佳木斯地块构造演化—来自晚古生代沉积—火山岩的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东北地区及临区包括俄罗斯远东地区位于中亚造山带东段,大地构造位置处于华北克拉通和西伯利亚克拉通之间,其主要受古亚洲洋构造域的影响,又经历了太平洋构造域的强烈改造与叠加增生,具有复杂的构造演化历史。中国东北地区由一系列微陆块组成,佳木斯地块位于中亚造山带的东部,是洞悉中亚造山带构造演化历史的一个重要窗口。
     佳木斯地块东缘大面积分布着晚古生代地层,但关于其形成时代和构造属性也存在较大争议,本次以宝清地区泥盆系黑台组砂岩、石炭系珍子山组砂岩以及二叠系二龙山组安山岩为研究对象,通过砂岩骨架成分统计分析、地球化学分析、锆石LA-ICP-MS U-Pb年代学等手段,结合最新研究成果,探讨佳木斯地块晚古生代构造演化过程及东北地区构造演化历史。
     宝清地区位于佳木斯地块东缘。大地构造背景上东部为那丹哈达地体,西南为牡丹江断裂带,南部为索伦克-西拉木伦河-长春缝合带,区域内晚古生代地层广泛发育。泥盆系黑台组和石炭系珍子山组沉积物均以长石岩屑砂岩为主。砂岩骨架成分分析结果表明,矿物颗粒组成以石英、岩屑,长石为主,并含少量云母类矿物。岩屑成分中多以火山岩屑为主,并且含有大量的具岩浆岩特征的单晶石英。上述研究表明黑台组、珍子山组整体反映其成分成熟度低,源区快速剥蚀、快速搬运、近源沉积的特点。Dickinson三角图解清晰地反映了黑台组样品倾向于克拉通内部以及再旋回造山带物源,而珍子山组样品更倾向于再旋回造山带和切割岩浆弧物源。
     主量元素及其比值特征(Fe_2O_3/K_2O和Na_2O/K_2O)反映了黑台组具有长石砂岩和杂砂岩的特征,珍子山组具有杂砂岩的特征。两组砂岩的微量元素经上地壳岩石标准化的结果具有极为相似的特征,并与上地壳微量元素的含量基本一致,说明佳木斯地块东缘泥盆系黑台组和石炭系珍子山组砂岩所反映的源区具有亲缘性且具有上地壳岩石的特征。砂岩稀土元素分析结果表明,黑台组砂岩ΣLREE/ΣHREE=5.91~7.95,(La/Yb)_N=4.67~7.80,δEu=0.59~0.69,珍子山组砂岩ΣLREE/ΣHREE=6.54~9.51,(La/Yb)_N=5.19~9.16,δEu=0.69~0.87,两组砂岩均具有轻稀土元素富集,重稀土相对亏损,负Eu异常的特点,证实了泥盆系黑台组和石炭系珍子山组砂岩基本来自相同的物源区,可能属于亲上地壳长英质岩石的源区。
     砂岩母岩风化作用指数(CIA,CIW)均反映了泥盆系黑台组和石炭系珍子山组砂岩的物源区经受相对较强的风化作用。在A-CN-K图解同样也揭示这两个组存在一定程度的钾交代作用。地球化学特征判别图解表明,泥盆系黑台组砂岩主要具有被动大陆边缘物源区的特点,并呈现由被动大陆边缘向活动大陆边缘物源区变化的趋势;石炭系珍子山组砂岩具有活动大陆边缘和大陆岛弧型物源的特点。
     二叠系二龙山组火山岩主要由玄武安山岩、安山岩组成。具有低硅(54.7%~57.46%)、高铝(15.96%~17.83%)、高镁(Mg~#=44~48)、富钠(Na_2O/K_2O=1.81~3.53)的特征。为一套亚碱性岩石组合,具钙碱性演化趋势,主要表现为(中钾)钙碱性系列。在原始地幔标准化微量元素蛛网图解上,该组火山岩显示出高场强元素(HFSE)的相对亏损和大离子亲石元素(LILE)相对富集。球粒陨石标准化稀土元素配分图解上,各组火山岩配分形式以相对富含轻稀土元素(LREE)、贫重稀土元素(HREE)、基本上没有Eu异常的右倾型为特征,(La/Yb)_N=5.0~7.1,δEu=0.87~1.02。岩石学、地球化学研究表明早二叠世岩浆演化过程中分离结晶作用为主导机制,二龙山组火山岩为俯冲大洋板片产生的熔体交代岩石圈地幔楔部分熔融的产物,其形成于活动大陆边缘的构造环境。
     锆石LA-ICPMS U-Pb年代学表明,黑台组砂岩锆石年龄谱峰期为~380Ma、~406Ma、~476Ma、~509Ma,黑台组的形成时代不早于381±3Ma,其最大沉积时限应为晚泥盆世;珍子山组砂岩锆石年龄谱峰期为~315Ma,珍子山组的沉积年龄应晚于315±3Ma,其形成时代应不早于晚石炭世;二龙山组安山岩锆石年龄谱峰期为~280Ma、~370Ma、~509Ma,二龙山组的形成年龄应为281±3Ma,其形成时代应为早二叠世。
     研究区黑台组、珍子山组和二龙山组锆石年龄显示了421Ma~542Ma早古生代岩浆事件的存在,这与佳木斯地块麻山杂岩中片麻状花岗岩年龄相似,同时与宝清地区加里东期碱长花岗岩的形成时代相吻合,另外,该期岩浆事件在小兴安岭东北部和松辽盆地基底也均有所发现。此外,这三个组中还存在1035Ma、1466Ma、~1800Ma、~2700Ma、2822Ma的锆石年龄,结合最新研究表明,佳木斯地块应该存在从新元古代到中太古代晚期的结晶基底,黑台组和珍子山组的沉积物源可能来自佳木斯地块。
     佳木斯地块晚古生代构造演化为:在~500Ma,中国东北地块群(包括额尔古纳、兴安、松辽以及佳木斯-兴凯地块)起源于西伯利亚克拉通南缘晚泛非期造山带。在450~475Ma,中亚造山带内早期弧-陆碰撞导致岩石圈加厚和同碰撞花岗岩类上侵产生新地壳。在450~420Ma,蒙古-鄂霍茨克洋开启,佳木斯-兴凯地块从统一的东北地块中分离出去。在420~250Ma,东北地块及佳木斯-兴凯地块向南漂移到现今位置,泥盆纪处于被动大陆边缘的构造背景,石炭纪处于被动大陆边缘向活动大陆边缘转化的构造背景,二叠纪处于活动大陆边缘的构造背景,由于古太平洋板块的俯冲作用,佳木斯地块发育二叠纪的火山作用。在~230Ma,华北克拉通与西伯利亚克拉通最终碰撞拼合,太平洋板块的俯冲作用开始活跃。在210~180Ma,由于太平洋板块向西俯冲作用,佳木斯-兴凯地块与松辽地块重新碰撞拼合在一起。
NE China and adjacent regions, including the Russian Far East, havetraditionally been considered as the eastern part of the Central Asian Orogenic Belt,located between the Siberia and North China cratons. This region was not onlyaffected by the closing of Paleo-Asian Ocean, but also influenced by the subsequentoverprint and reconstruction related to the Pacific subduction. NE China is consideredto consist of a collage of micro-continental blocks, The Jiamusi Massif, located ateastern of CAOB, is significant for understanding tectonics and evolution of theCentral Asian Orogenic Belt.
