弧形翼及翼身组合体在超高速下的空气动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代飞行器的飞行速度不断增加,高超声速气动力和气动加热已经成为高超声速飞行器发展的重要研究课题。本文开展了弧形翼及翼-身组合体在超高速下的空气动力学特性研究。采用计算流体动力学软件FLUENT对弧形翼及翼-身组合体在超高速下的三维绕流流场进行了数值模拟,对不同滚转角下的弧形翼-身组合体进行了风洞试验研究,同时对弧形翼在超高速下的气动加热过程进行了数值模拟。
     首先建立了研究弧形翼在超高速下空气动力学特性的数学模型。数值方法采用三维守恒型、可压缩、非定常粘性流体雷诺平均N-S方程为控制方程,离散格式采用二阶迎风格式。针对高超声速流下的数值模拟,引入了AUSM+格式,降低了数值耗散性,提高了间断分辨率和计算精度。湍流模型采用雷诺应力湍流模型。采用了非一致网格技术建立了弧形翼-身组合体的网格模型,既满足了不同分区网格的疏密要求和粘性计算要求,又降低了计算网格量。
     采用本文所研究的计算程序和数值格式,对弧形翼在超高速下的三维绕流流场进行了数值模拟。获得了合理的流场结构信息和气动力数据,重点分析了弧形翼在零攻角下产生升力的机理,以及弧形翼气动力特性随马赫数、攻角的变化规律,同时研究了翼前缘削尖角角度、翼的曲率对弧形翼气动力特性的影响。
     对弧形翼-身组合体三维绕流流场进行了超高速下的数值模拟,详细研究了远场流场参数、攻角等因素对超高速弧形翼-身组合体流场结构及气动力特性的影响规律。对弧形翼-身组合体进行了不同滚转角下的超声速风洞试验,获得了合理的风洞试验纹影图和风洞试验数据,与数值模拟得到的流场结构波谱图和气动力计算结果进行比较,两者比较吻合,验证了本文所研究的数值计算程序是正确可行的,计算精度具有较高的可信度。
     建立了弧形翼在超高速下气动加热的计算模型,把形式上相对独立的流场和结构的控制方程联系起来,采用流场、热、结构耦合的-体化数值模拟方法求解了弧形翼超高速下的气动加热过程,获得了弧形翼在不同马赫数、攻角下的气动加热特性。
     本文的研究工作对我国进行大长细比、超高速的飞行器空气动力学问题研究具有一定的指导意义,同时为弧形翼的理论研究和工程应用设计提供了参考依据。
With the continuous increase of modern vehicle's flight velocity, it has become the important study that of hypersonic aerodynamics and aerodynamic heating. The research on aerodynamic characteristics of wrap-around fin and wing-body combination was carried out at super high speeds in this dissertation. Three dimensional flow over wrap-around fin and wing-body combination and aerodynamic heating process were simulated numerically in super high speeds using FLUENT. Wind tunnel test of projectile with wrap-around fin at different roll angle was finished also.
     Mathematic model for investigating wrap-around fin's aerodynamic characteristics at super high speeds was established. The time-dependent compressible Reynolds average Navier-Stokes equations were used as governing equations. Second-order upwind scheme was adopted for the convective fluxes discretization. For numerical simulation of hypersonic flow, the AUSM+ scheme was introduced in order to reduce numerical dissipation and improve the resolution of shock discontinuities and computational accuracy. The Reynolds stress turbulent model was considered in this dissertation. The conformal mesh technology was applied in modeling mesh of wrap-around fin-body combination. It both satisfies the requirement of different zonal mesh density and viscous calculation, and decreases the amount of computational mesh.
     Three dimensional flow over wrap-around fin was simulated numerically at super high speeds with computational program and numeric scheme studied in this dissertation. Reasonable flowfield structure information and aerodynamic data were obtained by numerical simulation. Mechnism of producing lift of wrap-around fin at zero angle of attack was analyzed selectively. Change law of wrap-around fin's aerodynamic characteristics as a function of Mach number and angle of attack was investigated. The effects on aerodynamic performance of fin's leading edge nib angle and curvature were researched simultaneously.
