板材粘弹塑性软模成形有限元—无网格法耦合模型与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板材粘性介质压力成形与刚性模成形和气、液软模成形的不同之处在于成形过程中板材与软模之间具有明显的耦合变形特征,软模性能对板材变形有较大的影响,这种板材变形与软模体积变形之间的耦合变形解析求解很困难,借助于数值分析的手段对其进行研究是十分必要的。由于成形过程中软模变形量较大,使用有限元法容易出现网格畸变,软模体积变形网格重划既困难又影响计算精度。本文针对板材半固态粘性介质和固态聚氨酯软模成形提出了板材粘弹塑性软模成形有限元-无网格法耦合分析方法,对粘性介质粘弹塑性本构模型、板材有限元分析与软模无网格法分析之间的接触摩擦处理、粘性介质与板材间的粘附应力模型等进行了研究,编制了相应的耦合分析程序,对板材软模成形过程进行了数值模拟,并通过试验验证了模型和程序的有效性。
     首先,提出采用有限元法和无网格法相耦合的方法分析板材软模成形过程,即板材弹塑性变形采用有限元法进行分析,软模体积变形采用无网格Galerkin法进行分析,两种方法相结合,可以充分发挥两种算法各自的优势。推导了板材弹塑性、半固态粘性介质软模粘弹塑性和固态软模超弹性本构方程,进而建立了基于更新拉格朗日列式的板材软模成形过程有限元-无网格法耦合分析列式,并通过计算实例对上述模型进行了验证。
     其次,由于板材软模成形过程不仅存在板材与刚性凹模之间的接触,还包含了软模与板材这两种耦合变形体之间的接触,这也是板材软模成形数值模拟有别于传统刚性模冲压成形数值模拟的重要特征。分别针对板材与凹模之间的滑动摩擦,半固态粘性介质与板材之间的粘附作用以及固态软模与板材之间的接触摩擦建立相应模型,重点研究了板材与软模这两种不同类型离散方式的耦合变形体之间的界面接触处理方法。在多变形体耦合变形分析中采用静力显式算法避免了隐式算法中的多重迭代收敛问题,保证每一加载步长内变形体的变形和接触状态保持稳定,进而给出增量过程中板材和软模的应力和应变增量计算过程。
     再次,对半固态粘性介质的粘弹塑性本构模型进行了研究。利用动态剪切流变仪对六种不同分子量(550000g/mol、600000g/mol、650000g/mol、700000g/mol、800000g/mol和900000g/mol)的粘性介质分别进行了振荡、蠕变回复和剪切粘度实验,得到了不同分子量粘性介质粘弹塑性本构模型的材料参数,建立了粘性介质分子量与粘弹塑性模型材料参数之间的关系式,为粘性介质在成形过程中变形行为的分析提供了依据。
     最后,采用开发的板材粘弹塑性软模成形过程有限元-无网格法耦合分析程序对板材弹性软模胀形、聚氨酯超弹性软模胀以及不同分子量的粘性介质压力胀形形过程进行了数值模拟。通过板材弹性软模胀形的数值模拟,研究了有限元-无网格法耦合分析程序在处理软模体积大变形上的优势;选用1Cr18Ni9Ti不锈钢板材对聚氨酯软模胀形进行数值模拟,分析了板材固态聚氨酯软模胀形过程中不同胀形高度下板材的应变分布、壁厚分布规律,与试验结果进行对比验证了所开发的程序的可靠性。使用不同粘度的粘性介质对工业纯铝Al1060板材进行了粘性介质压力胀形数值模拟和试验研究,分析粘性介质压力胀形过程中不同粘度的粘性介质对于板材构形、应力应变分布、壁厚减薄等的影响,数值模拟和实验结果表明高粘度的粘性介质可以使应变最大值位置发生转移,提高了板材壁厚分布的均匀性。对圆锥形零件粘性介质压力成形过程的数值模拟和试验结果进行了对比,二者具有较好的吻合性。
Viscous pressure forming (VPF) is different from sheet rigid-die forming andgaseous or hydro forming process. Not only because of the coupled deformationcharacteristics between sheet metal and flexible-die in the forming process, but also theinfluence of flexible die’s properties on the formability of sheet metal. This coupleddeformation is difficult to solved analytically, it is necessary to utilize numerical analysismethod to make an in-depth study. Due to the large deformation of flexible-die in theforming process, it often leads to a mesh distortion when finite element method is used,remeshing for bulk forming of flexible-die is difficult and will affect the calculationaccuracy. In this paper, a coupled finite element and meshless method was proposed toanalyse viscous pressure forming and sheet metal polyurethane rubber forming. The keytechniques such as the visco-elasto-plastic constitutive model of viscous medium,frictional contact treatment between sheet metal and flexible-die and adhesive stressmodel between viscous medium and sheet metal were also studied. Based on the abovetheories, a coupled analysis program was developed to forecast sheet metal flexible-dieforming numerically. The validity of the model and forecast program was verifiedthrough experimental research.
