疏松砂岩常规稠油油藏适度出砂提高产能基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油井出砂会造成井壁失稳、套管损坏、地层破坏、井下及地面设备的损害、管线的磨蚀及堵塞、油层被砂埋、修井作业及对采出砂的处理等问题,影响开发效果,增加开采成本,防砂一直是开采的关注点;而疏松砂岩稠油油藏中进行适度出砂生产,却能够大幅度提高油井的产能及一次采油的采收率,创造较好的经济效益和社会效益。本文针对油井出砂与防砂这一矛盾体,分析了油井出砂机理及其影响因素、出砂提高产能的机理、适度出砂适用条件,建立了油层开始出砂预测模型、出砂量与产量定量预测模型,奠定了适度出砂研究的理论基础。根据疏松砂岩稠油油藏的地质特征和开发特点,分析出砂生产的利弊,提出在疏松砂岩常规稠油油藏中进行适度出砂开采的观点,即在生产过程中根据需要对出砂量或其它出砂参数加以控制,进行携砂生产,达到既提高油井产能,又减少防砂费用的目的。
     本文研究旨在充分发挥油井适度出砂生产的优点,把握适度出砂生产的特点和提高产能的机理;对开始出砂的临界条件、出砂量以及出砂量与产能两者之间的关系进行定量预测。
     在研究过程中发现,本论文之前进行的出砂临界条件、出砂量预测等方面研究大多是采用Terzaghi有效应力理论,而且所得到的预测结果与实际情况有较大偏差,本文将双重有效应力应用于出砂临界条件预测和出砂量预测两个方面,取得了较好的结果,并解释了以前预测结果出现较大偏差的原因。
     本文取得的主要成果:
     在全面分析疏松砂岩稠油油藏生产过程中出砂与防砂生产特点的基础上,根据两者的优缺点,提出在疏松砂岩常规稠油油藏的开发过程中,进行适度出砂开发的方法;
     详尽研究了疏松砂岩稠油油藏生产过程中出砂机理及出砂影响因素,出砂生产的特点,出砂提高油井产能的机理,适度出砂适用条件等;
     对多孔介质有效应力进行系统分析和推证,证明双重有效应力的合理性,并推导了储层物性参数的动态模型。
     将双重有效应力理论用于地层开始出砂临界条件的预测,并推导了地应力各向同性及各向异性条件下裸眼(或射孔孔道)发生剪切(或拉伸)破坏、射孔端部发生剪切(或拉伸)破坏时的预测模型;
     应用双重有效应力理论推导了出砂量及出砂量与产能两者之间定量关系的解析模型,可用于出砂量及其适度出砂对产能影响的预测;
     将双重有效应力原理应用到流固耦合理论中,对非混溶饱和两相渗流
Sand production becomes a growing concern to more and more petroleum engineers. On the one hand, it will bring a lot of production troubles, such as the erosion of pipelines, plugging, oil zone buried by produced sand, and dealing with the produced sand, which costs billions of dollars each year. On the other hand, producing with limited sand in unconsolidated sand reservoir will enhance the oil rate and lower the costs of sand proof. Based on the detailed analysis of sand production while producing, a new method-producing with controlled sand in unconsolidated sand reservoir was presented, say, according to the facts of reservoir and the target, we can produce with limited sand by controlling the sand rate and other producing parameters.In order to maximize the profits of producing with limited sand, the following items are the concerns. It is necessary to study the characteristics, the mechanism of improving production rate about sand production. The onset of sand production, the sand rate and the relationship between production rate and sand rate should be predicted and they are the basis for decision making of producing with controlled sand.During the research, the past methods used to predict the onset of sand production, the prediction of sand rate and the quantitative relationship between the sand rate and production rate was discovered some wrong. It results from the theory of Terzaghi effective stress the past researchers used. By using the double effective stress, the difference between the prediction data and real data is minimized and it explained the reasons of the difference between them.Based on the above study, the following conclusions were achieved:Through comparing the methods of sand proof and cold production with sand, a new method—producing with limited sand was formed and presented here. This method is suitable to heavy oil reservoirs in unconsolidated rock and will benefit from the both methods of sand proof and cold production.In order to make the method of producing with limited sand more acceptable and practicable, this paper analyzed the mechanisms sand production, the characteristics of producing with sand and the factors which plays a role in sand production, and the aspects that enhance the production rate while producing with sand in detail.This paper proposed to predict the onset of sand production by using double effective stress and we demonstrate the structural effective stress is more suitable for
    predicting the onset of sand production, and derived the formulae that used to predict the onset of sand production due to shear failure of wellbore(perforation tunnel), perforation tip.The analytical model used to predict quantitatively the effect of sand production on the production rate was derived, and it can be used to make the decision of producing with limited sand.The past coupled model used in reservoir engineering was modified by applying the primary effective stress and the finite element formulae of this model were achieved. Based on this coupled model, the immiscible sand and liquid flowing model used to predict quantitatively the rate of sand and oil was derived and built The results calculated from the modified model were demonstrated more reasonable.This paper analyzed in detail the characteristics of producing with sand, the factors which affect sand production and the mechanism of production rate enhancement due to sand production. Based on the above-mentioned research, a new method which allows limited sand production is presented. The basic research on putting the method of producing with limited sand into practice was carried out, such as the prediction of the onset of sand production, the quantitative relationship of the sand rate and production rate. The conclusions achieved in this paper are the basis for making the method of producing with limited sand in unconsolidated sand rock reservoirs, and more research should be furthered such as the reasonable limit of sand rate, when and how to begin sand proof, how to determine the parameters and the related research about producing with limited sand.
