rayleigh J W S. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes [J]. Philosophical Magazine,1888.26:256-265.
    [141]Bykov V P. Spontaneous emission in a periodic structure [J]. Soviet Journal of Experimental and Theoretical Physics,1972,35:269-273.
    [142]Krauss T F, Delarue R M, Brand S. Two-dimensional photonic band gap structures operating at near infrared wavelengths [J]. Nature,1996,383:699-702.
    [143]Yablonovitch E, Gmitter T J, Leung K M. Phottonic band structure:the face-centered-cubic case employing nonspherical atoms [J]. Physical Review Letters,1991,67(17):2295-2298.
    [144]Kim S H, Lee Y H. Symmetry relations of two-dimensional photonic crystal cavity modes [J]. Journal of Quantum Electronics,2003,39(9):1081-1085.
    [145]John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters,1987,58(23):2486-2489.
    [146]John S, Wang J. Quantum optics of localized light in a photonic band gap [J]. Physical Review B, 1991,43(16):12772-12789.
    [147]Jiang P, Hwang K S, Mittleman D M, et al. Template directed preparation of macroporous polymers with oriented and crystalline arrays of voids [J]. Journal of American Chemical Society,1999,121(50): 11630-11637.
    [148]Gamble L, Diffey W, Cole S, et al. Simultanous measurement of group delay and transmission of a one-dimensional photonic crystal [J]. Optics Express,1999,5(11):267-272.
    [149]Dulkeith E, Xia F N, Vlasov Y A, et al. Group index and group velocity dispersion in silicon-on-insulator photonic wires [J]. Optics Express,2006,14(9):3853-3863.
    [150]Ozbay E. Layer-by-layer photonic crystals from microwave to far-infrared frequencies [J]. Journal of Optical Society of America B,1996,13(9):1945-1955.
    [151]Ozbay E. Photonic metamaterials:science meets magic [J]. Photonic Journal,2010,2(2):249-252.
    [152]Deubel M, Freymann G, Wegener M, et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J]. Nature Materials,2004,3:444-447.
    [153]Larsen A E, Grier D G. Like-charge attractions in metastable colloidal crystallites [J]. Nature,1997, 13:6018-6025.
    [154]Jiang P, Ostojic G N, Narat R, et al. The fabrication and bandgap engineering of photonic multilayers [J]. Advanced Materials,2001,13(6):389-393.
    [155]Salvarezza R C, Vazquez L, Miguez H, et al. Behavior of crystal surfaces grown by sedimentation of SiO2 nanospheres [J]. Physical Review Letters,1996,77:4572-4575.
    [156]Wijnhoven J E G, Vos W L. Preparation of photonic crystals made of air spheres in titania [J]. Science,1998,281(5378):802-804.
    [157]Velev O D. Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization [J]. Nature,1997.389, 447-448.
    [158]Park S H, Xia Y. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters [J]. Langmuir,1999,15(1):266-273.
    [159]Rogach A L, Kotov N A, Koktysh D S. et al. Electrophoretic deposition of latex-based 3D collidal photonic crystals:a technique for rapid production of high-quality opals [J]. Chemistry of Materials. 2000,12(9):2721-2726.
    [160]Holgado M. Santamaria F G, Blanco A, et al. Electrophoretic deposition to control artifical opal growth [J]. Langmuir,1999,15(14):4701-4704.
    [161]Rogach A L, Kotov N A, Koktysh D S, et al. Electrophoretic deposition of Latex-based 3D colloidal photonic crystals:a technique for rapid production of high-quality opals [J]. Chemistry of Materials, 2000,12(9):2721-2726.
    [162]Tolmachev V A. Turning of the photonic band gaps and the reflection spectra of a one-dimensional photonic crystal based on silicon and a liquid crystal [J]. Optics and Spectroscopy,2005,99(5): 765-769.
    [163]Winn J N, Fink Y, Fan S H, et al. Omnidirectional reflection from one-dimensional photonic crystal [J]. Optics Letters,1998,23(20):1573-1575.
    [164]Wang S Y, Liu S B. Tunable filter using plasma defect in one-dimensional microwave photonic crystal [J]. Acta Physica Sinica,2009,58(10):7062-7066.
    [165]Rindorf L, Mortensen N A. Calculation of optical-waveguide grating characteristics using green's functions and Dyson's equation [J]. Physical Reviewe E,2006,74(3):036616(10).
    [166]Mayatre D. Photonic crystal diffraction gratings [J]. Optics Express,2001,8(3):209-216.