     First of all, a new numerical analysis method which coupled finite elementmethod and meshless method was proposed to analyse sheet visco-elasto-plasticflexible-die forming process. In this method, the elastoplastic deformation of sheetmetal was analyzed with finite element method and the bulk deformation of flexible-die was analyzed with element-free Galerkin method, it can make full use of theirrespective advantages of these two algorithms. The elasto-plastic constitutiveequation of sheet metal, visco-elasto-plastic constitutive equation of semisolidviscous medium and hyperelastic constitutive equation of solid polyurethane rubberwere given firstly. Then a coupled FEM-EFGM formulation of sheet flexible-dieforming process was established based on updated Lagrangian formulation, and itsvalidity was verified through numerical examples.
     Secondly, it contains not only contact between sheet metal and die, but also contactbetween two coupled deformation bodies (flexible-die and sheet metal) in sheet flexible-die forming process, which is an important difference with rigid-die forming process.According to the sliding friction between the sheet metal and die, adhesive stressbetween semisolid viscous medium and sheet metal and frictional contact between solidflexibile-die and sheet, corresponding numerical models were established respectively.The interface contact treatment between sheet metal and flexible was a key problem because of different discrete ways of these two coupled deformation bodies. A staticexplicit algorithm was adopted to solve multi-body coupled deformation problems, thesize of the time step was controlled to keep the material state and contact state stable ineach loading step which can aviod the disadvantage of misconverged iteration in a static-implicit algorithm. The calculation of stress and strain increment of sheet metal andflexible-die in incremental process were also illustrated.
     Thirdly, visco-elasto-plastic constitutive model of semi-solid viscous medium werestudied. Viscous mediums with six different molecular weights (550000g/mol,600000g/mol,650000g/mol,700000g/mol,800000g/mol, and900000g/mol) wereseparately carried on oscillation, creep-recovery and shear viscosity experiments byusing dynamic shear rheometer (DSR). Through analyzing the results of the experiment,visco-elasto-plastic constitutive model parameters of viscous mediums with differentmolecular weights were obtained. Furthermore, a relationship between molecular weightof different viscous mediums and visco-elasto-plastic constitutive model parameters wasestablished, it can provide a guide for analysing the deformation behavior of viscousmediums in viscous pressure forming process.
     Finally, by using the coupled FEM-EFGM analysis program, sheet elastic flexible-die bulging, sheet polyurethane rubber bulging and viscous pressure bulging process withdifferent molecular weights were forecasted numerically. Viscous pressure bulgingprocesses of Al1060sheet with different viscosity viscous mediums were forecastednumerically and experimentally. The advantages of coupled FEM-EFGM program indealing with large bulk deformation were investigated through forecasting sheet elasticflexible-die bulging numerically. By forecasting1Cr18Ni9Ti stainless steel sheetpolyurethane rubber bulging process, the strain and wall-thickness distribution of bulgingparts were analyzed at different dome heights. Compared with experimental results, thevalidity of the coupled FEM-EFGM forecast program was obtained. The influence ofviscosity on the configuration, stress, strain distribution and thickness reduction ratio ofbulging parts were investigated in detail. Both the numerical forcast analysis and theexperimental result showed that high viscosity viscous medium can change the maximumstrain location and make a more uniform wall-thickness distribution. Viscous pressureforming processes of conical part were also forecasted by the coupled FEM-EFGMprogram, the experimental results and numerical ones were in good agreement.
引文
[1] Li Z,Wang J L,Ye J. Recent Patents on Sheet Metal Forming with DrawingDie[J]. Recent Patents on Mechanical Engineering,2012,5(2):129-133.
    [2] Karbasian H, Tekkaya A E. A Review on Hot Stamping[J]. Journal ofMaterials Processing Technology,2010,210(15):2103-2118.
    [3]张士宏,程明,宋鸿武,等.塑性加工先进技术[M].北京:科学出版社,2012:230-344.
    [4] Tolazzi M. Hydroforming Application in Automotive: A Review[J].International Journal of Material Forming,2010,3(Suppl.1):307-310.
    [5]李继光.变径薄壁零件粘性介质拟体积成形方法的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:9-13.
    [6] Wang Z J, Liu J G. Sectional Finite Element Analysis of CoupledDeformation Between Elastoplastic Sheet Metal and Visco-elastoplasticBody[J]. Acta Mechanica Solida Sinica,2011,24(2):153-165.
