二氧化碳在固态聚丙烯复合材料中的溶解扩散行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用重量分析的方法测定了温度分别为343.15K、373.15K和393.15K、压力0-16MPa范围中二氧化碳(CO2)在固态聚丙烯(PP)、PP/滑石粉复合材料及PP/活性炭复合材料中的溶解度,考察、分析不同填料的加入及其与聚合物结合的界面特性对CO2在聚合物中溶解度和扩散系数的影响,同时计算了扣除晶区和填料质量后CO2在各材料中的溶解度和扩散系数。CO2在未经界面改性PP/滑石粉复合材料中的溶解度低压下大于而高压下小于其在纯PP中的溶解度,在经过界面改性的PP/滑石粉复合材料中的溶解度小于其在纯PP和未经界面改性复合材料中的溶解度。CO2在PP/滑石粉复合材料中的扩散系数小于其在纯PP中的扩散系数,填料含量越大扩散系数越小。CO2在未经界面改性PP/活性炭复合材料中溶解度大于其经界面改性复合材料中的溶解度,且均大于其在纯PP中的溶解度,填料含量越大溶解度越高。CO2在PP/活性炭复合材料中的扩散系数大于其在纯PP中的扩散系数,扩散系数随填料含量的增加而增大。通过S-L状态方程关联了CO2在纯PP和经过界面改性的PP复合材料非晶区中的溶解度,并预测了CO2对聚合物基体的溶胀情况,验证了填料对聚合物分子链运动的阻碍作用。
Gravimetric method has been adopted to measure solubility and diffusivity of CO2 in pure polypropylene (PP), PP/talcum (talc) composites and PP/active carbon (AC) composites at temperatures 343.15K,373.15K and 393.15K respectively and pressure range of 0-16MPa. The effect of different fillers and the interface between polymer and fillers have been investigated and analysised. Crystallinity of these materials dissolved by CO2 was calculated by DSC curves and solubility of CO2 in unit mass of amorphous region was deduced. Compared with the solubility of CO2 in pure PP, it is larger at lower pressure in PP/talc composites without interface modification but smaller at higher pressure. Solubility of CO2 in interface modified PP/talc composites is less than that in pure PP and PP/talc composites without interface modification. Diffusion coefficient of CO2 in PP/talc composites decreases as the talcum content increases. Solubility of CO2 in PP/AC composites increases as the active carbon content increases, and the solubility in PP/AC composites without interface modification is more than that in interface modified PP/AC composites. Diffusion coefficient of CO2 in PP/AC composites, which also increases with the increasing of active carbon content, is higher than that in pure PP. Solubility of CO2 in amorphous region of pure PP and interface modified PP composites were correlated with the Sanchez-Lacombe state equation in conjunction with the interaction parameters. The swelling degree of polymer matrix by CO2 was also predicted, which could prove the filler hinderance to the movement of polymer chains.
引文
[1]Suh N P, Waldman F A, U.S.Patent,4473665(1984)
    [2]Faruk 0, Bledzki A K, Matuana L M.Microcellular foamed wood-plastic composites by different processes:a review. Macromolecular Materials and Engineering,2007,292:113-227
    [3]李红春,张广成,顾军渭,陈梃等,微孔塑料的成型原理、制备和最新进展.工程塑群应用,2006,34(12):76-79
    [4]Naguib H E, Park C B. Strategies for achieving ultra low-density polypropylene foams. Polymer Engineering and Science,2002,42(7):1481-1492
    [5]Lee M, Tzoganakis C, Park C. B.Effects of supercritical CO2 on the viscosity and morphology of polymer blends. Advances in Polymer Technology,2000,19:300-311
    [6]Lee M, Tzoganakis C, Park C. B. Extrusion of PE/PS blends with supercritical carbon dioxide. Polym. Eng. Sci.,1998,38:1112-1119
    [7]Qin X, Thompson M R, Hrymak A N. Rheology studies of foam flow during injection mold filling.Polym. Eng. Sci,2007,47:522-529
    [8]Areerat S, Nagata T, Ohshima M. Measurement and prediction of LDPE/CO2 solution viscosity.Polym. Eng. Sci.,2002,42:2234-2245
    [9]Areerat S, Funami E, Hayata Y, et al. Measurement and prediction of diffusion coefficients of supercritical CO2 in molten polymers.Poly. Eng.Sci,2004,44(10):1915-1924
    [10]Koros W J, Paul D R. Design Considerations for Measurement of Gas Sorption in Polymers by Pressure Decay. J.Polym.Sc., Polym.Phys.Ed.,1976,14:1903-1907
    [11]Lei Z, Ohyabu H, Sato Y. Solubility, swelling degree and crystallinity of carbon dioxide-polypropylene system.J.of Supercritical Fluids,2007,40:452-461
    [12]吕宏凌,王保国,杨基础.基于Simha-Somcynsky状态方程的高分子—溶剂体系扩散系数模型.化工学报,2007,58(1):10-14
    [13]肖绪佩.液态和超临界态CO2在氟聚合物中的应用.有机氟工业,2001,3:18-24