     Late Paleozoic stata was widespread distributed in eastern margins of the JiamusiMassif, but its chronology and tectonic affinity is controversy. The current study ismainly focusing on the Devonian and Carboniferous sandstones and Permian basalticandesite exposed in Baoqing area, Jiamusi Massif, the systemically sandstone detritalclasts component analysis, geochemistry and LA-ICP-MS U-Pb detrital zircon ageshave been carried out on the studied Formatiom, The result presented in this papersuggests late Paleozoic tectonic evolution of Jiamusi Massif and tectonic history ofNE China.
     Baoqing area geographically exposed in eastern of Jiamusi Massif. that isbounded by the Nadanhada Terrane to the east, truncated by the Mudanjiang suturezone in the southwest, and by the Solonker-Xar Moron-Changchun suture zone in thesouth, where late Paleozoic strata are widespread. The sediments of the Devonian Heitai Formation and Carboniferous Zhenzishan Formation are mostly classified asfeldsparthic litharenite, which consists mainly of quartz, lithic clasts, feldspar andmicas, with a small amount of accessory minerals. The lithic clasts are predominatelycharacterized by the volcanic lithic grains. Additionally, the monocrystalline quartzgrains are extremely high in the framework of total quartz grains. The detritalcompositions indicate that the sandstones are immature, probably due to the effects ofrapid erosion, transport, and diagenetic process and/or nearly supplying derived fromthe source. In addition, the detrital modal analysis applying the Dickinson’s trianglediagrams also indicate the sediments of Heitai Formation are mainly derived fromrecycled orogenic and Cration interior source, while the sediments of ZhenzishanFormation are mostly derived from recycled orogenic and dissected arc source.
     The major elements and their radios (especially, Fe_2O_3/K_2O and Na_2O/K_2O) areclosely associated with arkose and greywacke for the sandstone from HeitaiFormation and wacke and greywacke for the sandstone from Zhenzishan Formation.Trace elements in the studied sandstones from the two formations mentioned aboveare upper crust-normalized patterns, and show the similar trends in the spider diagram,suggesting the similar provenances related to the rocks of upper crust. The rare earthelements and their chondrite-normalized patterns in the investigated sandstonesmostly show the LREE content enrichment and negative Eu abnormality, withΣLREE/ΣHREE=5.91~7.95,(La/Yb)_N=4.67~7.80, δEu=0.59~0.69in HeitaiFormation and ΣLREE/ΣHREE=6.54~9.51,(La/Yb)_N=5.19~9.16, δEu=0.69~0.87in Zhenzishan Formation, revealing that the similar provenances derived from thefelsic upper continent crustal rocks are reasonable to supplying for the sediments ofboth the Heitai and Zhenzishan formations.
     The indexes of paleo-weathering and chemical alteration (CIA and CIW values)together with the A-CN-K projections have been widely investigated in the sandstonefrom two formations, and show medium source weathering and potassiummetasomatism in the Heitai and Zhenzishan Formations. The geochemicaldiscrimination diagrams exhibit that tectonic setting corresponded for the provenance of the Heitai sediments is characterized by PM and subsequently transferred to theACM, whereas the tectonic setting of provenance of the Zhenzishan sediments tendsto transfer progressively from ACM to CIA.
     The Permian volcanic rocks in the Erlongshan Formation are mainly composedof basaltic andesite and andesite. They are characterized by low SiO_2contents(54.7%~57.46%), high Al (15.96%~17.83%) and Mg~#(44~48), enrichment in Na(Na_2O/K_2O=1.81~3.53). They belong to subalkaline series and show a calc-alkalineevolutionary trend, most of them are plotted within (medium-K) calc-alkaline series.On the primitive mantle-normalized spider diagram, the Permian volcanic rocks arecharacterized by enrichment in large ion lithophile elements (LILE) and relativelydepletion in high field strength elements (HFSE). The Chondrite-normalized REEpattern for the Permian volcanic rocks shows that The volcanic rocks arecharacterized by enrichment in light rare earth elements (LREE), relatively depletionin heavy rare earth elements (HREE), and no Eu anomalies,(La/Yb)_N=5.0~7.1,δEu=0.87~1.02. The characteristic of petrology and geochemistry imply that mineralfractional crystallization is the dominant mechanism to control magmatic evolution.Besides, the Erlongshan Formation volcanic rocks could be derived from the partialmelting of the lithosphere mantle wedge modified by the subducted oceanic slabunder the tectonic setting of the active continental margin.