    [7] Kleiner M, Krux R, Homberg W. Analysis of Residual Stresses in High-pressure Sheet Metal Forming[J]. CIRP Annals-Manufacturing Technology,2004,53(1):211-214.
    [8] Jain N, Wang J. Plastic Instability in Dual-pressure Tube-hydroformingProcess[J]. International Journal of Mechanical Sciences,2005,47(12):1827-1837.
    [9]张青来,肖福贵,郭海铃,等. AZ31B镁合金薄板超塑性气胀成形[J].稀有金属材料与工程,2009,38(7):1259-1263.
    [10] Barnes A J. Superplastic Forming40Years and Still Growing[J]. Journal ofMaterials Engineering and Performance,2013,22(10):2935-2949.
    [11] Rhoades M L,Rhoades L J. Die Forming Metallic Sheet Materials[P]. UnitedStates Patent,1992,NO.5085068.
    [12] Shulkin L B,Posteraro R A,Ahmetoglu M A,et al. Blank Holder Force(BHF) Control in Viscous Pressure Forming (VPF) of Sheet Metal[J]. Journalof Materials Processing Technology,2000,98(1):7-16.
    [13] Wang Z J,Liu J G,Wang X Y,et al. Viscous Pressure Forming (VPF):State-of-the-art and Future Trends[J]. Journal of Materials ProcessingTechnology,2004,151(1-3):80-87.
    [14] Nasser A,Yadav A,Pathak P,et al. Determination of the Flow Stress ofFive AHSS Sheet Materials (DP600, DP780, DP780-CR, DP780-HY andTRIP780) Using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge(VPB) Tests[J]. Journal of Materials Precessing Technology,2010,210(3):429-436.
    [15] Hussain M M, Rauscher B, Trompeter M, et al. Potential of MeltedPolymer as Pressure Medium in Sheet Metal Forming[J]. Key EngineeringMaterials,2009,410-411:493-501.
    [16] Tekkaya A E,Hussain M M,Witulski J. The Non-hydrostatic Response ofPolymer Melts as A Pressure Medium in Sheet Metal Forming[J]. ProductEngineering Research Development,2012,6(4-5):385-394.
    [17] Bariani P F,Bruschi S,Ghiotti A,et al. An Approach to Modelling theForming Process of Sheet Metal-Polymer Composites[J]. CIPP Annals-Manufacturing Technology,2007,56(1):261-264.
    [18] Ramezani M,Ripin Z M,Ahmad R. Sheet Metal Forming with the Aid ofFlexible Punch, Numerical Approach and Experimental Validation[J]. CIRPJournal of Manufacturing Science and Technology,2010,3(3):196-203.
    [19] Thiruvarudchelvan S. The Potential Role of Flexible Tools in MetalForming[J]. Journal of Materials Processing Technology,2002,122(2-3):293-300.
    [20] Liu Y X,Hua L,Lan J,Wei X. Studies of the Deformation Styles of theRubber-pad Forming Process Used for Manufacturing Metallic BipolarPlates[J]. Journal of Power Sources,2010,195(24):8177-8184.
    [21] Wang M,Li D S,Li X Q,et al. Probabilistic Design of Uncertainty forAluminum Alloy Sheet in Rubber Fluid Forming Process[J]. Reviews onAdvanced Materials Science,2013,33(5):442-451.
    [22]付云方,高霖,王辉.橡皮囊成形的研究进展[J].中国制造业信息化,2009,38(7):59-63.
    [23]陈磊,张亚兵,李善良.钣金橡皮液压成形过程的研究进展[J].机床与液压,2010,38(4):82-84.
    [24] Lo S W,Hsu T C,Wilson W R D. An Analysis of the Hemispherical-punchHydroforming Process[J]. Journal of Materials Processing Technology,1993,37(1-4):225-239.
    [25] Yang D Y,Kim J B,Lee D W. Investigation into Manufacturing of VeryLong Cups by Hydromechanical Deep drawing and Ironing with ControlledRadial Pressure[J]. CIRP Annals-Manufacturing Technology,1995,44(1):255-258.
    [26] Yuan S J,Wang X S,Liu G,et al. Control and Use of Wrinkles in TubeHydroforming[J]. Journal of Materials Processing Technology,2007,182(1-3):6-11.
    [27] Lang L H,Li H L,Yuan S J,et al. Investigation into the Pre-forming'sEffect During Multi-stages of Tube Hydroforming of Aluminum Alloy Tubeby Using Useful Wrinkles[J]. Journal of Materials Processing Technology,2009,209(5):2553-2563.