引文
[1] Penberthy, W. L. and Shaughnessy, C. M.: Sand Control. SPE Series on Special Topics, Volume 1. 1992
    [2] Weingarten, J. S. and Perkins, T.K.: Prediction of sand production in gas wells: methods and Gulf of Mexico case studies, SPE24797
    [3] 何更生编.油层物理.北京:石油工业出版社,1994.Il
    [4] 程绍志,胡常忠,刘新福编著.稠油出砂冷采技术.北京:石油工业出版社,1998.8
    [5] M. B. Geilikman, M. B. Dusseault, and F. A. Dullien, Sand production and yield propagation around wellbores, in Pet. Soc. of CIM and AOSTRA, Calgary, Canada, 1995. 209
    [6] M. Dusseault, Cold production and enhanced oil recovery, Journal of Canadian Petroleum Technology, vol. 32(9), pp. 16-18, 1993
    [7] E. Papamichos and E. M. Malmanger, A sand erosion model for volumetric sand predictions in a north sea reservoir, SPE Reservoir Evaluation and Engineering, pp. 44-50, Feb., 2001
    [8] 陈晓喜,杨志斌,刘新福,胡常忠.石油勘探与开发.稠油出砂冷采技术在河南油田的应用.2002,Vol.29(4):95-96
    [9] 马超,宋鹏瑞,杨志斌.河南新庄油田新浅25断块稠油出砂冷采工业化应用推广试验.矿物岩石.2000,Vol.20(03):70-74
    [10] 王金凤,邓金根,沈琛.胜利油田弱胶结稠油藏岩石破坏准则及出砂预测.断块油气田.2001,Vol.8(02):19-22
    [11] 林景禹.稠油出砂冷采激励地层出砂技术.特种油气藏.2001,Vol.8(2):56-58
    [12] 张保平,汪永利.Fula油田稠油油藏地层出砂机理实验研究.石油勘探与开发.2002,Vol.29(4):109-120
    [13] 马守玉,李建东,姚俊涛,王少军,杨景丽.埕东油田埕古13块稠油出砂油藏配套开采技术.油气地质与采收率.2003,Vol.10(zl):63-64
    [14] 胡江明,王芙蓉.螺杆泵举升技术在稠油排砂冷采中的应用.石油钻采工艺.2004,Vol.26(1):69-72
    [15] 王宪中,施文彪.套保油田稠油出砂冷采地面工程配套工艺技术.油气田地面工程.2004,Vol.23(11):1-2
    [16] M. A. Mantooth and R. H. Williams, Sand control by application of special fluids and techniques in a shallow sand, offshore, Louisiana: A case history, in The Fourth SPE Symposium on Formation Damage Control, Baksfield, California, USA, Jan. 28-29, 1980, p. 10
    [17] N. Morita, D. L. Whitfill, O. P. Fedde, and T. H. Lovij, Realistic sand production prediction: Analytical approach, in 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers Proc, Dallas, TX, USA, Sept. 27-30, 1987
    [18] L. F. Elkins, D. Morton, and W. A. Blackwell, Experimental fireflood in a very viscous oil-unconsolidated sand reservoir i. e. Pauls Valley, Oklahoma, in 47th Annual Fall Meeting of the Society of Petroleum Engineers of AIME, San Antonio, USA, Oct. 8-11, 1972, p.8
    [19] W. J. McCa. rey and R. D. Bowman, Recent successes in primary bitumen 210 production, in The Heavy Oil and Oils Sands Technical Symposium, March 14, 1991
    [20] H. H. Vaziri, E. M. Lemoine, and Y. Xiao, Quantification of sand production induced improvement in productivity index, Can. Geotech. J., vol. 39, pp. 1088-1102, 2002
    [21] L. Zhang and M. B. Dusseault, A porosity-gradient controlled simulation model for solids production, Int. J. of Rock Mech. and Min. Sci., vol. 35 (4-5), pp. 14, 1998
    [22] L. Rothenburg and B. J. Bathurst, Analytical study of induced anisotropy in idealized granular materials, Geotechnique, vol. 39 (4), pp. 601-614, 1989
    [23] B. J. Bathurst and L. Rothenburg, Observations on stress-force-fabric relationships in idealised granular materials, Mechanics of Material, vol. 9, pp. 65-80, 1990