     LA-ICP-MS zircon U-Pb dating results indicate that the maximum age ofdeposition of the Heitai Formation sandstone was younger than~374Ma in the lateDevonian, with a peak age at~380Ma、~406Ma、~476Ma、~509Ma in agepopulations. the maximum age of deposition of the Zhenzishan Formation sandstonewas younger than~313Ma in the late Carboniferous, with a peak age at~315Ma inage populations. the Erlongshan Formation volcanic rocks formed at278Ma in theearly Permian, with a peak age at~280Ma、~370Ma、~509Ma in age populations.
     Zircon U-Pb date of the Heitai, Zhenzishan and Erlongshan Formations exhibitthat the existence of the Early Paleozoic tectonic-magmatic event within421Ma~542Ma, which is consistent with the ages of the gneissic granites in the Jiamusi Massif and the Caledonian alkali-feldspar granites in the Baoqing area. This magmatic eventcan be also found in the basement of the Songliao Basin and the northeastern XiaoHinggan Mountains. Zircon ages of1035Ma,1466Ma,~1800Ma,~2700Ma,2822Ma, together with other studies, indicate that the Mesoarchean to Neoproterozoicbasement exist in Jiamusi Massif. The provenances of the Heitai and ZhenzishanFormations are derived from Jiamusi Massif.
     We have proposed a tentative model of tectonic evolution, whereby the blocks ofNE China (including Erguna, Xing’an, Songliao, Jiamusi, Khanka, and Bureya)originated as part of the Late Pan-African (~500Ma) orogenic belt developed aroundthe southern margin of the Siberia Craton. The early stage of arc-continent collisionwithin the CAOB was accompanied by reworking of juvenile crust at450-475Ma,leading to melting of thickened lithosphere and intrusion of syn-tectonic granitoids.However, at450-420Ma, during the opening of the Mongol-Okhotsk Ocean, Jiamusiblock rifted away the combined NE China blocks. at420-250Ma, The Jiamusi blockand the combined NE China blocks moved farther south into what is now NE China,probably. Devonian tectonic setting is PM, Carboniferous tectonic transfer from PMto ACM, Permian volcanic distributed widely due to the subduction of the PPC. Thefinal collision between the North China and Siberia cratons occurred at~230Ma in theMiddle Triassic. However, the Jiamusi-Khanka block rifted away at~260Ma in theLate Permian. Final re-docking with the Songliao Block occurred between210and
引文
1引用胡升奇《地球学报》文章《广西大黎铜钼矿石英二长(斑)岩年代学、地球化学特征及其地质意义》
    2引用赵英利的博士论文《大兴安岭中南部二叠纪砂岩物源分析对晚古生代区域构造演化的制约》
    3引用柏涛的博士论文《多物源示踪研究》
    4引用纪伟强的硕士论文《吉黑东部中生代晚期火山岩的年代学和地球化学》
    [1] Abe N, Arai S, Yurimoto H. Geochemical characteristics of the uppermost mantle beneaththe Japan island arcs: Implications for upper mantle evolution[J]. Physics of the Earth andPlanetary Interiors,1998,107:233-248.
    [2] Absar N, Raza M, Roy M, et al. Composition and weathering conditions of Paleoproterozoicupper crust of Bundelkhand craton, Central India: Records from geochemistry of clasticsediments of1.9Ga Gwalior Group[J]. Precambrian Research,2009,168:313-329.
    [3] Allegre C T. Quantitative models of trace planet[J]. Earth and Planetary Science Letters,1978,38(1):1-25.
    [4] Andersen T. Correction of common lead in U-Pb analyses that do not report204Pb[J].Chemical Geology,2002,192(1-2):59-79.
    [5] Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions fromstatistics and numerical simulation[J]. Chemical Geology,2005,216:249-270.
    [6] Badarch G, Cunningham W D, Windley B F. A new terrane suddivision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia [J]. Journal of Asian EarthSciences,2002,21(1):87-110.
    [7] Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenicandesites[J]. Chemical Geology,1981,32:139-154.
    [8] Ballard J R, Palin J M, Welliams I S, et al. Two ages of porphyry intrusion resolved for thesuper giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP[J].Geology,2001,29:383-386.
    [9] Barshad I. The effect of a variation in precipitation on the nature of clay mineral formation insoils from acid and basic igneous rocks[C]. In: Int. Clay Conf., Jerusalem, Proc.1966,1:167-173.
    [10] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. Journal ofGeology,1983,91:611-628.
    [11] Bhatia M R. Rare earth elements geochemistry of Australian Paleozoic graywacks andmudrocks: Provenance and tectonic control[J]. Sedimentary Geoloy,1985,45:97-113.
    [12] Bhatia M R, Crook K. Trace element characteristics of greywackes and tectonic settingdiscrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology,1986,92(2):181-193.
    [13] Blank L P, Kamo S L, Williams I S, et al. The application of SHEIMP to Phanerozoicgeochronology: A critical appraisal of four zircon standards[J]. Chemical Geology,2003,200:171-188.
    [14] Brijraj K D, Birgit G H. Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India:implications for source-area weathering, provenance and tectonic setting[J]. GeoscienceJournal,2003,7(4):299-312.
    [15] Brijraj K D, Birgit G H, Parkash K. Geochemistry of Renuka Lake and wetland sediments,Lesser Himalaya(India): implications for source area weathering, provenance, and tectonicsetting[J]. Environmental Geology,2008,54:147-163.
    [16] Condie K C. Chemical composition and evolution of the upper continental crust:contrasting results from surface samples and shales[J]. Chemical Geology,1993,104:1-37.
    [17] Condie K C, Boryta M D, Liu J, et al. The origin of khondalites: Geochmical evidence fromthe Archean to Early Proterozoic granulite belt in the North China carton[J]. PrecambrianResearch,1992,59:207-223.