    [28] Jenson M R,Olovsson L,Danckert J,et al. Aspects of Finite ElementSimulation of Axi-symmertric Hydromechanical Deep Drawing[J]. Journal ofManufacturing Science and Engineering,2001,123(3):441-445.
    [29] Labergere C, Gelin J C. Numerical Simulation of Sheet HydroformingTaking into Account Analytical Pressure and Fluid Flow[J]. Journal ofMaterials Processing Technology,2012,212(10):2020-2030.
    [30] Ahmetoglu M,Hua J,Kulukuru S,et al. Hydroforming of Sheet MetalUsing a Viscous Pressure Medium[J]. Journal of Materials ProcessingTechnology,2004,146(1):97-107.
    [31] Liu J,Westhoff B,Ahmetoglu M A,et al. Application of Viscous PressureForming (VPF) to Low Volume Stamping of Difficult-to-form Alloys-Resultsof Preliminary FEM Simulations[J]. Journal of Materials ProcessingTechnology,1996,59(1-2):49-58.
    [32] Liu J, Ahmetoglu M, Altan T. Evaluation of Sheet Metal Formability,Viscous Pressure Forming (VPF) Dome Test[J]. Journal of MaterialsProcessing Technology,2000,98(1):1-6.
    [33]罗应兵,李大永,彭颖红.薄板粘性压力成形的数值模拟[J].上海交通大学学报,2004,38(7):1073-1075.
    [34] Hussain M M, Trompeter M, Witulski J, et al. An Experimental andNumerical Investigation on Polymer Melt Injected Sheet Metal Forming[J].Journal of Manufacturing Science and Engineering,2012,134(2):1-13.
    [35]王忠金,王仲仁.板料粘性介质胀形过程应变速率变化的模拟研究[J].塑性工程学报,1999,6(3):46-48.
    [36]高铁军,王忠金.加载方式对黏性介质外压缩径成形的影响[J].模具工业,2009,35(1):23-27.
    [37] Gao T J,Liu Z J,Wang Y,et al. Research on Forming Process andDeformation Rule for the Necking of Viscous Medium Under OuterPressures[J]. Advanced Materials Research,2012,482-484:2126-2130.
    [38]李毅.覆盖件用6000系铝合金粘性介质压力成形性研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:38-44.
    [39] Li Y, Wang Z J. Finite Element Analysis of Stiffness and Static DentResistance of Aluminum Alloy Double-curved Panel in Viscous PressureForming[J]. Transactions of Nonferrous Metals Society of China,2009,19(Suppl.2):312-317.
    [40]李继光,赵瑞峰,刘京平,等.端部密封对薄壁零件粘性介质压力的影响[J].锻压技术,2014,39(3):10-14.
    [41] Liu J G,Wang Z J,Wang Z R. Numerical Simulation of the Influence ofViscous Adhesive Stress on the Viscous Pressure Bulging Process ofHemispherical Sphere[J]. Transaction of Nonferrous Metals Society ofChina,2003,13(6):1354-1359.
    [42] Liu J G,Wang Z J. Prediction of Wrinkling and Fracturing in ViscousPressure Forming (VPF) by Using the Coupled Deformation Sectional FiniteElement Method[J]. Computational Materials Science,2010,48(2):381-389.
    [43]张兆辉.液压橡皮囊弯边成形过程数值模拟及实验研究[D].北京:北京航空航天大学硕士学位论文,1998:31-65.
    [44]陈磊,邱晞,李善良,等.新淬火铝合金板材成形回弹试验与数值模拟[J].锻压技术,2008,33(1):39-43.
    [45]刘艳雄.燃料电池金属双极板软模成形研究[D].武汉:武汉理工大学硕士学位论文,2010:31-44.
    [46]杨伟俊,李东升,李小强.铝合金橡皮成形简化数值分析模型研究[J].中国机械工程,2009,20(19):2382-2386.
    [47] Dirikolu M H,Akdemir E. Computer Aided Modelling of Flexible FormingProcess[J]. Journal of Materials Processing Technology,2004,148(3):376-381.
    [48] Ramezani M,Ripin Z M,Ahmad R. Computer Aided Modelling of Frictionin Rubber-pad Forming Process[J]. Journal of Materials ProcessingTechnology,2009,209(10):4925-4934.
    [49] Wozniak D,Glowacki M,Hojny M,et al. Application of CAE Systems inForming of Drawpieces with Use Rubber-pad Forming Processes[J]. Archivesof Metallurgy and Materials,2012,57(4):1179-1187.
    [50]韩志仁,吴娜,詹庆熙,等.基于试验和有限元方法的橡皮囊液压成形回弹规律[J].塑性工程学报,2010,17(3):98-102.