    [167]Chen Y X, Zheng W H, Chen W, et al. AlGalnP LED with surface structure of two-dimensional photonic crystal [J]. Acta Physica Sinica,2010,59(11):8083-8087.
    [168]Knight J C, Russell P S. New ways to guide light [J]. Science,2002,296(5566):276-277.
    [169]Suzuki K, Kubota H. Kawanishi S, et al. Optical properties of a low-loss polarization maintaining photonic crystal fiber [J]. Optics Express,2001,9(13):676-680.
    [170]Arsenault A C. Miguez H, Kitaev V, et al. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tenability:a step towards photonic ink (P-Ink) [J]. Advanced Materials, 2003,15(6):503-507.
    [171]Fudouzi H, Xia Y. Photonic papers and inks:color writing with colorless materials [J]. Advanced Materials,2003,15(11):892-896.
    [172]Go Z Z, Uersuka H, Takahashi K. et al. Structural color and the lotus effect [J]. Angewandte Chemie, International Edition,2003,42(8),894-897.
    [173]Sugitastu A, Asano T, Noda S. Line-defect-waveguide laser integrated with a point defect in a two-dimensional photonic ctystal slab [J]. Applied Physics Letters,2005,86(17):117706/1-3.
    [174]Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum [J]. Proceedings of the Physical Society of London,1902,4(21):396-402.
    [175]Willets K A, Duyne R V. Localized surface plasmon resonance spectroscopy and sensing [J]. Annual Review of Physical Chemistry,2007,58:267-297.
    [176]Mie G. Beitrage zur optic truber medien [J]. Speziell Kolloidaler Metallosungen Annals of Physics, 1908.25(3):377-445.
    [177]Njoki P N, Lim I I S. Mott D. et al. Size correlation of optical and spectroscopic properties for gold nanoparticles [J]. Journal of Physical Chemistry C,2007,111(40):14664-14669.
    [178]Amendola V. Meneghetti M. Size evolution of gold nanoparticles by UV-vis spectroscopy [J]. Journal of Physical Chemistry C,2009,113(11):4277-4285.
    [179]Nikoobakht B. EI-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chemistry of Materials,2003,15(10):1957-1962.
    [180]Ojea-Jimenez I, Romero F M, Bastus N G, et al. Small gold nanoparticles synthesized with sodium citrate and heavy water:insights into the reaction mechanism [J]. Journal of Physical Chemistry C, 2010,114(4):1800-1804.
    [181]Kalele S A, Tiwari N R, Gosavi S W, et al. Plasmon-assisted photonics at the nanoscall [J]. Journal of Nanophotonics,2007,1:012501.
    [182]Kelly K L, Coronado L L, Zhao L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment [J]. Journal of Physical Chemistry B,2003,107(3): 668-677.
    [183]Zhou F, Li Z Y, Liu Y, et al. Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles [J]. Journal of Physical Chemistry C,2008,112(51): 20233-20240.
    [184]Link S, EI-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods [J]. Journal of Physical Chemistry B,1999, 103(40):8410-8426.
    [185]Hoa X D, Kirk A G, Tabrizian. Towards integrated and sensitive surface plasmon resonance biosensors:a review of recent progress [J]. Biosensors & Bioelectronics,2007,23(2):151-160.
    [186]Ung T. Liz L M, Mulvaney P. Optical properties of thin films of Au@SiO2 particles [J]. Journal of Physical Chemistry B,2001,105(17):3441-3452.
    [187]Rechberger W, Hohenau A, Leitner A, et al. Optical properties of two interacting gold nanoparticles [J]. Optics Communications,2003,220(1-3):137-141.
    [188]Kim B, Tripp S L, Wei A. Self-organizetion of large gold nanoparticle arrays [J]. Journal of American Chemical Society,2001,123(32):7955-7956.
    [189]朱梓华,朱涛,刘忠范等.大粒径单分散金纳米粒子的水相合成[J].物理化学学报,1999,15(11):966-970.
    [190]Chen S H, Fan Z Y, Carroll D L. Silver nanodisks:synthesis, characterization, and self-assembly [J]. Journal of Physical Chemistry B,2002,106(42):10777-10781.
    [191]Ju W G, Zhang X H, Wu S K. Wet chemical synthesis of Ag nanowires array at room temperature [J]. Chemistry Letters,2005,34(4):510-511.
    [192]Sharma J, Chaki N K, Mahima S. Turning the aspect ratio of silver nanostructures:the effect of solvent mole fraction and 4-aminothiophenol concentration [J]. Journal of Material Chemistry,2004, 14(6):970-975.
