基于B样条面元法的浮体二阶水动力计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋结构物的二阶波浪力计算一直是在海洋工程技术研究领域的一个重要内容。本文基于B样条高阶面元法,对浮体的一阶、二阶水动力计算进行了研究,给出了一种有限水深格林函数的改进算法,并将对称性的应用引入到基于B样条面元法的二阶水动力计算中来提高计算效率。
     对B样条面元的相关几何计算和B样条面元的生成方法进行了简单介绍,并给出了一种适用于任意三维浮体的基于PCL语言的浮体湿表面B样条面元生成方法。
     根据三维频域线性理论,对基于B样条面元法的无航速浮体的水动力系数波浪激励力计算,不规则频率消除,运动响应求解,剖面载荷计算以及压力加载进行了研究,针对压力加载问题给出了一种基于最小二乘法的任意点的参数值反算方法,解决了一些采用B样条面元法波浪载荷计算时的基本问题。
     为了考虑水深对水动力,尤其是二阶水动力的影响,本文提出了一种有限水深格林函数的改进高斯拉盖尔算法,这种方法对传统的高斯拉盖尔算法进行了两点改进,不仅提高了被积函数的收敛性,而且解决了传统方法高斯拉盖尔算法在频率较高时计算失真的现象,此外,本文将有限水深格林函数场点源点对称性引入到计算中,大大提高了计算精度和计算效率。
     基于二阶频域理论,对基于B样条面元法的浮体二阶绕射力求解进行了研究。对物面非齐次项、近场自由面非齐次项和远场自由面非齐次项的计算进行了讨论。给出了一种速度势对直角坐标二阶偏导数的隐式计算公式,并验证了龙贝格积分和高斯拉盖尔积分相结合的方法用于计算三重亨格尔函数积分的有效性。
     为了提高计算效率,介绍了对称性在B样条面元法中的应用。首先分析了格林函数的场点源点对称性和几何对称性,并由此入手,对对称性在速度势求解矩阵中的应用进行了分析。基于任何一函数均可写成一对称函数和反对称函数的思想,给出了物面一阶速度势的一阶和二阶偏导数以及自由面速度势一阶偏导数的对称性分解,进一步的得到了物面强迫项和自由面强迫项对称性分解,从而将对称性引入到二阶速度势求解中,使二阶速度势求解的计算量大大降低。
The second order wave loads calculation is one of the most vital research fields in offshore engineering. This thesis discussed the first order and second order velocity potential calculation of floating bodies based on B-Spline panel method. An improved calculation method of finite water depth Green function is presented, and the usage of symmetry property is introduced to improve the calculation efficiency.
     Firstly, briefly introduced the geometric calculation of B-spline curves and surfaces that may be used in the B-spline panel method, and put forward a B-spline panel generation method based on PCL for wet surface of arbitrary shape three-dimensional floating structures. According to three-dimensional potential theory in frequency domain, the removal of the irregular frequencies, the calculation of hydrodynamic coefficients and wave exitation forces, motion responses, sectional loads and loading wave press for floating bodies are discussed. An interpolation algorithm based on least squares method for calculating the parameter coordinates is introduced to calculate the press of the centroid of the structural finite element, thus solved the basic problems in the wave loads calculation.
     An improved Gauss-Laguerre calculation method of finite water depth Green function is presented to consider the influence of water depth on the hydrodynamics, especially the second-order hydrodynamics. Two improvements have been made for the traditional Gauss-Laguerre calculation method. The improvements not only greatly improve the convergence and computation efficiency of the integrals, but also solve the problem of numerical error in the high frequencies domain. In addition, the symmetry of the source point and field point is can be also utilized by this method, which can halve the required calculation magnitude.
     Subsequently, according to second-order potential theory, the calculation of second order diffraction potential based on B-spline panel method is studied. The body forcing term, near field and far field free surface forcing term calculation are studied. An implicit formula is given for the potentials'second-order partial derivatives in right-angle coordinate, And a Romberg and Gauss-Laguerre combined method's validation for the tripled Hankel function integration calculation. At last, the influence of water depth to the second-order forces'QTFs is discussed.