    [18] Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone: Constraints from zirconU-Pb ages, Hf isotopic ratios and whole rock Nd-Sr isotope compositions of subduction andcollision related magmas and forearc sediments[J]. Journal of Asian Earth Sciences,2009,34(3):245-257.
    [19] Cox R, Low D R, Cullers R L. The influence of sediment recycling and basementcomposition on evolution of mudrock chemistry in the southwestern United States[J].Geochimica et Cosmochimica Acta,1995,59:2919-2940.
    [20] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[C]. InZuffa G G (ed.) Provenance of Arenites, D. Reidel Publications, Dordrecht,1985:333-362.
    [21] Dickinson W R, Beard L S, Brakenridge G R, et al. Provenance of North AmericanPhanerozoic sandstones in relation to tectonic setting[J]. Geological Society of AmericaBulletin,1983,94:222-235.
    [22] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AmericanAssociation of Petroleum Geology Bulletin,1979,63:2164-2182.
    [23] Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons inZimbabwean sediments[J]. Journal of the Geological Society, London,1988,145:977-983.
    [24] Eiler J, Grawford A, Elliott T, et al. Oxygen isotope geochemistry of oceanic arc lavas[J].Journal of Petrology,2000,41:229-256.
    [25] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism insedimentary rocks and paleosols, with implications for weathering conditions andprovenance[J]. Geology,1995,23:921-924.
    [26] Fedo C M, Young G M, Nesbitt H W. Paleoclimatic controle on the composition on thePaleoproterozoic Serpent formation, Huronian supergroup, Canada: A greenhouse toicehouse transition[J]. Precambrian Research,1997,86:201-223.
    [27] Floyd P A, Leveridge B E. Tectonic environment of the devonian gramscatho basin, southcornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journalof the Geological Society of London,1987,144:531-542.
    [28] Floyd P A, Shailr, Leveridge B E, et al. Geochemistryand provenance of rheonobercyniansynorogenic sandstones: Implications for tectonic environment discrimination[A]. A CMorton, S P Todd and P D W Haughton. Developments in Sedimentary ProvenanceStudies[C]. London: Geological Society, London, Special Publications,1991,57:173-188.
    [29] Francalanci L, Taylor S R, McCulloch M Y, et al. Geochemical and isotopic variations inthe calc-alkaline rocks of Aeolian arc, southern Tyrrhenian sea, Italy: Constraints on magmagenesis[J]. Contributions to Mineralogy and Petrology,1993,113:300-313.
    [30] Ge W C, Wu F Y, Zhou C Y, et al. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications[J].Chinese Science Bulletin,2007,52:3416-3427.
    [31] Gill J B. Orogenic Andesites and Plate Tectonics[M]. Springer Verlag, New York,1981.
    [32] Grove T L, Elkins Tanton L T, Parman S W, et al. Fractional crystallization and mantlemelting controls on calk-alkaline differentiation trends[J]. Contributions to Mineralogy andPetrology,2003,145(5):515-533.
    [33] Guerra M F C, Sarthre O, Gondonneau A, et al. Precious metals and provenance enquiriesusing LA-ICP-MS[J]. Journal of Archaeological Science,1999,26(8):1101-1110.
    [34] Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic setting of the Proterozoicturbidites in Hunan,South China: Geochemical evidence[J]. Journal of SedimentaryResearch,2002,72:393-407.
    [35] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology,1999,55:319-322.
    [36] Harris A C, Allen C M, Bryan S E, et al. LA-ICP-MS U-Pb zircon geochronology ofregional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: implication forporphyry-related mineralization[J]. Mineralium Deposita,2004,39:46-67.
    [37] Herron M M. Geochemical classification of terrigenous sands and shales from core or logdata[J]. Journal of Sedimentary Petrology,1988,58:820-883.
    [38] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition ofnitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry,2008,23:1093-1101.
    [39] Ionov D A, Gregoire M, Prikhod’ko V S. Feldspar-Ti-oxide metasomatism in off-cratoniccontinental and oceanic upper mantle[J]. Earth and Planetary Science Letters,1999,165:37-44.
    [40] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductivelycoupled plasma-mass spectrometry(LA-ICP-MS)to in-situ U-Pb zircon geochronology[J].Chemical Geology,2004,211:331-335.
    [41] Jahn B M. The Central Asian Orogenic Belt and growth of the continental crust in thePhanerozoic. In Aspects of the Tectonic Evolution of China (eds Malpas J, Fletcher C J N,Ali J R, Aitchison J C)[M]. Geological Society of London, Special Publication,2004,226:73-100.
    [42] Jahn B M, Wu F Y, Chen B. Massive granitoid generation in central Asia: Nd isotopicevidence and implication for continental growth in the Phanerozoic[J]. Episodes,2000,23:82-92.
    [43] Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction ofthe continental crust: geochemical and Sr-Nd isotopic evidence from post-collisionalmafic-ultramafic intrusions of the northern Dabie complex, central China[J]. ChemicalGeology,1999,157:119-146.
    [44] Ji W Q, Xu W L, Yang D B, et al. Chronology and Geochemistry of the Volcanic Rocksfrom Suifenhe Formation in Eastern Heilongjiang, China[J]. Acta Geologica Sinica,2007,81(2):266-277.
    [45] Jia D C, Hu R Z, Lu Y, et al. Collision belt between the Khanka block and the North Chinablock in the Yanbian region, Northeast China[J]. Journal of Asian Earth Science,2004,23:211-219.
    [46] Jian P, Liu D Y, Kroner A, et al. Time scale of an early to mid Paleozoic orogenic cycle ofthe long lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications forcontinental growth[J]. Lithos,2008,101(3-4):233-259.
    [47] Johnson M J. The system controlling the composition of clastic sediments[J]. In: Johnson MJ, Basu A (eds.), Processes Controlling the Composition of Clastic Sediments. GeologicalSociety of America Special Paper,1993:1-19.