    [51]王淼,李东生,杨伟俊,等.橡皮成形数值模拟回弹预测精度的影响因素[J].塑性工程学报,2011,18(1):1-6.
    [52]李靖谊,王化明,张中元,等.弯曲半管橡皮成形工艺过程数值模拟研究[J].计算力学学报,2003,20(1):43-48.
    [53]叶福民,朱如鹏,李靖谊.多工步橡皮成形工艺过程数值模拟研究[J].机械科学与技术,2007,26(10):1286-1289.
    [54]谢邵辉.飞机钣金件冷成形快速模拟系统的研究与开发[D].武汉:华中科技大学博士学位论文,2011:61-77.
    [55]谢邵辉,柳玉起,杜亭,等.橡皮囊液压成形模拟算法的开发及应用[J].塑性工程学报,2011,18(4):63-68.
    [56] Lucy L B. A Numerical Approach to the Testing of the Fission Hypothesis[J].The Astronnomical Journal,1977,8(12):1013-1024.
    [57] Monaghan J J. An Introduction to SPH[J]. Computer PhysicsCommunications,1988,48(1):89-96.
    [58] Swegle J W,Hicks D L,Attaway S W. Smooth Particle HydrodynamicsStability Analysis[J]. Journal of Computational Physics,1995,116(1):123-134.
    [59] Dyka C T,Randles P W,Ingel R P. Stress Points for Tension Instability inSPH[J]. International Journal for Numerical Methods in Engineering,1997,40(13):2325-2341.
    [60] Vignjevic R,Campbell J,Libersky L. A Treatment of Zero-energy Modes inthe Smoothed Particle Hydrodynamics Method[J]. Computer Methods inApplied Mechanics and Engineering,2000,184(1):67-85.
    [61] Bonet J,Kulasegaram S. Correction and Stabilization of Smooth ParticleHydrodynamics Methods with Application in Metal Forming Simulations[J].International Journal for Numerical Methods in Engineering,2000,47(6):1189-1214.
    [62] Sauer M. Simulation of High Velocity Impact in Fluid-filled Containers UsingFinite Elements with Adaptive Coupling to Smoothed ParticleHydrodynamics[J]. International Journal of Impact Engineering,2011,38(6):511-520.
    [63] Wang J M,Gao N,Gong W J. Abrasive Waterjet Machining Simulation bySPH Method[J]. International Journal of Advanced ManufacturingTechnology,2010,50(1-4):227-234.
    [64]徐啸雄,苍大强,刘晓明,等. FEM-SPH耦合算法模拟铝液粒化的动态过程[J].材料科学与工艺,2013,21(5):1-7.
    [65] Nayroles B,Touzot G.,Villon P. Generalizing the Finite Element Method:Diffuse Approximation and Diffuse Elements[J]. Computational Mechanics,1992,10(5):307-318.
    [66] Belytschko T, Liu Y Y, Gu L. Element-free Galerkin Methods[J].International Journal for Numerical Methods in Engineering,1994,37(2):229-256.
    [67] Chung H J, Belytschko T. An Error Estimate in the EFG Method[J].Computational Mechanics,1998,21(2):91-100.
    [68] Dolbow J,Belytschko T. Numerical Integration of the Galerkin Weak Formin Meshfree Methods[J]. Computational Mechanics,1999,23(3):219-230.
    [69] Singh I V,Mishra B K,Pant M. A Modified Intrinsic Enriched ElementFree Galerkin Method for Multiple Cracks Simulation[J]. Materials andDesign,2010,31(1):628-632.
    [70] Bui T Q,Nguyen M N,Zhang C Z. A Moving Kriging Interpolation-basedElement-free Galerkin Method for Structural Dynamic Analysis[J]. ComputerMethods in Applied Mechanics and Engineering,2011,200(13-16):1354-1366.
    [71] Lu P, Zhao G Q, Guan Y J, et al. Research on Rigid/Visco-plasticElement-free Galerkin Method and Key Simulation Techniques for Three-dimensional Bulk Metal Forming Processes[J]. International Journal ofAdvanced Manufacturing Technology,2011,53(5-8):485-503.
    [72] Liu W K,Jun S,Zhang Y F. Reproducing Kernel Particle Methods[J].International Journal for Numerical Methods in Fluids,1995,20(8-9):1081-1106.
    [73] Cheng R J,Liew K M. A Meshless Analysis of Three-dimensional TransientHeat Conduction Problems[J]. Engineering Analysis with BoundaryElements,2012,36(2):203-210.
    [74] Liu H S,Fu M W. Adaptive Reproducing Kernel Particle Method UsingGradient Indicator for Elasto-plastic Deformation[J]. Engineering Analysiswith Boundary Elements,2013,37(2):280-292.