     Lastly, the symmetry properties are introduced in the B-spline panel method to reduce the computation burden. Firstly, the Green function's source point and field point symmetry and geometry symmetry are discussed, and based on these, symmetry properties used in the matrix solving are discussed. Based on the idea of any function can be divided into two parts, symmetrical part and antisymmetric part, the symmetry properties of the first-order potentials'first and second order derivatives are obtained through symmetry analysis. By the above results, the symmetry decomposition of body surface forced term and free surface forced term can be obtained and the symmetry property is introduced to the calculation of second-order potential, which reduces the calculating quantity greatly.
引文
[1]Hess J L, Smith A M O. Calculation of Nonlifting Potential Flow about Arbitrary Three-Dimensional Bodies. Journal Ship Research,1964 (8): 22-24P
    [2]Liu. Yong Hui. Analysis of Fluid-Structure Internation by Using Higher Order Boundary Elements in Poential Problems and Its Application in Coupling Vibrations of Bending and Torsion of Ships.Ph.D. Thesis, Shanghai Jiao Tong University, China.1988
    [3]Tong, KC.A 3D Higher Order Boundary Element Method for Wave Forces on Offshore Structures. Proc Offshore Mech&Arctic Eng.1989:17-27P
    [4]Y.H.Liu, C.H.Kim. Comparison of Higher-Order Boundary Element and Constant Panel Methods for Hydrodynamic Loadings. Iternational Journal of Offshore and Engineering.1991(1):8-17P
    [5]Liu Y H, Kim C H, Kim M H. The Computation of Mean Drift Forces and Wave Run-Up by Higher-Order Boundary Element Method. Proceedings of the First International Offshore and Polar Engineering Conference, Edinburgh, United Kingdom,1991
    [6]Teng B, Eatock Taylor R. New Higher-Order Boundary Element Methods for Wave Diffraction/Radiation. Applied Ocean Research:1995,17:71-78P
    [7]Kashiwagi M. A B-Spline Galerkin Scheme for Computing Wave Forces on a Floating Very Large Elastic Plate.7th International Offshore and Polar Engineering Conference, Honolulu.1977:229-236P
    [8]Lee C.-H., Farina L., and Newman J. N., "A Geometry-Independent Higher-Order Panel Method and its Application to WaveBody Interactions", Engineering Mathematics and Applications Conference, Adelaide,1998
    [9]Maniar H., A three dimensional higher order panel method based on B-splines. Thesis.Ph.D. Department of Ocean Engineering MIT, Cambring, Massachusetts,1995
    [10]柏威.非线性波浪与任意三维物体的相互作用.大连理工大学博士学位论文,2001年
    [11]张小兔.基于B样条的三维船体水动力数值计算研究.武汉理工大学博士论文,2002年
    [12]马健.基于NURBS高阶面元法的船舶兴波阻力计算.武汉理工大学博士学位论文,2005年
    [13]王化明.基于NURBS高阶面元法的有航速船舶辐射问题数值计算研究.武汉理工大学博士学位论文,2005年
    [14]Newman, J.N. Algorithms for the free-surface Green function. Journal of Engineering Mathematics,1985(19),57-67P
    [15]Newman J N. The Approximation of Free-Surface Green Functions, In: Wave Asymptotic, Proceeding of the Fritz Ursell Retirement Meeting, Cambridge University Press, London,1990:107-135P
    [16]王如森.三维自由面Green函数及其导数的数值逼近.水动力学研究与进展,A辑,1992,9(3):277-286页
    [17]Chen X B. Hydrodynamics in Offshore and Naval Applications-Part Ⅰ. The 6th International Conference on HydroDynamics,2004
    [18]Xie Yonghe,2005. Numerical calculation of finite water-depth composite Green function. Journal of Ship Mechanics.9(1),23-28P
    [19]Haskind, M. D., The hydrodynamic theory of ship oscillations in rolling and pitching, Prikl. Mat.Mekh,1946.10,33-36, English translation, Technical Research Bulletin,1953,1(12),3-43P
    [20]Havelock T. H., The effect of speed on advance upon the damping of heave and pitch, Trans. RINA,1958,100,131-135P
    [21]Bessho M., On the fundamental singularity in the theory of ship motion in a seaway. Memoirs of the Defense Academy Japan,1977,17(8),95-105P