     Numerical simulation of flow over wrap-around fin-body combination was done at super high speeds. The influences of inflow Mach number and angle of attack on wrap-around fin-body combination's flowfield and aerodynamic characteristics were studied in detail. Reasonable flow strcture and experimental data were obtained by wind tunnel test. Numerical result was almost in the same with experimental data. The wind tunnel test validates the correctness and reliability of the numerical calculation program studied in this dissertation.
     Computational model for studying the aerodynamic heating of wrap-around fin was built. Combinating the flow and structure governing equations which were relatively independent in form, aerodynamic heating process of wrap-around fin was solved at super high speeds using integration numerical simulation coupled flow, thermal and structure. Aerodynamic heating performance of wrap-around fin was achieved with different Mach number and angle of attack.
     Research work in this paper has an instructing meaning of investigating flight vehicle's aerodynamic characteristics with long ratio of slenderness in super speed. It supplys a foundation of wrap-around fin's basic research and engineering application design at the same time.
     The study method and result has guiding significance for investigating flight vehicle's aerodynamic characteristics with long ratio of slenderness at super high speeds. It provides the reference foundation for wrap-around fins' basic research and engineering application design.
引文
[1]鞠玉涛.弧形翼-身组合体空气动力特性的数值模拟研究.南京理工大学博士学位论文,1999
    [2]赵俊波.基于非结构网格的超声速流场计算方法研究.西北工业大学硕士学位论文,2004
    [3]梁强.复杂流场的非定常气动力计算以及气动弹性研究.西北工业大学博士学位论文,2003
    [4]吕红庆.高超声速飞行器气动加热及热响应分析.哈尔滨工程大学工学硕士学位论文,2006
    [5]M.F.Roming.Stagnation Point Heat for Hypersonic Flow.Jet Propulsion Vol26,No.12,1956
    [6]S.M.Scala.A Study of Hypersonic Ablation.Proc,10~(th)Int,Astronautically Congress,1959
    [7]F.R.Dejarnette.Calculation of Inviscid Surface Streamlines and Heat Transfer on Shutter Type Configurations.NASA CR-111921,1972
    [8]Jr.R.B.Dirling The Effect of Transition and Boundary Layer Development on Hypersonic Reentry Shape Change.AIAA-76-0673,1976
    [9]H.H.Hamilton.Approximate Method of Prediction Heating on the Windward Side of Space Shuttle Orbiter and Comparisons with Flight Data.AIAA-82-0832,1982
    [10]J.G.Marvin.Turbulence Modeling for Computational Aerodynamics.AIAA Journal,1983,21(7):941-955
    [11]J.A.Fay,F.R.Riddle.Theory of Stagnation Point Heat Transfer in Dissociationed Air.Journal of Aerospace,1985