    [24] G. E. Smith, Fluid flow and sand production in heavy-oil reservoirs under solution-gas drive, SPE Production Engineering, vol. 3 (2), pp. 169-180, 1988
    [25] H.K. Maini, B.B. Abd Sarma, and A.E. George, Significance of foamy-oil behavior in primary production of heavy oils, JCPT, vol. 32(9), pp. 50-54, 1993
    [26] M.R. Islam and A. Chakma, Mechanics of bubble flow in heavy oil reservoirs, in The SPE 60th California Regional Meeting, Ventura, CA, USA, April 4-6 1990
    [27] C. Shen and J. Batycky, Some observations of mobility enhancement of heavy oils flowing through sand pack under solution gas drive, JCPT, pp. 46-53, 1999
    [28] M. B. Geililcman, M. B. Dusseault, and F. A. Dullien, Dynamics of wormholes and enhancement of fluid production, Tech. Rep., Part I, Waterloo Sand Production Project Report, 1998
    [29] R. Kumar and M. Pooladi-Darvish, An investigation into enhanced recovery under solution gas drive in heavy oil, in The SPE/DOE Improved Oil Recovery Symposium, Thisa, Oklahoma, USA, April 3-5, 2000, p. 11
    [30] B. Tremblay, G. Sedgwick, and D. Vu, A review of cold production in heavy oil reservoirs, in EACE-10th European Symposium on Improved Oil Recovery, Brighton, UK, Aug. 18-20, 1999, p. 11
    [31] K. V. Terzaghi, Stress distribution in dry and in saturated sand above a yielding trap door, in First International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, p.307
    [32] C. D. Hall and W. H. Harrisberger, Stability of sand arches: A key to sand control, in 4th SPE Conference on Drilling and Rock Mechanics, Austin, TX, Jan 14-15, 1969
    [33] R. Risnes, R. K. Bratli, and P. Horsrud, Sand arching-a case study, SPEJ, p. 30, 1984
    [34] K. Yim, M. Dusseault, and L. Zhang. Experimental study of sand production processes near an orifice, in Eurorock, A. A. Balkema, Ed., 1994
    [35] R. K. Bratli and R. Risnes, Stability and failure of sand arches, SPEJ, pp. 236-248, April, 1981
    [36] R. Risnes, R. K. Bratli, and P. Harsrud, Sand stresses around a wellbore, SPEJ, pp. 709-722, 1981
    [37] N. Morita, Realistic sand-production prediction: Numerical approach, SPEPE, p. 15, Feb., 1989
    [38] N. Morita, Parametric study of sand production prediction: Analytical approach, in SPEPE, Feb. 1989, p. 25
    [39] D. Anthenunis, P. B. Vriezen, B. A. Schipper, and A. C. Van der Vlis, Perforation collapse: Failure of perforated friable sandstones, in SPE European Spring Meeting, Amsterdam, The Netherlands, April 8-9 1976, p. 13
    [40] C. A. M. Veeken, D. R. Davies, C. J. Kenter, and A. P. Kooijman, Sand production prediction review: Developing an integrated approach, in The 213 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX, USA, Oct. 6-9 1991
    [41] M. Dusseault, M. B. Geilikman, and T. Spanos, Mechanisms of massive sand production in heavy oils, in The 7th UNITAR Conference, Beijing, China, 1998
    [42] I.D. Palmer,M. J. Mavor, J. P. Seidle, J. L. Spitler, and R. F. Volz, Openhole cavity completions in coalbed methane wells, JPT, vol. 45, pp. 1072, 1993