    [14]Areerat S, Hayata Y, Katsumoto R, et al. Solubility of carbon dioxide in polyethylene/titanium dioxide composite under high pressure and temperature. J. Appl. Polym. Sci.,2002,86(2):282-288
    [15]Flory P J. Principles of Polymer Chemistry. Ithaca, NY:Cornell University Press,1953
    [16]Banerjee T, Lipscomb G G. Direct Measurement of Carbon Dioxide-Induced Glass Transition Depression in a Family of Substituted Polycarbonates. J. Appl. Polym. Sci.,1998, 68:1441-1449
    [17]Goel S K, Beckman E J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I:effect of pressure and temperature on nucleation. Polymer Engineering and Science,1994,34(14):1137-1147
    [18]Zhang Z, Handa Y P. In situ study of plasticization of polymers by high-pressure gases. Journal of Polymer Science, Part B:Polymer Physics,1998,36(6):977-982
    [19]Sato Y, Takikawa T, Takishima S, et al. Solubility and diffusion coefficient of carbon dioxide in poly(vinyl acetate) and polystyrene. J. of Supercritical Fluids,2001,19:187-198
    [20]Hoffmann J D, Miller R L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited:theory and experiment. Polymer,1997,38(13):3151-3212
    [21]Gross S M, Roberts G W, Kiserow D J, et al. Crystallization and Solid-State Polymerization of Poly (bisphenol A carbonate) Facilitated by Supercritical CO2. Macromolecules,2000,33(1):40-45
    [22]Shenoy S L, Fujiwara T, Wynne K J. Quantifying plasticization and melting behavior of poly(vinylidine fluoride) in supercritical CO2 utilizing a linear variable differential transformer. Macromolecules,2003,36(9):3380-3385
    [23]Takada M, Ohshima M. Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polymer Engineering and Science,2003,43(2):479-489
    [24]Kazarian S G, Vincent M F, Bright F V, et al. Specific intermolecular interaction of carbon dioxide with polymers. J. Am. Chem. Soc.,1996,118 (7):1729-1736
    [25]Berens A R, Huvard G S. Interaction of polymers with near-critical carbon dioxide. American Chemical Society:Washington, DC,1989:208
    [26]Higuchi, A N. Infrared spectroscopic studies of CO2 sorbed in glassy and rubbery polymeric membranes. J. Polym. Sci., Part B:Polym Phys,1994,32 (1):149-157
    [27]Fried J R, Li W. High-pressure FTIR studies of gas-polymer interactions. J Appl Polym Sci.1990,41(5-6):1123-1131
    [28]Kazarian S G, Vincent M F, Eckert C A. Infrared cell for supercritical fluid-polymer interactions. Rev. Sci. Instrum.,1996,67 (4):1586-1589
    [29]Mawson S, Johnston K P, Combes J R, et al. Formation of poly-(1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules,1995,28:3182-3191
    [30]Shieh Y T, Lin Y G. Equilibrium solubility of CO2 in rubbery EVA over a wide pressure range:effects of carbonyl group content and crystallinity. Polymer,2002,43 (6):1849-1856
    [31]Tuminello W H, Dee G T, McHugh M A. Dissolving perfluoropolymers in supercritical carbon dioxide. Macromolecules,1995,28 (5):1506
    [32]Shah V M, Hardy B J, Stern S A. Solubility of carbon dioxide, methane, and propane in silicone polymers:effect of polymer backbone chains. J. Polym. Sci., Part B:Polym. Phys., 1993,31 (3):313-317
    [33]Nandel F S, Jain D V S. Molecular complexes of benzene and hexafluorobenzene with carbon dioxide and carbon disulfide:a theoretical study. Indian J. Chem., Sect A:Inorg. Bio-inorg, Phys, Theor Anal Chem,1984,23:543
    [34]Machin D, Rogers C E. Isothermal kinetic studies using a thermochemical analyzer. Ⅰ. Rates of polymer swelling and dissolution. Poly. Eng. Sci.,1970,10 (5):300
    [35]Kamiya Y, Mizoguchi K, Terada K, et al. CO2 sorption and dilationn of poly (methyl methacrylate). Macromolecules,1998,36:472-478
    [36]Nikitin L N, Gallyamov M 0, et al. Swelling and Impregnation of Polystyrene Using Supercritical Carbon Dioxide. J. Supercritical Fluids,2003,26:263-273.