    [12]A.L.Murray,G.W.Russell.Coupled Aeroheating Ablation Analysis for Missile Configurations.AIAA-2000-2587,2000
    [13]Brian R.Hollis,Scott A.Berry,Thomas J.Horvath.X-33 Turbulent Aeroheating Predictions and Measurements.AIAA-2002-4700,2002
    [14]张涵信.无波动、无自由参数的耗散格式.空气动力学学报,1989,6(2):1-8
    [15]俞守勤.航空器高超声速气动力的数值计算.空气动力学学报,1990,8(3):345-350
    [16]瞿章华等.化学平衡流驻点辐射流场的数值解.空气动力学研究文集,1991,Voll:63-68
    [17]周伟江等.钝头飞行器大攻角绕流流场计算.空气动力学学报,1995,13(6):200-205
    [18]欧阳水吾.高超声速化学平衡和非平衡电离流动计算研究.空气动力学研究文集,1997,Vol7:56-63
    [19]贺国宏.高超声速钝体热流数值计算研究.空气动力学研究文集,1997,Vol8:73-78
    [20]王发民等.高超声速升力体气动力气动热数值计算.空气动力学学报,2001,19(4):439-445
    [2l]陈志敏等.天地往返运输器气动力和气动热工程计算方法研究.西北工业大学学报,2001,19(2):205-208
    [22]李君哲等.气动CFD计算的格式效应研究.北京航空航天大学学报,2003,29(11):1022-1025
    [23]张涵信.真实气体的相似规律.空气动力学学报,1990,8(1):1-8
    [24]王绍卿.高超声速飞行的总温总压计算.推进技术,1990,(6):29-33
    [25]黄志澄.空天飞机气动热的工程预测方法.气动实验与测量,1992,6(1):1-8
    [26]黄志澄.空天飞机气动力的工程预测方法.气动实验与测量,1991,5(3):1-8
    [27]赵梦熊.载人飞船返回舱的气动热流分布.气动实验与测量,1996,10(1):1-8
    [28]桂业伟,过增元,李志信.球头高超声速热绕流研究.工程热物理学报,1996,7(4):462-465
    [29]沈遐龄.航天飞机气动加热计算.北京航空航天大学学报,1998,24(2):189-192
    [30]雷延花.高超声速飞行器气动特性计算方法研究.西北工业大学硕士论文,2000
    [31]任青梅.高超声速飞行器前缘驻点气动加热的计算.上海航天,2001,(5):10-13
    [32]董维中.气体模型对高超声速钝体气动参数计算影响的研究.空气动力学学报,2001,19(2):197-202
    [33]范晓墙,李桦,丁猛.钝头双锥体有攻角表面热流密度计算.兵工学报,2002,23(1):142-144
    [34]乐嘉陵.高超声速飞行器表面气动热和粘性摩擦力计算.流体力学实验与测量,2002,16(1):8-20
    [35]乐发仁,杨军,姜贵庆等.微重力火箭气动加热计算.固体火箭技术,2003,26(10):1-9
    [36]程养民.TY-3探空火箭突起物气动加热计算.固体火箭技术,2003,26(2):1-3
    [37]夏丰领,陈国光.高速火箭弹的气动加热计算.华北工学院学报,2003,24(6):468-470
    [38]C.Wayne Dahlke.The Aerodynamic Characteristics of Wrap-Around Fins at Mach Numbers of 0.3 to 3.0.AD/A-036715
    [39]F.L.Stevens,T.J.On and T.A.Clare.Wrap-Around Versus Cruciform Fin:Effect on Rocket Flight Performances.AIAA-74-0777,1974
    [40]O.L.Dunkin.Aerodynamic Characteristics of Curved Fins with Swept and Unswept Leading Edges and Their Influence on Missile Static Stability at Mach Numbers from 0.5 to 1.3.AD-89217L
    [41]R.D.Meyer.Wrap-Around Fins:Design Considerations.AIAA-76-0942,1976
    [42]D.M.Bergbauer,J.H.Ferguson.Evaluation of Ground-Launch Firings for the Improved 2.75-Inch Rocket.AIAA-79-1297,1979
    [43]W.Sawyer,W.Monta.Control Characteristics for Wrap-Around Fins on Cruise Missile Configurations[R].AIAA-81-0009,1981
    [44]R.L.Pope and R.E.Dudley.Flight Tests of the MKIV Wrap-Around Fin Configuration.AD/A-117042,1982
    [45]U.Catani,R.DeAmicis,S.Masullo,J.J.Bertin and S.A.Bouslog.The Aerodynamic Characteristics for a Slender Missile with Wrap-Around Fins.AIAA-82-0319,1982
    [46]William D.Washington.Experimental Investigation of Rolling Moment for a Body-Wing-Tail Missile Configuration with Wrap-Around Wings and Straight Tails at Supersonic Speeds.AIAA-83-2081,1983