    [48] Johnsson M J. Tectonic assembly of east central Alaska: evidence from Cretaceous Tertiarydetrital rocks of the Kandik River terrane[J]. Geological Society of America Bulletin,2000,112:1023-1042.
    [49] Johnsson M J, Stallard R F, Meade R H. First-cycle quartz arenites in the Orinoco riverbasin, Venezuela and Colombia[J]. The Journal of Geology,1988,96(3):263-277.
    [50] Kelemen P B, Hanghoj K, Greene A R. One view of the geochemistry of subduction-relatedmagmatic arcs, with an emphasis on primitive andesite and lower crust[C]. In: Rudnick RL(ed.), Treatise On Geochemistry,2003,3:593-659.
    [51] Kepezhinskas P, McDermott F, Defant M J, et al. Trace element and Sr-Nd-Pb isotopicconstraints on a three-component model of Kamchatka Arc petrogenesis[J]. Geochimica etCosmochimica Acta,1997,61(3):577-600.
    [52] Khanchuk A I. Accretion of Asia in the northest China and Far East of USSR[J]. Spericalissue on IGCP321.1992,154-161.
    [53] Kutterolf S, Diener R, Schacht U, et al. Provenance of the carboniferous HochwipfelFormation (Karawnken Mountains,Austria/Slovenia)–geochemistry versus petrography[J].Sedimentary Geology,2008,203:246-266.
    [54] Lennon R G, Wilde S A, Yang T. The Mashan Group: a500Ma granulite facies terrainwithin the Jiamusi Massif, Heilongjiang Province, North-eastern China. In ProterozoicGeology of Madagascar (eds R. Cox&L. D. Ashwal) pp45-46. Proceedings ofUNESCO-IUGS-IGCP348/368International Field Workshop, Antananarivo, Madagascar,1997. Gondwana Research Group, Publication5.
    [55] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of thePaleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian EarthSciences,2006,26:207-224.
    [56] Li X H, Liang X R, Sun M, et al. Precise206Pb/238U age determination on zircons by laserablation microprobe-inductively coupled plasma-mass spectrometry using continuous linearablation[J]. Chemical Geology,2001,175:209-219.
    [57] Liu W, Siebel W, Li X J, et al. Petrogenesis of the Linxi granitoids, northern InnerMongolia of China: constraints on basaltic underplating[J]. Chemical Geology,2005,219:5-35.
    [58] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes andtrace elements in zircons of mantle xenoliths[J]. Journal of Petrology,2010,51:537-571.
    [59] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrousminerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,2008a,257:34-43.
    [60] Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogitesand ultramafic rocks from the Chinese continental scientific drill hole: Subduction andultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology,2008b,247:133-153.
    [61] Ludwig K R. ISOPLOT3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center, California,2003.
    [62] Maynard J B. Chemistry of modern soils as a guide to interpreting Precambrian paleosols[J]. Journal of Geology,1992,100:279-289.
    [63] Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of late paleozoicsedimentary rocks in eastern Heilongjiang province, NE China: implications for the tectonicevolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics,2010,485:42-51.
    [64] Meng E, Xu W L, Yang D B, et al. Chronology of late paleozoic volcanism in eastern andsoutheastern margin of Jiamusi Massif and its tectonic implications[J]. Chinese ScienceBulletin,2008,53:1231-1245.
    [65] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshanophiolitic complex: Implications for late-stage tectonic evolution of the InnerMongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences,2008,32(5-6):348-370.
    [66] Miao L C, Fan W M, Zhang F Q, et al. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing’an Range, and its geologicalimplications[J]. Chinese Science Bulletin,2004,49:2201-2209.
    [67] Miao L C, Liu D Y, Zhang F Q. Zircon SHRIMP U-Pb ages of the “Xinghuadukou Group”in Hanjiayuanzi and Xinlin areas and the “Zhalantun Group” in Inner Mongolia, DaHinggan Mountains[J]. Chinese Science Bulletin,2007a,52(8):1112-1134.
    [68] Miao L C, Zhang F Q, Fan W M, et al. Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China: constraints from geochronology of ophiolitesand associated formations. In: Zhai M G, Windley B F, Kusky T M, Meng Q R(eds)Mesozoic sub-continental lithospheric thinning under Eastern Asia[C]. Geological Societyof London, Special Publication,2007b,206:223-237.
    [69] Mullen E D. MnO/TiO2/P2O5: a monor element discriminant for basaltic rock of oceanicenvironments and its implications for petrogenesis[J]. Earth and Planetary Science Letters,1983,62:53-62.
    [70] Murali A V, Parthasarathy R, Mahadevan T M, et al. Trace element characteristics, REEpatterns partition coefficients of zircons from different geological environments-A casestudy on Indian zircons[J]. Geochimica et Cosmochimica Acta,1983,47:2047-2052.
    [71] Murphy J B, Fernández-Suárez J, Jeffries T, et al. U-Pb (LA-ICP-MS) dating of detritalzircons from Cambrian clastic rocks in Avalonia: erosion of a Neoproterozoic arc along thenorthern Gondwanan margin[J]. Journal of the Geological Society,2005,161(2):243-254.
    [72] Natal'in B A. Mesozoic accretion and collision tectonics of southern USSR Far East[J].Pacific Geology,1991,10:3-23.
    [73] Natal'in B A. History and modes of Mesozoic accretion in southeastern Russia[J]. TheIsland Arc,1993,2:15-34.
    [74] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred fro mayorelement chemistry of lutites[J]. Nature,1982,299:715-717.
    [75] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanicrocks based on thermodynamic and kinetic considerations[J]. Geochimica et CosmochimicaActa,1984,48:1523-1534.
    [76] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. Journal ofGeology,1989,97:129-147.
    [77] Oh C W. A new concept on tectonic correlation between Korea, China and Japan: Historiesfrom the late Proterozoic to Cretaceous[J]. Gondwana Research,2006,9:47-61.