    [75] Atluri S N, Zhu T L. A New Meshless Local Petorv-Galerkin (MLPG)Approach in Computational Mechanics[J]. Computational Mechanics,1998,22(2):117-127.
    [76] Zhu T,Zhang J D,Atluri S N. A Local Boundary Integral Equation (LBIE)Method in Computational Mechanics, and A Meshless DiscretizationApproach[J]. Computational Mechanics,1998,21(3):223-235.
    [77] Duarte C A,Oden J T. H-p Clouds: An H-p Meshless Method[J]. NumericalMethods for Partial Differential Equations,1996,12(6):673-705.
    [78] Liszka T J,Duarte C A M,Tworzydlo W W. Hp-meshless Cloud Method[J].Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):263-288.
    [79] Sukumar N,Moran B,Belytschko T. The Natural Element Method in SolidMechanics[J]. International Journal for Numerical Methods in Engineering,1998,43(5):839-887.
    [80] Bueche D,Sukumar N,Moran B. Dispersive Properties of the NaturalElement Method[J]. Computational Mechanics,2000,25(2-3):207-219.
    [81] Sukumar N,Moran B,Semenov A Y,et al. Natural Neighbour GalerkinMethod[J]. International Journal for Numerical Methods in Engineering,2001,50(1):1-27.
    [82] Gonzalez D, Cueto E, Martinez M A, et al. Numerical Integration inNatural Neighbour Galerkin Methods[J]. International Journal for NumericalMethods in Engineering,2004,60(12):2077-2104.
    [83] Yoo J W,Moran B,Chen J S. Stabilized Conforming Nodal Integration inthe Natural-element Method[J]. International Journal for Numerical Methodsin Engineering,2004,60(5):861-890.
    [84] Zhang X, Song K Z, Lu M W, et al. Meshless Methods Based onCollocation with Radial Basis Function[J]. Computational Mechanics,2000,26(4):333-343.
    [85]孔亮,高学军,王燕昌.基于紧支径向基函数的点插值无网格方法[J].岩土力学.2004,25(Suppl.2):117-120.
    [86]曾清红,卢德唐.耦合径向基函数与多项式基函数的无网格方法[J].计算物理,2005,22(1):43-50.
    [87] Y. Duan. Meshless Galerkin Method Using Radial Basis Functions Based onDomain Decomposition[J]. Applied Mathematics and Computation,2006,179(2):750-762.
    [88] Aluru N R. A Point Collocation Method Based on Reproducing KernelApproximations[J]. International Journal for Numerical Methods inEngineering,2000,47(6):1083-1121.
    [89]史宝军,袁明武,李君.基于核重构思想的最小二乘配点型无网格方法[J].力学学报,2003,35(6):697-706.
    [90]史宝军,袁明武,孙树立,等.基于核重构思想的配点型无网格方法的研究——一维问题[J].计算力学学报,2004,21(1):97-103.
    [91] Jin X Z,Li G,Aluru N R. Positivity Conditions in Meshless CollocationMethods[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(12-14):1171-1202.
    [92]张宏伟,李美香,李卫国.关于配点型无网格法边界条件处理技术[J].大连理工大学学报,2010,50(4):614-618.
    [93]廉艳平,张帆,刘岩,等.物质点法的理论和应用[J].力学进展,2013,43(2):237-264.
    [94]张雄,刘岩,马上.无网格法的理论及应用[J].力学进展,2009,39(1):1-36.
    [95] Krysl P,Belytschko T. Analysis of Thin Shell By the Element-free GalerkinMethod[J]. International Journal of Solids and Structures,1996,33(20-22):3057-3080.
    [96] Li S F,Hao W,Liu W K. Numerical Simulations of Large Deformation ofThin Shell Structures Using Meshless Methods[J]. ComputationalMechanics,2000,25(2-3):102-116.
    [97] Noguchi H,Kawashima T,Miyamura T. Element Free Analyses of Shelland Spatial Structures[J]. International Journal for Numerical Methods inEngineering,2000,47(6):1215-1240.
    [98] Kim N H,Choi K K,Chen J S,et al. Meshless Shape Design SensitivityAnalysis and Optimization for Contact Problem with Friction[J].Computational Mechanics,2000,25(2-3):157-168.
    [99]温宏宇,董湘怀,燕存良,等.无网格法在板料冲压成形数值模拟中的应用[J].锻压技术,2006,31(1):12-14.
    [100]刘红生,包军,邢忠文,等.板材成形无网格法模拟中的关键技术处理[J].材料科学与工艺,2011,19(1):1-6.
    [101]刘红生,邢忠文,杨玉英.方盒形件拉深成形无网格法模拟[J].机械工程学报,2010,46(4):48-53.