    [22]缪国平,刘应中,杨勤正,刘滋源,三维移动脉动源的Michell型表达式,中国造船,1995,131,1-11P
    [23]Inglis R. B., Price W. G, Calculations of the velocity potential of a translating, pulsating source Trans. RINA,1980,76-87P
    [24]Inglis R. B., Price, W G, A three-dimensional ship motion theory: Comparison between theoretical coeffcients with forward speed, Trans.predictions and experimental data of the hydrodynamic. RTNA,1981, 123-1370
    [25]宗智,黄鼎良,三维移动脉动源速度势的数值研究.水动力学研究与进展,1991,6(SUP),56-63页
    [26]叶伟,陆鑫森,频域有航速Green函数及其梯度的数值计算方法,上海交通大学学报,1996,30(10):1-8页
    [27]卢晓平,叶恒奎,张纬康,石仲坤,Haskind源格林函数的奇异性研究与数值积分方法,水动力学研究与进展,1999,14(4),444-453页
    [28]Ha M., Guilbaud M., A Fast Method of Evaluation for the Translating and Pulsating Green's Function, Ship Technology Research,1995,42(2),. 68-79P
    [29]杜双兴,吴有生,Bessh。型移动脉动源格林函数快速数值积分方法,中国造船,1998,141:40-48页
    [30]杜双兴,吴有生.航行船体周围稳态流场计算的双重面积分法,中国造船,1998,141(2),32-39页
    [31]杜双兴,吴有生.航速及定常流场对航行船体结构水弹性力学特性的影响,中国造船,1998,141(S 1),90-99页
    [32]段文洋,戴遗山.二维时域格林函数的数值计算.水动力学研究与进展.1996.11(3):330-335页
    [33]黄德波.时域Green函数及其导数的数值计算.中国造船,1992年第2期
    [34]韩凌,滕斌,勾莹,时域有限水深格林函数的多项式展开计算方法,水动力学研究与进展.2004,19(5):629-636页
    [35]Nakos, D.E. Ship wave patterns and motions by a three-dimensional Rankine panel method. Ph.D. Thesis, The Department of Ocean Engineering, MIT, USA,1990
    [36]Nakos, D.E. and Sclavounos, P.D. On steady and unsteady ship wave patterns. Journal of Fluid Mechanics, Vol.215,1990:263-288P
    [37]Sclavounos, P.D. and Nakos, D.E. Stability analysis of panel methods for free-surface flows with forward speed. Proceedings,17th Symposium on Naval Hydrodynamics, The Hague, The Netherlands,1988
    [38]Nakos, D.E. and Sclavounos, P.D. Ship motions by a three-dimensional Rankine panel method. Proc.18th Symp. On Naval Hydrodynamics, Ann. Arbor, MI,1990:21-40P
    [39]Sclavounos, P.D., Nakos, D.E. and Huang, Y. Seakeeping and wave induced loads on ship with flare by a Rankine panel method. Proceedings of the 6th International Conference on Numercial Ship Hydrodynamics, Iowa City, Iowa,1993
    [40]Sclavounos, P.D. Computation of wave ship interactions. Advances in Marine Hydrodynamics, edited by M. Ohkusu, Computational Mechanics Publications,1995
    [41]Longuet-Higgins M.S. and Cokelet E.D.,1976, "The deformation of steep surface waves on water, I. A numerical method of computation", Proc. Royal Society London A, Vol.350,1-26P
    [42]Faltinsen, O. M. (1977), "Numerical Solutions of Transient Nonlinear Free-Surface Motion Outside or Inside Moving Bodies", In Proceedings of 2nd International Conference of Numerical Ship Hydrodynamics, University of California, Berkeley, pp.347-357. University Extension Publisher, USA 1977
    [43]Vinje, T., Brevig, P.,1981, "Numerical simulation of breaking waves", Adv. Water Resources, vol.4,77-82P
    [44]D.G. Dommermuth, D.K.P. Yue, W.M. Lin, R.J. Rapp, E.S. Chan, W.K. Melville, Deep-water plunging breakers:a comparison between potential theory and experiments, J. Fluid Mech.189 (1988) 423-442P
    [45]Cointe, R.,1990, "Numerical Simulation of a wave Channel", Engineering Analysis with Boundary Elements, vol.7, no.4,167-177P
    [46]Tanizawa,K.:A numerical method for nonlinear simula-tion of 2-D body motions in waves by means of B.E.M.,. Journal of SNAJ, Vol.168,
    223-228P
    [47]Isaacson, M. Nonlinear-wave effects on fixed and floating bodies. Journal of Fluid Mechanics,120,1982:267-281P
    [48]Lin, W.M., Newman, J.N. and Yue, D.K.P. Nonlinear forced motions of floating bodies.15th ONR,1984
    [49]Dommermuth, D.G. and Yue, D.K.P. Numerical simulations of nonlinear axisymmetric flows with a free surface. Journal of Fluid Mechanics,178, 1987:195-219P