    [78] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using traceelement analyses[J]. Earth and Planetary Science Letters,1973,19:290-300.
    [79] Pearce J A, Gale G H. Identification of ore-deposition environment from trace edementgeochemistry of associated igneous host rocks[J]. Geological Society of London, SpecialPublication,1977,7:14-24.
    [80] Pettijohn F J, Potter P E, Siever R. Sand and sandstone[M]. Springer-Verlag, New York,1972:1-618.
    [81] Polat A, Kerrich R. Magnesian andesite, Nb-enriched basalt-andesite, and adakites fromLate-Archean2.7Ga Wawa greenston belts, Superrior Province, Canada: Implications forLate Archean subduction zon petrogenetic processes[J]. Contributions to Mineralogy andPetrology,2001,141:36-52.
    [82] Potter P E. Petrology and chemistry of big river sands[J]. Journal of Geology,1978,86:423-449.
    [83] Rainbird R H, Nesbitt H W, et al. Formation and diagenesis of a sub-Huronian saporlith:Comparison with a modern weathering profile[J]. Journal of Geology,1990,98:801-822.
    [84] Retallack G J. The fossil record of soils, in wright V P, ed., Paleosols, their recognition andinterpretation[M]. Oxford, United Kingdom, Blackwell,1986:1-57.
    [85] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major andminor elements[J]. Lithos,1989,22:247-263.
    [86] Roser B P, Korsch R J. Determination of tectonic setting of sandstonemudstone suites usingSiO2content and K2O/Na2O ratio[J]. Journal of Geology,1986,94:635-650.
    [87] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determinedusing discriminant function analysis of major element data[J]. Chemical Geology,1988,67:119-139.
    [88] Schmidberger S S, Francis D. Nature of the mantle roots beneath the North Americancraton: mantle xenolith evidence from Somerset Island kimberlites Original ResearchArticle[J]. Lithos,1999,48(1-4):195-216.
    [89] eng r A M C, Natal'in B A. Paleotectonics of Asia: fragments of a synthesis. In TheTectonic Evolution of Asia (eds A. Yin&T. M. Harrison)[M]. Cambridge University Press,1996:486-640.
    [90] eng r A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage andPalaeozoic crustal growth in Eurasia[J]. Nature,1993,364:299-307.
    [91] Shi G R. Marine Permian in East and NE Asia: an overview of biostratigraphy,palaeobiogeography and palaeogeographical implications[J]. Journal of Asian EarthSciences,2006,26(3/4):175-206.
    [92] Sreenivas B, Srinivasan R. Identification of paleosols in the Precambrian metapeliticassemblages of peninsular India-A major element geochemical approach[J]. Current Science,1994,67:89-94.
    [93] Tang K D. Tectonic development of Palaeozoic fold belts at the north margin of theSino-Korean craton[J]. Tectonics,1990,9:249-260.
    [94] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. AnExamination of the Geochemical Record Preserved in Sedimentary Rocks[M]. OxfordLondon: Blackwell scientific Publication,1985:1-301.
    [95] Van de Kamp P C, Leake B E. Petrography and geochemistry of feldspathic and maficsediments of the northeastern Pacific margin[J]. Transactions of the Royal Society ofEdinburgh: Earth Sciences,1985,76:411-449.
    [96] Vermeesch P. How many grains are needed for a provenance study[J]. Earth and PlanetaryScience Letters,2004,224:441-451.
    [97] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf,trace element and REE analyses[J]. Geostandards and Geoanalytical Research,1995,19:1-23.
    [98] Wilde S A, Dorsett-Bain H L, Liu J L. The identification of a Late Pan-African granulitefacies event in Northeastern China: SHRIMP U-Pb zircon dating of the Mashan Group atLiu Mao, Heilongjiang Province, China, Proceedings of the30th IGC:17PrecambrianGeology and Metamorphic Petrology, VSP International[M]. Science Publishers,Amsterdam,1997:59-74.
    [99] Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence ofcontinental crust and oceans on the Earth4.4Gyr ago[J]. Nature,2001,409:175-178.
    [100] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in Northeastern China:SHRIMP U-Pb zircon evidence for igneous ages from the Mashan Complex[J].Precambrian Research,2003,122:311-327.
    [101] Wilde S A, Zhang X Z, Wu F Y. Extension of a newly-identified500Ma metamorphicterrain in Northeast China: Further U-Pb SHRIMP dating of the Mashan Complex,Heilongjiang Province, China[J]. Tectonophysics,2000,328:115-30.
    [102] Wilson M. Igneous Petrology-A Global Tectonic Approach[J]. The Academic Division ofUnwin Hyman Ltd.,1989.
    [103] Wintsch R P, Kvale C M. Differential element mobility in burial diagenesis of siliciclasticrocks[J]. Journal of Sedimentary Research,1994,64:349-361.
    [104] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmaticclassification and to establishing the nature of crustal contamination of basaltic lavas of theBritish Tertiary volcanic province[J]. Earth and Planetary Science Letters,1980,50:11-30.
    [105] Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic crustal growth: U-Pb and Sm-Nd isotopicevidence from the granite in northeastern China[J]. Tectonophysics,2000,328:89-113.
    [106] Wu F Y, Jahn B M, Wilde S, et al. Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis[J]. Lithos,2003a,66:241-273.
    [107] Wu F Y, Jahn B M, Wilde S, et al. Highly fractionated I-type granites in NE China (II):Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos,2003b,67:191-204.
    [108] Wu F Y, Sun D Y, Jahn B M, et al. Jurassic garnet-bearing granitic pluton from NE Chinashowing tetrad REE patterns[J]. Journal of Asian Earth Sciences,2004b,23:731-744.
    [109] Wu F Y, Sun D Y, Li H M. The nature of basement beneath the Songliao basin in NEChina: Geochemical and Isotopic Constraints[J]. Physics and Chemistry of the Earth, PartA: Solid Earth and Geodesy,2001,26(9-10):793-803.