    [37]Kleinrahm R, Wagner W. Measurement and correlation of the equilibrium liquid and vapor densities and the vapor pressure along the coexistence curve of methane. J. Chem. Thermodyn.,1986,18:739
    [38]Yoshiyuki Sato,Tadao Fakikawa,Shigeki Takishima,Hirokatsu Masuoka.Solubilities and Diffusion Coefficients of Carbon Dioxide in Poly(vinyl acetate)and polystyrene.Journal of Supercritical Fluids,2001,19:187-198.
    [39]Muth O, Hirth T, Vogel H.Investigation of Sorption and Diffusion of Supercfitical Carbon Dioxide into Poly(vinyl chloride).Journal of Supercritical Fluids,2001,19:299-306.
    [40]Surat Areerat, Eita Funami, Yusuke Hayata, Dai Nakagawa, Masahiro Ohshima. Measurement and Prediction of Diffusion Coefficients of Supercritical CO2 in Molten Polymers. Polym.Eng.Sci.,2004,44 (10):1915-1924
    [41]Schnitzler J V, Eggers R. Mass transfer in polymers in a supercritical CO2-atmosphere. J. Supercrit Fluids,1999,16:81
    [42]Li D C; Liu Tao; Zhao Ling, et al. Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure-decay method. Ind. Eng. Chem. Res.2009, 48(15),7117-7124
    [43]王吉超.表面活性剂溶液的计算机模拟及气体在高分子中的溶解度研究.华东理工大学:化学与制药学院,2003
    [44]王邵雷,彭昌军,李鲲,王吉超,史济斌,刘洪来.石英晶体微平衡法测定C02在聚合物中的溶解度,化工学报,2003,2(54):141-146
    [45]Tomasko D L, et al. A Review of CO2 Applications in the Processing of Polymers. Ind. Eng. Chem. Res.,2003,42:6437
    [46]Barrer R M, Barrie J A, Slater J. Sorption and diffusion in ethyl cellulose. Ⅲ. Comparison between ethyl cellulose and rubber. J. Polym. Sci.,1958,27:177
    [47]Vieth W R, Howell J M, Hsieh J H. Dual sorption theory. J. Membr. Sci,1976,1 (2): 177-220
    [48]Paul D R, Koros W J. Effect of partially immobilizing sorption on permeability and the diffusion time lag. J. Polym. Sci. Polym. Phy.s Ed.,1976,14 (4):675-685
    [49]Stannett V T, Koros W J, Paul D R, et al. Recent advances in membrane science and technology. Adv. Polym. Sci.1979,32:69-121
    [50]Stern S A, DeMeringo A H. Solubility of carbon dioxide in cellulose acetate at elevated pressures. J. Polym. Sci. Polym. Phys. Ed.,1978,16 (4):735-751
    [51]Petropoulos J H. Quantitative analysis of gaseous diffusion in glassy polymers. J. Polym. Sci. Polym. Phys. Ed.,1970,8(10):1797-1801
    [52]Kamiya Y, Naito Y, Bourbon D. Sorption and partial molar volumes of gases in poly (ethylene-co-vinyl acetate). J. Polym. Sci. Polym. Phys. Ed.,1994,32 (2):281-286
    [53]Wang J S, Kamiya Y. Evaluation of gas sorption parameters and prediction of sorption isotherms in glassy polymers. J. Polym. Sci. Polym. Phys. Ed.,2000,38:883-888
    [54]Raucher D, Sefcik M D. Sorption and Transport in Glassy Polymers. Gas-Polymer-Matrix Model. Industrial Gas Separations; Whyte T E, Yon C M, Wagener E H, Eds, ACS Symposium Series 223, American Chemical Society:Washington, DC.1983:Chapter 6
    [55]Vrentas J S, Vrentas C M. Volumetric Behavior of Glassy Polymer-Penetrant Systems. Macromolecules,1989,22:2264-2266
    [56]Wissinger R G, Paulaitis M E. Molecular thermodynamic model for sorption and swelling in glassy polymer-CO2 systems at elevated pressures. Ind. Eng. Chem. Res.,1991,30: 842-851
    [57]Doghieri F, Sarti G C. Nonequilibrium Lattice Fluids:A Predictive Model for the Solubility in Glassy Polymers. Macromolecules,1996,29:7885-7896
    [58]Vito Carla, Ke Wang, Yazan Hussain, et al. Nonequilibrium Model for Sorption and Swelling of Bulk Glassy Polymer Films with Supercritical Carbon Dioxide. Macromolecules, 2005,38:10299-10313
    [59]胡英.近代化工热力学应用研究的新进展.上海科学文献出版社:上海,1994.