    [193]Xia Y N, Yang P D, Sun Y G. One-dimensional nanostructures:synthesis, characterization, and applications [J]. Advanced Materials,2003,15(5):353-389.
    [294]赵启涛.侯立松.黄瑞安.软化学法低温合成银纳米线及其生长机制[J].化学学报.2003.61(10):1671-1674.
    [195]Zhao Q T. Qiu J R. Zhao C J. Synthesis and formation mechanism of silver nanowires by a templateless and seedless method [J]. Chemistry Letters,2005,34(1):30-31.
    [196]Chiang C L. Controlled growth of gold nanoparticles in aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles [J]. Journal of Colloid and Interface Science,2000,230(1):60-66.
    [197]Selvan K, Joseph W, Danke X A. Metal nanoparticle-based electrochemical stripping potentimetric detection of DNA hybridization [J]. Analytical Chemistry,2001,73(22):5576-5581.
    [198]Yu Y Y, Chang S S, Lee C L, et al. Gold nanorods:electrochemical synthesis and optical properties [J]. Journal of Physical Chemistry B,1997,101(34):6661-6664.
    [199]Mohamed M B, Wang Z L, EI-Sayed M A. Temperature dependent size controlled nucleation and growth of gold nanoclusters [J]. Journal of Physical Chemistry A,1999,103(49):10255-10259.
    [200]Zhu J J, Liao X H, Zhao X N. Preparation of silver nanorods by electrochemical methods [J]. Materials Letters,2001,49(2):91-95.
    [201]Walter E C, Murray B J, Favier F. Noble and Coinage metal nanowires by electrochemical step edge decoration [J]. Journal of Physical Chemistry B,2002,136(44):11417-11411.
    [202]Zhou Y, Yu S H, Wang C Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites [J]. Advanced Materials,1999, 11(10):850-852.
    [203]Pal A. Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule [J]. Materials Letters,2004,58(3-4):529-534.
    [204]Tang X L, Tsuji M. Synthesis of silver nanowires in liquid phase [J]. Nanowires Science and Technology,2010,2:25-42.
    [205]Xu X C, Yang W S, Liu J, et al. Synthesis of a high-performance NaA membrane by microwave heating [J]. Advanced Materials,2000,12(3):195-198.
    [206]Liu F K, Huang P W, Chu T C. Gold seed-assisted synthesis of silver nanomaterials under microwave heating [J]. Materials Letters,2005,59(8-9):940-944.
    [207]覃爱苗,蒋治良,邹节明等.用聚丙烯酰胺微波高压合成金纳米粒子[J].应用化学,2009,19(12):1150-1153.
    [208]Xiong Y J, Xie Y, Du G A, et al. Ultrasound-assisted self-reduction route to Ag nanorods [J]. Chemistry Letters,2002,31(1):98-99.
    [209]Absorption and scattering of light by small particles [M]. New York:John Wiley and Sons Incorporation,1983.
    [210]Fleischmann M, Hendra P J, Mcquillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters,1974,26(2):163-166.
    [211]Bertoline J R, Temperini M L A, Sala O. Sers effect of hexamethylenetetramine adsorbed on a silver electrode [J]. Journal of Molecular Structure,1988,178(8):113-120.
    [212]Cheng Y, Stakenborg T, Dorpe P V, et al. Fluorescence near gold nanoparticles for DNA sensing [J]. Analytical Chemisry,2011,84(4):1307-1314.
    [213]Dulkeith E, Ringler M, Kalar T A, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate separation [J]. Nano Letters,2005,5(4):585-589.
    [214]Tsai C Y, Taci Y H, Pun C C, et al. Electrical detection of DNA hybridization with multilayer gold nanoparticles between nanogap electrode [J]. Microsystem Technologies.2005.11:91-96.
    [215]Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles [J]. Journal of American Chemical Society,2005,127(20): 7632-7637.
    [216]Sakai N, Fujiwara Y, Takahashi Y, et al. Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films [J]. ChemPhysChem,2009, 10(5):766-769.
    [217]Kowalska E, Mahaney O P, Abe R, et al. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surface [J]. Physical Chemistry Chemical Physics,2010,12: 2344-2355.
    [218]Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures [J]. Science,1991,254(5036):1312-1319.
    [219]Promo A, Marina T, Garcia H, et al. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulates CeO2 obtained by a biopolymer templating method [J]. Journal of American Chemical Society,2011,133(18):6930-6933.
    [220]Silva C G, Juarez R, Marino T, et al. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogenation or oxygen from water [J]. Journal of American Chemical Society,2011,133(22):595-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700