    [110] Wu F Y, Sun S Y, Li H M, et al. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis[J]. Chemical Geology,2002,187:143-173.
    [111] Wu F Y, Wilde S A, Zhang G L, et al. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J].Journal of Asian Earth Sciences,2004a,23:781-797.
    [112] Wu F Y, Yang J H, Lo C H, et al. Jiamusi Massif in China: a Jurassic accretionary terranein the western Pacific[J]. Island Arc,2007a,16:156-172.
    [113] Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: its role in the evolution of theCentral Asian Orogenic Belt of NE China[J]. Journal Asian Earth Science,2007b,30:542-556.
    [114] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the PermianSolonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J].Tectonics,2003,22(6):1069-1089.
    [115] Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of theaccretionary processes of the southern Altaids: implications for the geodynamic evolution,Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journalof Earth Sciences,2009,98:1189-1217.
    [116] Zhang Y B, Wu F Y, Wilde S A, et al. Zircon U-Pb ages and tectonic implications of‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, northeast China[J]. Island Arc,2004,13:484-505.
    [117] Zhou J B, Wilde S A, Zhang X Z et al. The onset of Pacific margin accretion in NE China:evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics,2009,478:230-246.
    [118] Zhou J B, Wilde S A, Zhao G C et al. Was the easternmost segment of the Central AsianOrogenic Belt derived from Gondwana or Siberia: an intriguing dilemma?[J]. Journal ofGeodynamics,2010a,50:300-317.
    [119] Zhou J B, Wilde S A, Zhao G C et al. Pan-African metamorphic and magmatic rocks ofthe Khanka Massif, NE China: further evidence regarding their affinity[J]. GeologicalMagazine,2010b,147(5):737-749.
    [120] Zhou J B, Wilde S A, Zhao G C et al. New SHRIMP U-Pb Zircon ages from theHeilongjiang complex in NE China: constraints on the Mesozoic evolution of NE China[J].American Journal of Science,2010c,310:1024-1053.
    [121]表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征.中国区域地质,1999,18(1):1-33.
    [122]曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,1992:45-126.
    [123]常丽华,曹林,高福红.火成岩鉴定手册[M].北京:地质出版社,2009:52-54.
    [124]陈斌,徐备.内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义[J].岩石学报,1996,12(4):546-561.
    [125]陈斌,赵国春, Wilde S A.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评,2001,47(4):361-367.
    [126]党延松,李德荣.关于佳木斯地块前寒武纪同位素地质年代学问题的讨论[J].长春地质学院学报,1993,23(3):312-318.
    [127]邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境讨论[J].高校地质学报,2007,13(3):392-402.
    [128]高福红,许文良,杨德彬,等.松辽盆地南部基底花岗质岩石锆石LA-ICP-MS U-Pb定年:对盆地基底形成时代的制约[J].中国科学D辑,2007,37(3):331-335.
    [129]葛文春,隋振民,吴福元.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007,23(2):423-440.
    [130]葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005,50(12):1239-1247.
    [131]何国琦.地球是怎样演变的[M].北京:中国青年出版社,1983:1-253.
    [132]黑龙江省地质局.1:20万区域地质调查报告(宝清幅、密山幅和双鸭山幅),1979.
    [133]黑龙江省地质矿产局.黑龙江省区域地质志.北京:地质出版社,1993.
    [134]洪大卫,黄淮曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
    [135]黄汲清.中国主要地质构造单位[M].北京:地质出版社,1954.
    [136]黄汲清,姜春发.从多旋回构造运动观点初步探讨地壳发展规律[J].地质学报,1962,42(2):105-152.
    [137]黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    [138]黄汲清,任纪舜,姜春发,等.中国大地构造及其演化(1/400万中国大地构造图简要说明)[J].北京:科学出版社,1980:1-124.
    [139]姜继圣.麻山群孔兹岩系主期区域变质作用及演化[J].岩石矿物学杂志,1992,11(2):97-110.
    [140]靳克.延边地区中生代火山岩的岩石学和地球化学[D].吉林大学博士学位论文,2004.
    [141]李春昱,王荃.我国北部边陲及邻区的古板块构造与欧亚大陆的形成[G].中国地质科学院沈阳地质矿产研究所,中国北方板块构造文集.1983,(1):3-16.
    [142]李春昱,王荃,刘雪亚,等.亚洲大地构造图(1/800万)说明书[M].北京:中国地图出版社,1982:1-49.
    [143]李锦轶.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J].科学通报,1986,31(14):1093-1096.
    [144]李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,2007,23(3):565-582.
    [145]李锦轶,牛宝贵,宋彪,等.黑龙江省东部中太古代碎屑岩浆锆石的发现及其地质意义[J].地球学报,1995,3:331-333.
    [146]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999:32-50.
    [147]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    [148]刘建峰,迟效国,董春艳.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27(4):534-544.
    [149]刘建峰,迟效国,周燕,等.小兴安岭东北部金林岩体全岩角闪石Rb-Sr年龄[J].吉林大学学报(地球科学版),2005,35(6):690-693.
    [150]卢良兆,徐学纯,刘福来.中国北方早前寒武纪孔兹岩系[M].长春:长春出版社,1996:1-276.
    [151]卢造勋,夏怀宽,赵国敏,等.内蒙古东乌珠穆沁旗至辽宁东沟地学断面综合地球物理特征[J].东北地震研究,1993,9(2):1-12.
    [152]裴福萍.吉南地区中生代火山岩的岩石学和地球化学特征[D].吉林大学博士学位论文,2005.
    [153]裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义[J].世界地质,2004,23(1):6-13.
    [154]裴福萍,许文良,杨德彬,等.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义[J].科学通报,2006,51(24):2881-2887.
    [155]彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代纪录[J].地质与资源,2002,11(2):65-75.