    [47]D.W.Eastman,D.L.Wenndt.Aerodynamics of Maneuvering Missiles with Wrap-Around Fins.AIAA-85-4083,1985
    [48]R.H.Whyte and W.H.Hathaway,R.S.Buff and G.L.Winchenbach.Subsonic and Transonic Aerodynamics of Wrap-Around Fin Configuration.AIAA-85-0106,1985
    [49]Young Hoon Kim,G.L.Winchenbach.Roll Motion of a Wraparound Fin Configuration at Subsonic and Transonic Mach Numbers.Journal of Guidance,Control and Dynamics,1986,9(2):253-255
    [50]G.L.Winchenbach,Rand S.Buff,Robert H.Whyte,Wayne H.Hathway.Subsonic and Transonic Aerodynamics of a Wraparound Fin Configuration.Journal of Guidance,Control and Dynamics,1986,9(6):627-637
    [51]Andrew B.Wardlaw Jr,Francis J.Priolo,Jay M.Solomon.Multiple-Zone Strategy for Supersonic Missile.Joumal of Spacecraft,1987,24(4):377-384
    [52]G.L.Abate,G.L.Winchenbach.Aerodynamics of Missile with Slotted Fin Configurations.AIAA-91-0676,1991
    [53]Lt Rico E.Vitale,Gregg L.Abate,Gerald L.Winchenbach and William Riner.Aerodynamic Test and Analysis of a Missile Configuration with Curved Fins. AIAA-92-4495-CP,1992
    [54]M.W.Senson,G.L.Abate,R.H.Whyte.Aerodynamic Test and Analysis of Wrap-Around Fins at Supersonic Mach Numbers Utilizing Design of Experiments.AIAA-94-0200,1994
    [55]G.Abate,W.Hathaway.Aerodynamic Test and Analysis of Wrap-Around Fins with Base Cavities.AIAA-94-0051,1994
    [56]C.P.Tilmann,R.E.Huffman,T.A.Buter and R.D.W.Bowersox.Characterization of the Flow Structure in the Vicinity of a Wrap-Around Fin at Supersonic Speeds.AIAA-96-0190,1996
    [57]C.P.Tilmann,R.D.W.bowersox.Characterization of the Flowfield near a Wrap-Around Fin at Mach 4.9.AIAA-98-0684,1998
    [58]Thomas C.McIntyre,Rodney D.W.Bowersox and Larry P.Goss.Experimental Investigation of Supersonic Wrap-Around Fin Aerodynamic Mach Number Effects.AIAA-99-0991,1999
    [59]J.Morote,G.Liano.Stability Analysis and Flight Trials of a Clipped Wrap-Around Fin Configuration.AIAA-2004-5055,2004
    [60]苗瑞生,居贤明,吴甲生等.旋转卷弧翼身组合体空气动力特性的试验研究.国防科技资料,1985
    [61]吴甲生,徐文熙.TTCP圆弧翼身组合体基本模型试验研究.国防科技资料,1985
    [62]詹德来.卷曲尾翼-弹身组合体在零攻角时产生滚转力矩的一种机理.应用数学研究会第四届学术会议论文,1985
    [63]史永高.弧形尾翼对火箭弹性能的影响.西安工业学院学报,1987,(4):64-69
    [64]史永高.火箭圆弧形尾翼强度特性的分析.西安工业学院学报,1986,(1):18-27
    [65]史永高.火箭圆弧形尾翼诱导滚转力矩的探讨.西安工业学院学报,1985,(1):39-46
    [66]吴甲生,徐文熙.旋转弧形翼身组合体空气动力特性试验研究.气动试验与测量控制,1988,2(1):37-41
    [67]吴甲生,居贤铭,徐文熙.卷弧翼身组合体的自滚转特性.北京理工大学学报,993,13(2):180-186
    [68]李小光,李名兴.卷弧翼强度的工程计算方法.兵工学报,1995,(1):37-39
    [69]陈农,贾区耀.弧形翼的动态气动特性研究.航空学报,2002,23(4):321-323
    [70]程养民.远程火箭弹卷弧翼气动载荷工程计算方法.固体火箭技术,1997,20(4):1-6