    [50]Yang, C. Time domain computation of nonlinear wave forces on 3-D body. Ph.D. thesis, Shanghai Jiao Tong University,1987
    [51]周正全.三维物体与非线性波浪的相互作用.中国船舶科学研究中心博士论文,1988
    [52]Romate, J.E. The numerical simulation of nonlinear gravity waves in three dimensions using a higher order panel method. Ph.D. thesis, University of Twente, The Netherlands,1989
    [53]Broeze, J. Numerical modelling of nonlinear free surface waves with a 3D panel method. Ph.D. thesis, University of Twente, The Netherlands,1993
    [54]van Daalen, E.F.G.. Numerical and theoretical studies of water waves and floting bodies. Ph.D. thesis, University of Twente, The Netherlands,1993
    [55]de Hass, P. Numerical simulation of nonlinear water waves using a panel method:domain decomposition and applications. Ph.D. thesis, University of Twente, The Netherlands,1997
    [56]Kring, D.C., Korsmeyer, F.T., Singer, J., Danmeier, D. and White, J. Accelerated non-linear wave simulations for large structures.7th International Conference on Numerical Ship Hydrodynamics, Nantes, France, July 1999
    [57]Landrini, M., Gryt(?)pyr, G. and Faltinsen, O.M. A B-spline based BEM for unsteady free-surface flows. Journal of Ship Research, Vol.43, No.1, March 1999:13-24P
    [58]Kring, D.C., Korsmeyer, F.T., Singer, J. and White, J. Analyzing mobile offshore bases using accelerated boundary-element methods. Marine Structures,2000(13):301-313P
    [59]钱昆.浮体在大幅波浪中的运动与载荷计算研究.大连理工大学博士学位论文,2004年
    [60]Issacson M., Cheung K.F., Second order wave diffraction around two-dimensional bodies bytime-domain method, Applied Ocean Research, 1991,13(4),175-186P
    [61]Issacson M., Cheung K. F., Time-domain solution for wave-current interactions with a two-dimensional body, Applied Ocean Research,1993, 15(1),39-52P
    [62]Issacson M., Cheung K. R, Time-domain second order wave diffraction in three dimensions, J.waterway, Port, Coastal&Ocean Eng. ASCE,1992, 118(5),496-516P
    [63]Issacson M., Ng J. Y T., Second-order wave radiation of three-dimensional bodies by time-domain method, Int. Jour. Of Offshore and Polar Eng.,1993, 3(4),264-272P
    [64]Issacson M., Ng J.Y T., Time-domain second-order wave interaction with three-dimensional floating bodies, Int. Jour. Of Offshore and Polar Eng., 1995,5(3),171-179P
    [65]Cheung K. F., Issacson M., Lee J W Wave diffraction around three-dimensional bodies in a current, Jour. of Offshore Mech. Arc. Eng., 1996,118,247-252P
    [66]Kim D. S., Iwata K., Nonlinear interaction of second order stokes waves and two-dimensional submerged moored floating structure, Int. Jour. Of Offshore and Polar Eng.,1994,4(2),89-96P
    [67]Kim D. J., Kim M. H., Wave-current interaction with a large three-dimensional body by HOBEM, Journal of Ship Research,1997,41(4), 273-285P
    [68]Buchmann B., Skourup J., Cheung K. F., Run-up on a structure due to second-order waves and a current in a numerical wave tank, Application Ocean Research,1998,20(5),297-308P
    [69]Bai W., Teng B., Second-order wave diffraction around 3-D bodies by a time-domain method China Ocean Engineering,2001,15(1),73-85P
    [70]柏威,滕斌,邱大洪,三维浮体二阶辐射问题的实时模拟,2003,水动力学研究与进展,18(4),489-498页
    [71]Clement A., Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves, Jour. Comp. Phy., 1996,126,139-151P
    [72]段文洋.船舶大幅运动非线性水动力研究.哈尔滨工程大学博士学位论文,1995年
    [73]Maruo H., The drift of a body floating on waves, Journal of Ship Research, 1960,4(1),1-10P
    [74]Newman, J.N.Second order slowly varying forces on vessels in irregular waves. Symp. On Dynamics of Marine Vehicles and structures in Waves, London.1974
    [75]贺五洲,戴遗山,求解零航速物体水动力的简单Green函数方法,水动力学研究与进展,1992,7(4),449-454页
    [76]缪国平,刘应中.大直径圆柱上的二阶波浪力.中国造船.1987,98:12-24.