    [156]曲关生.中国东北黑龙江省岩石地层[M].武汉:中国地质大学出版社,1997:94-132.
    [157]任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造-中国及邻区大地构造图简要说明[M].北京:地质出版社,1999:4-32.
    [158]邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991:11-62.
    [159]邵济安,唐克东.吉林省延边开山屯地区蛇绿混杂岩[J].岩石学报,1995,11:212-220.
    [160]邵济安,唐克东.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社,1995:171-179.
    [161]邵济安,臧绍先,牟保磊,等.造山带的伸展构造与软流圈隆起-以兴蒙造山带为例[J].科学通报,1994,39(6):533-537.
    [162]史书林,徐常芳,王继军,等.辽宁义县-内蒙古东乌珠穆沁旗剖面深部电性研究[J].地震地质,1991,13(2):115-125.
    [163]石玉若,刘敦一,张旗,等.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义[J].地质通报,2007,(2):183-189.
    [164]宋彪,李锦轶,牛宝贵.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].地球学报,1997,18(3):306-312.
    [165]宋彪,牛宝贵,李锦轶,等.牡丹江-鸡西花岗岩类地质同位素年代学研究[J].岩石矿物学杂志,1994,13(2):204-213.
    [166]苏养正.论图瓦贝Tuvaella的时空分布和生态环境[J].古生物学报,1981,20(6):567-577.
    [167]孙白云.黑龙江省东南部勃利-牡丹江一带前寒武纪花岗闪长岩及花岗岩体成因探讨[J].中国地质科学院沈阳地质矿产研究所所刊,1983,6:68-79.
    [168]孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2001,17(2):227-235.
    [169]孙广瑞,李仰春,张昱.额尔古纳地块基底地质构造[J].地质与资源,2002,11(3):129-139.
    [170]唐克东.中朝陆台北侧褶皱带构造发展的几个问题[J].现代地质,1989,3(2):195-204.
    [171]唐克东,邵济安,李景春,等.吉林延边缝合带的性质与东北亚构造[J].地质通报,2004,23(9-10):885-891.
    [172]唐克东,王莹,何国琦,等.中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1):16-30.
    [173]唐克东,颜竹筠,张允平.内蒙古缝合带的地质特征与构造演化[J].中国地质科学院沈阳地质矿产所集刊,1997,(5-6):119-166.
    [174]王成善,李祥辉.沉积盆地分析原理与方法[M].北京:高等教育出版社,2005.
    [175]王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119-136.
    [176]王成文,孙跃武,李宁,等.中国东北及邻区晚古生代地层分布规律的大地构造意义[J].中国科学(D辑:地球科学),2009,39(10):1429-1437.
    [177]王成文,张松梅.哲斯腕足动物群[M].北京:地质出版社,2003:1-210.
    [178]王荃,刘雪亚,李锦轶.中国华夏与安哥拉古陆间的板块构造[M].北京:北京大学出版社,1991:122-134.
    [179]王颖,张福勤,张大伟,等.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2006,51(15):1811-1816.
    [180]王友,樊志勇,方曙,等.西拉木伦河北岸新发现地质资料及其构造意义[J].内蒙古地质,1999,90:6-26.
    [181]王友勤.中国东北区前寒武纪地层[J].吉林地质,1996,15(3-4):1-14.
    [182]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    [183] Wilde S A,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30(1):35-50.
    [184]吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999a,18(2):1-13.
    [185]吴福元,江博明,林强,等.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报,1997,42(20):2188-2193.
    [186]吴福元,林强,葛文春,等.张广才岭新华屯岩体的形成时代与成因研究[J].岩石矿物学杂志,1998,17(3):226-234.
    [187]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999b,15(2):181-189.
    [188]吴福元, Wilde S A,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [189]武广,孙丰月,赵财胜,等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288.
    [190]谢鸣谦.拼贴板块构造及其驱动机理-中国东北及邻区的大地构造演化[M].北京:科学出版社,2000:1-260.
    [191]徐备,张福勤.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J].地质科学,2001,36(4):424-434.
    [192]闫全人,高山林,王宗起,等.松辽盆地火山岩的同位素年代、地球化学特征及意义[J].地球化学,2002,31(2):169-179.
    [193]余和中,李玉文,韩守华,等.松辽盆地古生代构造演化[J].大地构造与成矿学,2001,25(4):389-396.
    [194]张金亮,张鑫.塔中地区志留系砂岩元素地球化学特征与物源判别意义[J].岩石学报,2007,23(11):2900-3002.
    [195]张梅生,彭向东,孙晓猛.中国东北区古生代构造古地理格局[J].辽宁地质,1998,(2):91-96.
    [196]张鑫,张金亮,覃利娟.塔里木盆地志留系柯坪塔格组砂岩岩石学特征与物源分析[J].矿物岩石,2007,27(3):106-115.
    [197]张兴洲.黑龙江岩系一古佳木斯地块加里东缝合带的证据[M].长春地质学院学报,1992,22(增刊):94-101.
    [198]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].吉林大学博士学位论文,2002.
    [199]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社,1998:1-53.
    [200]赵春荆,何国琦.俄远东、中国东北的构造特点及岩石圈深部的不均一性[J].辽宁地质,1995,4:241-255.
    [201]赵春荆,彭玉荆,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996:104-123.
    [202]赵红格,刘池洋.物源分析方法与研究进展[J].沉积学报,2003,21(3):409-415.
    [203]赵全国,许文良,靳克,等.延边地区中生代火山岩的岩浆源区来自: Sr-Nd同位素和深源捕虏体(晶)的证据[J].吉林大学学报(地球科学版),2005,35(4):416-422.
    [204]赵越,杨振宇,马醒华.东亚大地构造发展的重要转折[J].地质科学,1994,29(2):105-114.
    [205]赵振华,王强,熊小林.俯冲带复杂的壳幔相互作用[J].矿物岩石地球化学通报,2004,23(4):277-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700