    [71]宋旭民,夏刚,秦子增等.卷弧翼弹零攻角流场数值模拟.战术导弹技术,2002, (6):21-25
    [72]刘巍.卷弧尾翼弹气动特性研究.国防科技大学硕士学位论文,2005
    [73]金华.基于仿真的卷弧尾翼弹弹翼优化设计.国防科技大学硕士学位论文,2006
    [74]毛雪瑞,杨树兴,赵良玉.卷弧翼火箭气动参数数值模拟.固体火箭技术,2007,30(3):181-184
    [75]A.B.Wardlaw,E J.Priolo,J.M.Solomon.Multiple-Zone Strategy for Supersonic Missiles.Journal of Spacecraft and Rockets,1987,24(4):377-384
    [76]Harris L.Edge.Computation of the Roll Moment Coefficient for a Projectile with Wrap-Around Fins.AD/A260784
    [77]成娟.非结构网格粘性流动计算研究.南京航空航天大学博士论文,2001
    [78]Mensink C.Numerical Prediction of Periodic Vortex Shedding in Subsonic and Transonic Turbine Cascade Flows.Int J Numer Meth Fluids,1996,22:881-897
    [79]Nasuti F,Onofri M.Viscous and Inviscid Vortex Generation during Startup of Rocket Nozzles.AIAA J,1998,36(5):809-815
    [80]Thivet F,Saint-Martin V,and Leschiera O.Assessment of Turbulence Models for Transonic Flows around Supercritical Airfoil Computed with a Zonal Method.AIAA-99-0525,1999
    [81]Michal T,Oser M.Improving Zonal Coupling Accuracy and Robustness in the Wind Code.AIAA-2001-0222,2001
    [82]张运辉.全机复杂流场N-S方程数值模拟.西北工业大学硕士学位论文,2006
    [83]Fluent Inc.FLUENT User's Guide.Fluent Inc.,2003
    [84]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004
    [85]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004
    [86]Schlichting H.Boundary Layer Theory.8~(th)ed.New York:McGrawHill,1979.64-69
    [87]Rohsenow W M,Hartnett J P,Ganic E N.Handbook of Heat Transfer Fundamentals.2~(th)ed.New York:McGraw-Hill,1985
    [88]B.J.Daly and F.H.Harlow.Transport Equations in Turbulence.Phys.Fluids,1970,13:2634-2649
    [89]F.S.Lien and M.A.Leschziner.Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure.Computers and Fluids,1994,23(8):983-1004
    [90]C.G.Speziale,S.Sarkar,and T.B.Gatski.Modelling the Pressure-Strain Correlation of Turbulence:An Invariant Dynamical Systems Approach.J.Fluid Mech.,1991,227:245-272
    [91]S.Sarkar and L.Balakrishnan.Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer.ICASE Report 90-18,NASA CR 182002,1990
    [92]Meng-Sing Liou.Progress towards an Improved CFD Method:AUSM+.AIAA-95-1701-Cp,1995
    [93]John E.West and Robert H.K..Supersonic Interaction in The Corner of Intersecting Wedges at High Reynolds Numbers.AIAA-Journal,1972,(10):652-656
    [94]朱自强,吴子牛,李津等.应用计算流体力学.北京:北京航空航天大学出版社,1998
    [95]吴海玲,陈听宽,罗毓珊.应用不同紊流模型的二维横向射流传热数值模拟研究.西安交通大学学报,2001,35(9):902-906
    [96]Mathur S R,Murthy J Y.A Pressure-Based Method for Unstructured Meshes.Numer Heat Transfer,Part B,1997.31:195-215
    [97]Lin C X,Zhang P,Ebadian M A.Laminar Forced Connection in the Entrance Region of Helical Pipe.Int J Heat Mass Transfer,1997.40(14):3293-3304