    [77]Eatock Taylor, R, and S.M.HUNG. Second order diffraction forces on a vertical cylinder in regular waves. Applied Ocean Reshurch. 1987(9).19-30P
    [78]Benschop, A.Hermans, A. J. Second order diffraction forces on a ship in irregular waves. Applied Ocean Reshurch.1987(9).96-104P
    [79]Eatock Taylor, R, and Jefferys ER. Variability of Hydro Dynamic Load Prediction for a Tension Leg Platform. Ocean Engineering, 1986(13):449-490P
    [80]Chau, F. P. and Eatock Taylor, R.Second Order Velocity Potential for Arbitrary Bodies in Waves.3rd Int Work on Water Waves and Floating Bodies.1988
    [81]Chau, F. P. The Second Order Velocity Potential for Diffraction of Waves by Fixed Offshore Structure. Ph.D.Thesis, University College London, 1989
    [82]Lee, C.H.& Newman,J.N. First- and second-order wave effects on a submerged spheroid. J. Ship Research. To appear,1989
    [83]Kim, M.H., Yue, D.K.P., The complete second-order diffraction solution for an axisymmetric body. Part 1. Monochromatic incident waves. J.Fluid Mech.1989,200:235-264P
    [84]Kim, M.H., Yue, D.K.P.,1990.The complete second-order diffraction solution for an axisymmetric body. Part 2. Bichromatic incident waves and body motions. J.Fluid Mech.1990,211:557-593P
    [85]Kim, M.H. The second-order diffraction and radiation solutions for a vertically axisymmetric body. Ph.D.thesis, Dept. of Ocean Engineering, MIT
    [86]Lee, C.H., Newman, J.N., Kim, M.H., and Yue, D.K.P., The computation of second-order wave loads, Proc.10th International Conf. OMAE 1991, Stavanger
    [87]Y.H.Liu, M.H.Kim. Dounle-frequency wave loads on a compliant TLP. Proc.3rd Int. Offshore and Polar Engineering Conference, Singapore, June 1993, Vol. Ⅰ, pp.334-340P
    [88]Wu G X, Eatock Taylor Cylinder.in Finite Water Depth. R. The Second Order Diffraction Force on a Horizontal Applied Ocean Research.1990,12 (3):106-111P
    [89]李嘉,戴遗山.回转体作垂荡运动时的二阶辐射势.中国造船,1992,9(1)
    [90]邹志利,戴遗山.回转体的二阶绕射压力和绕射力.中国造船.1992.116:1-18页
    [91]Ferreira M.D.&Lee C.H. (1994) Computation of Second Order Mean Wave Forces and Moments in Multibody Interaction, Proc.7th Intl Conf. Behaviour Off. Structurs. Boss'99,2,3 03-13P
    [92]X.B.Chen.Numerical Evaluation of the Springing Loads on Tension Leg Platform.Marine Structures.1995.501-524P
    [93]X.B.Chen.Approximation on the Quadratic Transfer Function of Low-frequency Loads.Proc of 7th Boss,289-302P
    [94]ChunTian Zhao.Theoretical investigation of springing-ringing problems in tension leg platforms. Ph.D.Thesis, Texas A&M University.1996
    [95]Petrauskas,C.&Liu,S.V. Springing forces response of a tension leg platforms. Proc. Offshore Technology Conf.1987, no.5458, OTC, Huston
    [96]Jun Zou. Investigation of slowly varying drift motion and springing and ringing of tension leg platform system in nonlinear irregular waves. Ph.D.Thesis, Texas A&M University.1997
    [97]Middle-field formulation for the computation of wave-drift loads. By X.B. Chen, Journal of Engineering Mathematics, October 2006
    [98]Chen X.B. Middle-field formulation for the computation of wave-drift loads. Journal of Engineering Mechanics,2007:62-82P
    [99]API. Recommended Practice for Planning, Designing, and Constructing Tension Leg Platforms. API recommended practice 2T second edition, August 1997