    [43] I. D. Palmer, J. D. Mclennan, and H. H. Vaziri, Cavity-like completions in weak sands, in International Symposium on Formation Damage Control, Lafayette, Louisiana, Feb. 23-24, 2000, p. 9
    [44] H. H. Vaziri, R. Phillips, and S. Hurley, Physical modeling of sand production, Int. J. Rock Mech. Sci., vol. 34(3/4), pp. 466, 1997
    [45] R. C. K.Wong, A. M. Samieh, and R. L. Kuhlemeyer, E. ects of stress-strain response of oil sands at low e. ective stresses on sand production in solution -gas drive, in Petroleum Society of CIM, Calgary, Canada, May 9-12, 1993. 214
    [46] B. Tremblay, G. Sedgwick, and D. Vu, CT imaging of wormhole growth under solution-gas drive, SPE Reservoir Engineering Journal, vol. 2 (1), pp. 37-45, Feb., 1999
    [47] A. Samieh and R. Wong, Modeling the responses of athabasca oil sand in triaxial compression tests at low pressure, Can. Geotech. J., vol. 35, pp. 395-406, 1998
    [48] A. Squires, Inter-well tracer results and gel blocking program, in Tenth Annual Heavy Oil and Oil Sands Technical Symposium, Calgary, AB, Canada, March 9, 1993
    [49] K.C. Yeung, Cold flow production of crude britumen at the Burnt Lake Project, in The UNITAR International Conference on Heavy Crude and Tar Sands, Houston, USA, Feb. 12-17, 1995
    [50] M. Metwally and S.C. Solanki, Heavy oil reservoir mechanisms, Lindbergh and Frog Lake fields, Alberta part I: Field observations and reservoir simulation, in The 46th Annual Technical Meeting of Petroleum Society of CIM, Ban., Canada, May 14-17, 1995, The 46th Annual Technical Meeting of Petroleum Society of CIM
    [51] B. Tremblay, G. Sedgwick, and K. Forshner, Imaging of sand production in a horizontal sand pack by X-ray Computed Tomography, SPE Formation Evaluation Journal, pp. 94-98, June 1996
    [52] B. Tremblay, G. Sedgwick, and D. Vu, Simulation of cold production in heavy oil reservoirs: Wormhole dynamics, SPE Reservoir Engineering Journal, pp. 110-117, May 1997
    [53] L. Lam, Active Walker: Pattern Formation, Self-Organization and Complex 215 Systems, Addison Wesley, New York, 1996
    [54] J. Y. Yuan, B. Tremblay, and A. Babchin, A wormhole network model of cold production in heavy oil, in The 1999 SPE International Thermal Operations and Heavy Oil Symposium, Bakersfield, CA, USA, March 17-19, 1999, p. 7
    [55] Koojiman A.P., Halleck P.M., C.J. Kenter. Large-scale laboratory sand production test. SPE 24798: 325-338
    [56] Veeken C.A., Davies D.R., C.J. Kenter. Sand production prediction review: Developing and integrated approach. SPE 2792: 335-352
    [57] Tixier M. P., Loveless G. W., R. A. Anderson. Estimation strength from the mechanical properties log. JPT, 1975, 27 (3): 283-293
    [58] Coates G. R. and S. A. Denoo. Mechanical properties program using borehole analysis and Mohr's circle. SPWLA 22nd, Logging symp, 1981:23-26
    [59] 沈琛,邓金根,王金凤.胜利油田弱胶结稠油藏岩石破坏准则及出砂预测.断块油气田,2001,Vol.8(2):19-22
    [60] 周建良,王敏,王双平.油气田预测方法.中国海上油气工程.1997,Vol.9(4):26-36
    [61] 董平川,徐小荷.储层流固耦合的数学模型及其有限元方程.石油学报.1998,Vol.19(1):64-70