    [102] Chen J S,Roque C M O L,Pan C,et al. Analysis of Metal FormingProcess Based on Meshless Method[J]. Journal of Materials ProcessingTechnology,1998,80-81:642-646.
    [103] Chen J S,Pan C,Roque C M O L,et al. A Lagrangian Reproducing KernelParticle Method for Meal Forming Analysis[J]. Computational Mechanics,1998,22(3):289-307.
    [104] Li G Y,Belytschko T. Element-free Galerkin Method for Contact Problemsin Metal Forming Analysis[J]. Engineering Computations,2001,18(1-2):62-78.
    [105] Xiong S W,Liu W K,Cao J,et al. On the Utilization of the ReproducingKernel Particle Method for the Numerical Simulation of Plane StrainRolling[J]. International Journal of Machine Tools and Manufacture,2003,43(1):89-102.
    [106] Xiong S W,Rodrigues J M C,Martins P A F. Simulation of Plane StrainRolling Through a Combined Element Free Galerkin-Boundary ElementApproach[J]. Journal of Materials Processing Technology,2005,159(2):214-223.
    [107] Xiong S W,Li C S,Rodrigues J M C,et al. Steady and Non-steady StateAnalysis of Bulk Forming Processes by the Reproducing Kernel ParticleMethod[J]. Finite Element in Analysis and Design,2005,41(6):599-614.
    [108] Li D M, Liew K M, Cheng Y M. Analyzing Elastoplastic LargeDeformation Problems with the Complex Variable Element-free GalerkinMethod[J]. Computational Mechanics,2014,53(6):1149-1162.
    [109] Li D M,Liew K M,Cheng Y. An Improved Complex Variable Element-freeGalerkin Method for Two-dimensional Large Deformation ElastoplasticityProblems[J]. Computer Methods in Applied Mechanics and Engineering,2014,269:72-86.
    [110]娄路亮,曾攀,方刚.无网格方法及其在体积成形中的应用[J].塑性工程学报,2001,8(3):1-5.
    [111]王琥,李光耀,钟志华.三维体积成形过程的并行无网格法仿真分析[J].机械工程学报,2006,42(4):82-87.
    [112]赵国群,王卫东,栾贻国.金属塑性成形过程无网格伽辽金法数值模拟技术研究[J].机械工程学报,2004,40(11):13-16.
    [113] Guan Y J,Wu X,Zhao G Q,et al. A Nonlinear Numerical Analysis forMetal-forming Process Using Rigid-(visco)plastic Element-free GalerkinMethod[J]. International Journal of Advanced Manufacturing Technology,2009,42(1-2):83-92.
    [114] Attaway S W,Heinstein M W,Swegle J W. Coupling of Smoothed ParticleHydrodynamics with the Finite Element Method[J]. Nuclear Engineering andDesign,1994,150(2-3):199-205.
    [115] Belytschko T,Organ D,Krongauz Y. A Coupling Finite Element-Element-free Galerkin method[J]. Computational Mechanics,1995,17(3):186-195.
    [116] Krongauz Y,Belytschko T. Enforcement of Essential Boundary Conditionsin Meshless Approximations Using Finite elements[J]. Computer Methods inApplied Mechanics and Engineering,1996,131(1-2):133-145.
    [117]刘天祥,刘更.二维接触问题的无网格伽辽金-有限元耦合方法[J].西北工业大学学报,2003,21(4):499-503.
    [118] Liu T X,Liu G, Wang Q J. An Element-free Galerkin-Finite ElementCoupling Method for Elasto-plastic Contact Problems[J]. Journal ofTribology,2006,128(1):1-9.
    [119] Huerta A,Fernandez-Mendez S. Enrichment and Coupling of the FiniteElement and Meshless Methods[J]. International Journal for NumericalMethods in Engineering,2000,48(11):1615-1636.
    [120] Hegen D. Element-free Galerkin Methods in Combination with Finite ElementApproaches[J]. Computer Methods in Applied Mechanics and Engineering,1996,135(1-2):143-166.
    [121] Xiao Q Z,Dhanasekar M. Coupling of FE and EFG Using CollocationApproach[J]. Advances in Engineering Software,2002,33(7-10):507-515.
    [122] Karutz H,Chudoba R,Kratzig W B. Automatic Adaptive Generation of ACoupled Finite Element/Element-free Galerkin Discretization[J]. FiniteElement in Analysis and Design,2002,38(11):1075-1091.
    [123] Xiao S P,Belytschko T. A Bridging Domain Method for Coupling Continuawith Molecular Dynamics[J]. Computer Methods in Applied Mechanics andEngineering,2004,193(17-20):1645-1669.