    [100]李润培.深海平台技术的研究现状与发展趋势.中国海洋平台,2003,18(3):1-5页
    [101]Lin Li. Numerical Seakeeping Predictions of Shallow Water Effect on Two Ship Interactions in Waves. Ph.D.thesis, Dalhousie University,2001
    [102]Garrison C J. Hydrodynamic Loading of Large Offshore Structures: Three-Dimensional Source Distribution Methods. Numerical Methods in Offshore Engineering. Chichester:A Wiley-Interscience Publication,1978: 87-140P
    [103]R. W. Yeung. Added mass and damping of a vertical cylinder in finite-depth waters, Applied Ocean Research.1981,3 (3):119-133P
    [104]T. Sabuncu and S. Calisal. Hydrodynamic coefficients for vertical circular cylinders at finite depth, Ocean Engineering,1981,8 (1),25-63 P
    [105]Ogilvie, T.F. Second order hudrodynamic effects on ocean platforms. Intl Workshop Ship & Platform Motion. Berjekey.1983:205-265P
    [106]Les Piegl & Wayne Tiller. The NURBS Book.2nd. New York: Springer-Verlag,1997
    [107]施法中.计算机辅助几何设计与非均匀有理B样条.北京:高等教育出版社,2001年
    [108]刘应中,缪国平.船舶在波浪上的运动理论.上海交通大学出版社,1987
    [109]Lin Li,2001. Numerical seakeeping Predictions of shallow water effect on two ship interactions in waves [D]. Ph. D. Dissertation. Dalhousie University
    [110]Halkyard. J.E. Status of Spar platforms for deepwater production systems. Proc.6th ISOPE Conference.. LosAngeles,1996, Vol.1.262-272P
    [111]Cao.P.&Zhang,J.Slow motion responses of compliant offshore structures.Proc.6th ISPOPE Conference.LosAngeles,1996,Vol.1.296-303P
    [112]Arcandra, T.2001 Hull/Mooring/Riser Coupled Dynamic Analysis of a Deepwater Floating Platform with Polyester Lines. Ph.D. Dissertation, Texas A&M University
    [113]S.Chandrasekaran, A.K.Jain. Dynamic behaviour of square and triangular offshore tension leg platforms under regular wave loads. Ocean Engineering.2002,29:279-313P
    [114]Koo, B. J., Evaluation of the effect of contact between risers and guide frames on offshore spar platform. Ph.D. Dissertation, Civil Engineering Department, Texas A&M University,2003
    [115]Arcandra, T., Nurtjahyo, P.& Kim, M.H.2002 Hull/Mooring/Riser Coupled Analysis of a Turret-Moored FPSO 6000 ft:Comparison between Polyester and Buoys-Steel Mooring Lines. Proc.11th Offshore Symposium
    [116]BON-JUN KOO. Evaluation of the effect of contact between risers and guide frames on offshore spar platform motions. Ph.D. Dissertation, Civil Engineering Department, Texas A&M University,2003
    [117]Storhaug, G. and Moan, T.,2006 Springing/Whipping Response of a Large Ocean-going Vessel-Investigated by an Experimental Method", Hydroelasticity in Marine Technology, Vol.1,89-102P
    [118]Storhaug, G, Vidic-Perunovic Springing/whipping response of a large ocean going vessel-A comparison between numerical simulations and full-scale measurements, Proceedings 3rd International Conference on Hydro elasticity in Marine Technology, Cambridge,2003,UK
    [119]Park, I.K., Lee, S.M., Jung, J.J and Yoon, M.C. Springing effects on the design of modern merchant ships,9th Symposium on Practical Design of Ships and Other Floating Structures,2004:863-868, Germany
    [120]Vidic-Perunovic, J. and Jensen, J.J.. Springing response due to directional wave field excitation,9th Symposium on Practical Design of Ships and Other Floating Structures,2004:869-882, Germany