    [62] 冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究.石油勘探与开发.1997,Vol.24(3):61-68
    [63] 梁冰,孙可明,薛强.地下工程中的流—固耦合问题的探讨.辽宁工程技术大学学报(自然科学版).2001,Vol.20(2):129-134
    [64] 范学平,李秀生,张士诚,徐向荣.低渗透气藏整体压裂流—固耦合渗流数学模拟.石油勘探开发.2000,Vol.27(1):76-83
    [65] 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型.水动力学研究与进展.2003,Vol.18(4):419-426
    [66] Wang, Y., Sand production and foamy oil flow in heavy-oil reservoirs, SPE 37553, Int. Thermal operations & Heavy Oil Symp., Bakersfield, CA, Feb., 1997
    [67] Yarlong, Wang and Xue Shifeng, Coupled reservoir-geomechanics model with sand erosion for sand rate and enhanced production prediction [C]. SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Lousiana, Feb.20-21, SPE 73738, 2002
    [68] 王正茂,李治平,李允.变形介质储层出砂渗流机理研究.第七届全国渗流力学学术会议.2004
    [69] A. Ghalambor, A. Hayatdavourdi, C. F. Alcocer, and R. J. Koliba, Predicting sand production in U. S. gulf coast gas wells producing free water, Journal of Petroleum Technology, pp. 1336—1343, Dec. 1989
    [70] J. M. Somerville, B. G. D. Samrt, S. L. Zoller, and R. A. Farquhar, The potential for sand production: Assessment by finite element modeling, in SPE 69th Annual Technical Conference and Exhibition, New Orleans, LA, USA, 1994, pp. 439-448, Society of Petroleum Engineering, lnc
    [71] M. Kanj and J. C. Roegiers, A neural approach to sand production prediction in wells, Int. J. of Rock Mech. and Min. Sci., vol. 35 (4-5), pp. 14, 1998
    [72] X. Liu and G. Zhao, A fractal wormhole model for cold heavy oil production, in Petroleum Society's Canadian International Petroleum Conference 2003, Calgary, AB, Canada, June 10-12, 2003, p. 10
    [73] S. Whitaker, The transport equations for multi-phase system, chemical engineering science, Chemical Engineering Science, vol. 28, pp. 139-147, 1973
    [74] I. Vardoulakis, M. Stavropoulou, and P. Papanastasiou, Hydromechanical aspects of sand production problem, Transport in Porous Media, vol. 22, pp. 225-244, 1996
    [75] E. Papamichos and M. Stavropoulou, An erosion-mechanical model for sand production rate prediction, Int. J. Rock Mech. Min. Sci., vol. 35 (4-5), pp. 531-532, 1998
    [76] M. Stavropoulou, P. Papanastasiou, and I. Vardoulakis, Coupled wellbore erosion and stability analysis, Int. J. Num. Anal. Methods Geomech., vol. 22, pp. 749-769, 1998
    [77] E. Papamichos, Vardoulakis I., J. Tronvoll, and Skjerstein A., Volumetric sand production model and experiment, Int. J. Numer. Anal. Methods Geomech., vol. 25 (8), pp. 789-808, 2001
    [78] 刘文章编著.热采稠油油藏开发模式.北京:石油工业出版社,1998.7:18-22
    [79] 李颖川主编.采油工程.北京:石油工业出版社,2002.2
    [80] 胡常忠编.稠油开采技术.北京:石油工业出版社,1998.6
    [81] 董本京,穆龙新.国内外稠油冷采技术现状及发展趋势.钻采工艺.2002,Vol.25(6):18-21
    [82] 吴奇编译.国际稠油开采技术论文集[C].北京:石油工业出版社,2002
    [83] 马超,李琳,鲁春宝,等.疏松砂岩稠油油藏出砂冷采机理及配套技术研究[J].矿物岩石,2001.21(2):73-77
    [84] A. Nouri, M.M. Al-Darbi, H. Variri and M. R. Islam. Deflection Criteria for Numerical Assessment of the Sand Production Potential in an Openhole Completion. Energy Sources, 24: 685-702, 2002