    [98]Trevor J.Birch,Ian E.Wrisdale and Simon A.Prince.CFD Predictions of Missile Flowfields.AIAA-2000-4211,2000
    [99]Lawrence D.Huebner,Anthony M.Mitchell and Ellis J.Boudreaux.Experimental Results on the Feasibility of an Aerospike for Hypersonic Missiles.AIAA-1995-0737,1995
    [100]F.A.Featherstone,John E.Holmes.Wrap-Around Fin(WAF)Pressure Distribution.AD-773441,1977
    [101]郑健,周长省,鞠玉涛.超声速、高超声速弧形翼气动特性数值研究.弹箭与制导学报,2006,26(4):227-229
    [102]Dahlke,C.W.A Review and Status of Wrap-Around Fin Aerodynamics.Tenth Navy Symposium on Aerodyanmics,Vol.1,No.10,pp.279-324,Naval Surface Weapons Center,Dahlgren Laboratory,Dahlgren,VA,July 1975.
    [103]沈仲书,刘亚飞.弹丸空气动力学.北京:国防工业出版社,1984
    [104]Pearce D G,Stanley S A,et al.Development of a Large Scale Chimera Grid System for the Space Shuttle Launch Vechicle.AIAA 93-0533,1993
    [105]Gomez R J,Ma M C.Validation of a Large Scale Chimera Grid System for the Space Shuttle Launch Vechicle.AIAA 94-1859,1994
    [106]Slotnick D,Wisneski J,Rajagopal K,et al.Navier-Stokes Simulation of the Space Shuttle Launch Vechicle Flight Transonic Flowfield Using a Large Scale Chimera Grid System.AIAA 94-1860,1994
    [107]Streit T.Euler and N-S Solutions for Supersonic Flow around a Complex Missile.J.of Spacecraft and Rockets,32(3):600-608,1994
    [108]闫超,陈靓.导弹复杂流场及气动力(热)的N-S方程数值计算.宇航学报,19(3):19-24,1998
    [109]肖志祥.复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究.西北工业大学博士学位论文,2003
    [110]周强.翼身组合体粘性流场N-S方程数值模拟.西北工业大学硕士学位论文,2005
    [111]Chen C-J,Jaw S-Y.Fundamentals of Turbulence Modeling.Washington DC:Taylor&Francis,1998
    [112]是勋刚.湍流.天津:天津大学出版社,1994
    [113]宋保军.用改进的k-ε模型研究具有曲率和旋转影响的三维内部紊流流场.西安:西安交通大学博士学位论文,1990
    [114]陈惫章.粘性流体动力学基础.北京:高等教育出版社,2002
    [115]张兆顺.湍流.北京:国防工业出版社,2002
    [116]Yakhot V.,Orszag S.A.Re-normalization Group Analysis of Turbulence:1.Basic Theory.Journal Sciences Computation,1986,pp.1:39
    [117]Yakhot V.,Orszag S.A.,Thangam S.et al.Development of Turbulence Models for Shear Flows by a Double Expansion Technique.Physics Fluids A.,1992,Vol.4,pp.1510-1516
    [118]Yakhot V.,Smith L.M.The Re-normalization Group,theεExpansion and Derivation of Turbulence Models.J.Sciences Computation,1992,Vol.3,pp.35-43
    [119]韩冰冰.三维湍流流场数值计算方法的研究.西北工业大学硕士学位论文,2006
    [120]郑健,周长省,张磊.并行计算在弧形翼弹数值仿真中的应用.计算机仿真,2008,25(4):69-71
    [121]钱杏芳,林瑞雄,赵亚男.导弹飞行力学.北京:北京理工大学出版社,2003
    [122]季宗德,周长省,丘光申.火箭弹设计理论.北京:兵器工业出版社,1995
    [123]Price,A.E.and R.L.Stallings.Investigation of Turbulent Separated Flows in the Vicinity of Fin Type Protuberances at Supersonic Mach Number.NASA TN D-3804,1967