    [121]A. Ledoux, C. Mary, N. Couty. Modelling of Springing and Whipping of FPSO's in a Time Domain Sea-keeping Tool. ISOPE2004,22-28P
    [122]Zhang F., Yang J., Li R. and Chen G 2007,Numerical Study on the Hydrodynamic Behavior of a New Cell-Truss SparPlatform", Proc.26th OMAE, San Diego,CA, United States, Vol.2,93-102P
    [123]Walker D.A.G., Taylor P.H., Eatock Taylor R, Tromans P.S. and Zang J. 2007, Water Wave Diffraction and the Spectral Response Surface Method, Proc.17th ISOPE, Vol.17, Part 4,254-258P
    [124]Ohmatsu, S. A new simple method to eliminate the irregular frequencies in the theory of water waves raditon problems. Papers, Ship Research Institute, No.70, Japan,1983
    [125]Lau, S.M..Suppression of irregular frequency effects in fluid-structure interaction problems using a combined boundary intergral equation method. International Journal for Numerical Methods in Fluids, Vol.9.1989
    [126]D.J.Wang. Irregular frequency removal in 3D shallow water problems. Transactions on Modeling and Simulation,1993, Vol.3,13-22P
    [127]Lee, C.H., Newman, J.N and Zhu, X. An extended boundary integral equation method for the removal of irregular frequency effects. International Journal for Numerical Methods in Fluids, Vol.23, 1996:637-660P
    [128]Mercier RS, Schott WE, Howell CT, Denison EB, Gopalakrishnan R, Ekvall AGC. Mars tension leg platform-use of scale model testing in the global design. Offshore Technology Conference, Houston, Texas,1997; 8354:11-21P
    [129]Yoon R. Choi. An analysis of second order wave forces on floating bodies by using a higher order boundary element method. Ocean Engineering 2000(28):117-138P
    [130]Teigen P, Niedzwecki JM. Experiments and analysis with fully coupled Mini-TLP/Barge system. Ninth International Offshore and Polar Engineering Conference, Brest, France,1999; 1:339-47
    [131]Wu Y S. Hydroelasticity of floating bodies, Ph.D.Thesis, Brunel University,1984
    [132]Lamb, H.Hydrodynamics. (6th Edition).Cambridge University Press,1932
    [133]Faltinsen, O.M. Sea loads on ships and offshore structures, Cambridge University Press.1990
    [134]杨代盛,桑国光,李维扬,戴仰山.船舶强度的概率方法.哈尔滨:哈尔滨工程大学出版社,1994年
    [135]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社,1998年
    [136]Lee, C. H.. WAMIT Theory Manual. Department of Ocean Engineering, MIT, Cambridge,1995
    [137]J.M.J.Theoretical manual of SEAWAY.2001
    [138]Luo, Y., and Baudic, S.. Predicting FPSO responses using model tests and numerical analysis. Proceedings of International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA,2003:167-174P
    [139]Ikeda, Y (1982), "Prediction Method of Roll Damping", Report of Dept.of Naval Architecture, University of Osaka Prefecture
    [140]Chang H X, Miao G P, Liu Y Z. Numerical simulation of viscous flow around a rolling cylinder with shipIike section. China Ocean Engineering, 1995,9(1):9-18P
    [141]Bingham, H.B., and Maniar, H.D., "Computing the double-body m-terms using a high-order B-spline based panel method," presented at the 11th International Workshop on Water Waves and Floating Bodies, Hamburg 1996
    [142]Luke, Y.L. The Special Functions and their Approximations.1975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700