    [124] Liu W K,Uras R A,Chen Y. Enrichment of the Finite Element MethodWith the Reproducing Kernel Particle Method[J]. Journal of AppliedMechanics,1997,64(4):861-870.
    [125] Rabczuk L,Xiao S P,Sauer M. Coupling of Mesh-free Methods with FiniteElements: Basic Concepts and Test Results[J]. Communications in NumericalMethods in Engineering,2006,22(10):1031-1065.
    [126] Liu L C, Dong X H, Li C X. Adaptive Finite Element-Element-freeGalerkin Coupling Method for Bulk Metal Forming Processes[J]. Journal ofZhejiang University Science A,2009,l0(3):353-360.
    [127]刘磊超.金属成形过程自适应耦合无网格-有限元法数值模拟技术研究[D].上海:上海交通大学博士学位论文,2009:32-90.
    [128]李迪,徐家川,石莹.板壳畸变单元的无网格和有限元自动耦合方法[J].应用力学学报,2011,28(6):618-623.
    [129] Sides A, Uzan J, Perl M. A Comprehensive Viscoelasto-plasticCharacterization of Sand-asphalt Compressive and Tensile Cyclic Loading[J].Journal of Testing and Evaluation,1985,13(1):49-59.
    [130] Valanis K C. A Theory of Viscoplasticity without a Yielding Surface[J].Archives of Mechanics,1971,23(4):517-551.
    [131] Chung T J,Eidson R L. Dynamic Analysis of Viscoelastoplastic AnisotropicShells[J]. Conputers and Structures,1973,3(3):483-494.
    [132] Lu Y,Wright P J. Numerical Approach of Visco-elastoplastic Analysis forAsphalt Mixtures[J]. Conputers and Structures,1998,69(2):139-147.
    [133]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999:459-622.
    [134]马德柱,何平笙,徐种德,等.高聚物的结构与性能[M].北京:科学出版社,1995:238-317.
    [135] Perzyna P. Fundamental Problems in Viscoplasticity[J]. Advance in AppliedMechanics,1966,9:243-377.
    [136]李松年,黄执中.非线性连续统力学[M].北京:北京航空学院出版社,1987:391-410.
    [137]张善元,梁非,雷建平. Cauchy弹性的次弹性形式表述[J].太原工业大学学报,1992,23(2):1-6.
    [138] Wang N W, Tang S C. Analysis of Bending Effects in Sheet FormingOperations[J]. International Journal for Numerical Methods in Engineering,1988,25:253-267.
    [139]欧阳鬯,马文华.弹性塑性有限元[M].长沙:湖南科学技术出版社,1983:426-448.
    [140]路平.三维金属体积成形过程无网格伽辽金方法及其关键技术研究[D].济南:山东大学博士学位论文,2008:28-31.
    [141] Liu G R,Gu Y T.无网格法理论及程序设计[M].王建明,周学军,译.济南:山东大学出版社,2007:35-36.
    [142] Belytschko T, Krongauz Y, Organ D, et al. Meshless Methods: AnOverview and Recent Developments[J]. Computer Methods in AppliedMechanics and Engineering,1996,139(1-4):3-47.
    [143] McMeeking R M,Rice J R. Finite Element Formulations for Problems ofLarge Elastic-plastic Deformation[J]. International of Solids and Structures,1975,11(5):601-616.
    [144]王勖成.有限单元法[M].北京:清华大学出版社,2003:666-703.
    [145]刘建光,王忠金,高铁军.板材粘性介质压力成形粘性附着力影响因素试验研究[J].机械工程学报,2006,42(10):146-150.
    [146]徐佩璇.高聚物流变学及其应用[M].北京:化学工业出版社,2003:49-63.
    [147]王彦琳.聚硅氧烷的合成与分析研究[D].杭州:浙江大学硕士学位论文,2008:1-5.
    [148]刘建光,王忠金.粘着应力拉伸过程数值模拟及粘着应力模型[J].材料科学与工艺,2010,18(3):348-351.
    [149] Yamada Y,Yoshimura N. Plastic Stress-strain Matrix and Its Application forthe Solution of Elastic-plastic Problems By the Finite Element Method[J].International Journal of Mechanical Science,1968,10(5):343-354.
    [150] Leu D K. Finite-element Simulation of Hole-flanging Process of CircularSheets of Anisotropic Materials[J]. International Journal of MechanicalScience,1996,38(8-9):917-933.
    [151]蔡中义.板材多点成形过程数值模拟与最优成形路径研究[D].长春:吉林大学博士学位论文,2000:29-34.
    [152]唐俊杰.液压油的粘度特性与油品选用[J].石油商技,2006,24(4):35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700