    [85] 何生厚,张琪著.油井防砂理论及应用.北京:石油工业出版社,2003
    [86] 汪伟英,王尤富,王孝忠,何海峰,聂飞朋.流体性质对出砂的影响及控制.特种油气藏.2003,Vol.10(5):79-80
    [87] 杨志斌.稠油出砂冷采对射孔技术的要求.钻采工艺.2003,Vol.26(6):50-52
    [88] 陈晓喜,周辉,赵宇,董文龙,伏卫东,孙来喜.稠油出砂冷采技术的适用条件.石油与天然气地质.2001,Vol.22(4):378-381
    [89] 刘新福,杨志斌,宋鹏瑞,李彦平,李少凡,王红涛.地质因素对稠油出砂冷采的影响.新疆石油地质.2002,Vol.23(1):55-58
    [90] 赵春旭,宋鹏瑞,黄爽英,杨志斌,刘新福.稠油出砂冷采矿场操作技术策略.特种油气藏.2002,Vol.9(4):63-65
    [91] 李传亮.上覆压力与流体压力和骨架应力之间的关系式.新疆石油地质.1998,19(6):518~519
    [92] 李传亮,孔祥言,徐献芝,李培超.多孔介质的双重有效应力.自然杂志.1999,Vol.5
    [93] 沈珠江.关于固结理论和有效应力的讨论.岩土工程学报.1995,17(1):118~119
    [94] 李培超,孔祥言,李传亮,徐献芝.地下各种压力之间关系式的修正.岩石力学与工程学报.2002,Vol.21(10):1551-1553
    [95] J.C耶格,N.G.w.库克著.中国科学院工程力学研究所译.岩石力学基础.北京:科学出版社,1981
    [96] R. L. Schiffman, The stress components of a porous medium. J. Geophys, Res., 1970, 75: 4035-4038
    [97] M R. Warpinski, L. W Teufel. Determination of the effective stress law for permeability and determination in low-permeability rock. SPEFE, 1992, 7 (2): 123-131
    [98] P. V. Lade, R. De Boer. Concept of Effective Stress for Soil, Concrete and Rock. Geotechnique, Vol, 47, No, 1, Mar. 1997:61-78
    [99] R. W. Zimmerman, W H. Somerton, M. S. King. Compressibility of Porous Rocks. J. of Geophysical Research, (1986) Vol. 91, No. B 12, 12:765-777
    [100] 徐献芝,蔡健,李传亮,李培超.考虑孔隙比变化的粘弹性土体本构模型.土木工程学报.2000,Vol.3
    [101] 徐献芝,李培超,李传亮.多孔介质有效应力原理研究.力学与实践.2001,Vol.23(4), 42-45
    [102] Nur A, Byerlee J. D. An exact effective stress law for elastic deformation of rock with fluids, J. Geophys Res 1971; 76:6414-9
    [103] A. Settari and F. M. Mourits, A Coupled Reservoir and Geomechanical Simulation System, SPE 50939, 1998
    [104] Chen, H. Y., Teufel, L. W., Lee, R. L., Coupled Fluid Flow and Geomechanics in Reservoir Study-Ⅰ. Theory and Governing Equations, SPE 30752, 1995
    [105] 练章华,杨龙,段永刚,刘向君,唐波.塑性应变准则在油井出砂预测中的应用.西南石油学院学报.2003,Vol.25(4):16-18
    [106] Tippie, D. B. and Kohthaas, C. A.: "Effect: of Flow Rate on Stability of Unconsolidated Producing Sands," paper SPE 4533 presented at the 48th Annual Fall Meeting of the Society of Petroleum Engineers of AIME held in Las Vegas, Nevada, 30 September-3 October, 1973
    [107] Cleary, M. P., Melvan, J. J. and Kohlhaas, C. A.: "The Effect of Confining Stress and Fluid Properties on Arch Stability in Unconsolidated Sands," paper SPE 8426 presented at the 54th Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME held in Las Vegas, NV, 23-26 September, 1979
    [108] Aziz, K. and Settari, A.: Petroleum Reservoir Simulation, Applied Science Publishers Ltd., London (1979)
    [109] Smith, I. M. and Griffiths, D. V.: Programming the Finite Element Method, John Wiley & Sons, New York (1998)
    [110] 吕广忠,陆先亮,栾志安,陈辉.油井出砂预测方法进展.油气地质与采收率.2002,Vol9(6):55-57
    [111] 王德新,吕从容.油井中后期出砂预测及防砂对策.石油钻采工艺.1992,15(6):427-431
    [112] 霍树义,李厚欲,张玉模.油井出砂层位预测技术.地球物理测井.1992,15(6):427-431
    [113] Geilikman, M. B., M. B. Dusseault, and F. A. Dullien, Sand production and yield propagation around wellbores, paper 94-89, Pet. Soc. of CIM & AOSTRA, Calgary, Alberta, 1995.