    [124]Kaufman,L.G.,et al.Shock Impingement Caused by Boundary Layer Seperation Ahead of Fins.ARL TR-72-0118,1974
    [125]Sedney,Raymond and Clarence W.,Jr.Kitchens.Seperation Ahead of Protuberances in Supersonic Turbulent Boundary Layer.AIAA Journal,15(4):456-552,1977
    [126]Dolling,D.S.and S.M.Bogdonoff.Blunt Fin-Induced Shock Wave Turbulent Boundary Layer Interaction.AIAA Journal,20(12):1674-1680,1982
    [127]Ozcan,O.and M.Holt.Supersonic Separated Flow Past a Cylindrical Obstacle on a Flat Plate.AIAA Journal,22(5):611-617,1984
    [128]Saida,N.and H.Hattori.Shock Wave-Turbulent Boundary Layer Interaction Produced by a Blunt Fin.Trans.Japan Soc.for Aeronautical and Space Sciences,27(76):67-77,1984
    [129]Fomison,N.R.and J.L.Stollery.The Effects of Sweep and Bluntness on a Glancing Shock Wave Turbulent Layer Interaction.AGARD Conference Procedures 428.8:1-8:18.North Atlantic Treaty Organization,1987
    [130]Settles,Gary S.Experimental Research on Swept Shock Wave/Boundary Layer Interactions Annual Report,1 Apr.1987-31 Mar.1988.,Pennsylvania States Univ.,University Park.Dept.of Mechanical Engineering.Report No.:AD-A196938;PSUME-R-87/88-0031;AFOSR-88-0637TR,April 1988
    [131]蒋友娣.高超声速飞行器气动热和表面瞬态温度计算研究.上海交通大学硕士论文,2008
    [132]刘芹.弹体结构热振动特性分析.西北工业大学硕士学位论文,2004
    [133]姜贵庆,刘连元.高速气流传热与烧蚀热防护.北京:国防工业出版社,2003
    [134]Lees I.Laminar Heat Transfer over Blunt Nosed Bodies at Hypersonic Flight Speeds.Jet Propusion 26(4):259-269
    [135]Zoby E V,Moss J N and Sutton K.Approximate Convection Heating Equations for Hypersonic Flows.J.S.R.Vol.8,1981
    [136]Vaglio L R.Turbulent Heat Transfer on Blunt Nosed Bodies in Two-dimensional and General Three-dimensional Hypersonic Flow.J.A.S.1960,27(1):27-38
    [137]Eckert R G.Engineering Relations for Friction and Heat Transfer to Surface in High Velocity Flow.J.A.S.1955:585-587
    [138]Resholko E and Beckwith I E.Compressible Laminar Boundary Layer over a Yawed Infinite Cylinder with Heat Transfer and Arbitrary Prandtl Number,NASC Rept,1379.1958
    [139]黄唐.流场、热、结构一体化数值模拟.北京空气动力研究所硕士论文,1999
    [140]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2006
    [141]Sparrow E M,Tao W Q.Buoyancy-Driven Fluid Flow and Heat Transfer in a Pair of Interacting Vertical Parallel Channels.Numer Heat Transfer,1982,5:39-58
    [142]Sparrow E M,Faghri M.Fluid-to-Fluid Conjugate Heat Transfer for a Vertical Pipe-Internal Forced Connection.ASME J Heat Transfer,1981,102:402-407
    [143]Sparrow E M,Prakash C.Interaction between Internal Natural Convection in an Enclosure and External Natural Convection Boundary-Layer Flow.Int J Heat Mass Transfer,1981,24:895-907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700