    [114] Geilikman, M. B., M. B. Dusseault, and F. A. Dullien, Fluid rate in flowing granular medium with moving boundary, 4th European Conference on the mathematics of oil recovery, Roros, Norway, June 7-10, 1995, pp. 41-50
    [115] Geilikman, M. B., M. B. Dusseault, and F. A. Dullien, Sand production as viscoplastic granular flow, SPE 27343, Int. Syrup. of Formation Damage Control, 1995
    [116] Dusseault M. B., M. B. Geilikman and T. J. T. Spanos, Mechanisms of massive sand production in heavy oils, Proc 7th Int. Unitar Conf. on Heavy Oils and Tar Sands, 14 p., Beijing, PRC, Oct 1998
    [117] Geilikman, M. B. and M. B. Dusseault, Sand Production Caused by Foamy Oil Flow. Transport in Porous Media, 35:259-272 1999
    [118] Geilikman, M. B. and M. B. Dusseault, Fluid-rate enhancement from massive sand production in heavy oil reservoirs. J. of Petr. Science & Engineering, 17, 5-18. Special Issue: Near Wellbore Formation Damage and Remediation, 1997
    [119] Allen, D.R.: Physical changes of reservoir properties caused by subsidence and re-pressurizing operations, Wihnington Field, California, JPT (1968) 23-29
    [120] Allen, D.R.: Environmental aspects of oil producing operations-Long Beach, California, paper SPE 3450, February, 1972
    [121] Cook, C. C., and Jewell, S.: Reservoir simulation in a North Sea reservoir experiencing significant compaction drive, paper SPE 29132, presented at the 13th SPE Symposium on Reservoir Simulation held in San Antonio, TX, 12-15 February 1995
    [122] Sulak, R. M. and Danielsen, J.: Reservoir Aspects of Ekofisk Subsidence, JPT, July 1989, 709-716
    [123] Haibin Xu, Production Induced Reservoir Compaction and Surface Subsidence, With Applications to 4D Seismic, PhD Dissertation, July. 2002, Stanford University
    [124] Somerton WH., Thermal properties and temperature-related behaviour of rock/fluid systems, Amsterdam: Elsevier, 1992
    [125] Zimmerman R. W., Coupling in poroelasticity and thermoelasticity, Int. J. Rock Mech., Volume 37, pp. 79-87, 2000
    [126] Settari, A. and Waiters D. A., Advances in Coupled Geomechanical and Reservoir Modeling With Applications to Reservoir Compaction, SPE 74142, September, 2001
    [127] 孔祥言著.高等渗流力学.合肥:中国科学技术大学出版社,1999
    [128] Lewis R. W. Finite element modeling of two-phase heat and fluid flow in deforming porous media [J]. Transport in Porous Media, 1989, 4:319-334
    [129] 薛世峰,仝兴华,岳伯谦,董波.地下流固耦合理论的研究进展及应用.石油大学学报(自然科学版).2000,Vol.24(2):109-113
    [130] Settal A., Puchyr P. J., et. Partially decoupled modeling of hydraulic fracturing processes. SPE Production Engineering, Feb., 1990, 37-41
    [131] 薛世峰,宋惠珍.非混相饱和两相渗流与变形介质耦合作用的数学模型.地震地质.1999,Vol.21(3):2214-252
    [132] 薛世峰,宋惠珍.非混相饱和两相渗流与变形介质耦合模型的解耦与有限元公式.地震地质.1999,Vol.21(3):253-260
    [133] 房军,薛世峰.变形孔隙介质中的热—流—固耦合作用的理论研究.浙江大学学报.1999,4(增刊):85-92
    [134] 董平川,郎兆新,徐小荷.油井开采过程中油层变形的流固耦合分析.地质力学学报.2000,Vol.6(2):6-10
    [135] Santanu Khataniar and Ekwere Peters. A comparison of the finite-difference and the finite-element methods for simulating unstable displacements. Petroleum Science & Engineering, 1991, 5:205-218
    [136] Langtangen H. P. Implicit finite element methods for two-phase flow in oil reservoirs. Int. J. Numer. Methods Fluids. 1990, 10:651-681
    [137] 韩大匡,陈钦雷,闫存章.油藏数值模拟基础.北京:石油工业出版社.1993
    [138] Papamichos, E., and M. Stavropoulpu, An erosion-mechanical model for sand production rate prediction, Int. J. Rock Mech. Min Sci. & Geomech. Abstr. Vol 35 (5), 531-532, 1998
    [139] 李人宪编著.有限元法基础.北京:国防工业出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700