    [60]Chapman W G, Gubbins K E, Jackson G, et al. SAFT:Equation-of-State Solution Model for Associating Fluids. Fluid Phase Equilib,1989,52:31-38
    [61]Chapman W G, Gubbins K E, Jackson G, et al. New Reference Equation of State for Associating Liquids. Ind. Eng. Chem. Res.,1990,29:1709
    [62]Colina C M, Hall C K, Gubbins K E. Phase behavior of PVAC-PTAN block copolymer in supercritical carbon dioxide using SAFT. Fluid Phase Equilib,2002,194-197:553-565
    [63]Miller E A, Gubbins K E. Molecular-Based Equations of State for Associating Fluids:A Reiview of SAFT and Related Approaches. Ind. Eng. Chem. Res.,2001,40:2193-2211
    [64]Sato Y, Takikawa T, Yamane M, Takishima S, et al. Solubility of carbon dioxide in PPO and PPO/PS blends, Fluid Phase Equilib,2002,194-197:847-858.
    [65]Buttry D A, Ward M D. Measurement of interfacial processes at electrod surfaces with the electrochemical quartz crystal microbalance. Chem. Rev.,1992,92:1355
    [66]Davis, P. K.; Lundy, G. D.; Palamara, J. E.; Duda, J. L.; Danner, R. P. New pressure-decay techniques to study gas sorption and diffusion in polymers at elevated pressures. Ind. Eng. Chem. Res.,2004,43:1537-1542
    [67]Machin D, Rogers C E. Isothermal kinetic studies using a thermochemical analyzer. I. Rates of polymer swelling and dissolution. Polym. Eng. Sci.,1970,10 (5):300
    [68]Doroudiani S, Chaffey C E, Kortschot M T. Sorption and diffusion of carbon dioxide in wood-fiber/polystyrene composites. J. Polym. Sci. Polym. Phys. Ed.,2002,40:723-735
    [69]Rachtanapun P, Selke S E M, Maaatuana L M. Microcellular foam of polymer blends of HDPE/PP and their composite with wood fiber. J. Appl.polym.Sci.,2003,88:2842-2850
    [70]Surat A, Yusuke H, Ryuichi K, Tadahiro K, et al. Solubility of carbon dioxide in polyethylene/titanium dioxide composite under high pressure and temperature. J. Appl.Polym.Sci.,2002,86:282-288
    [71]Manninen A R, Naguib H. E. CO2 Sorption and Diffusion in Polymethyl Methacrylate-Clay Nanocomposites. Polym. Eng. Sci.,2005,45:904-914
    [72]Lim S Y, Sahimi M, Tsotsis T, Kim N Y. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite.Physical Review E,2007,76 (1-1):011810 17677487
    [73]Michaels A S, Bixler H J. Solubility of Gases in Polyethylene. J. Polym. Sci.,1961,50: 393-412
    [74]Liu T, Hu G H, Tong G S. Supercritical Carbon Dioxide Assisted Solid-State Grafting Process of Maleic Anhydride onto Polypropylene. Ind. Eng. Chem. Res.,2005,44:4292-4299
    [75]Doroudiani S, Park C B, Mark T K. Effect of Crystallinity and Morphology on the Microcellular Foam Structure of Semicrystalline Polymers. Polym. Eng. Sci.,1996,36(21): 2645-2662
    [76]Reid R C, Skierwood T K, John M P. The properties of gases and liquids, The 3rd edition, McGraw-Hill Book Company:New York,1987
    [77]Crank J. The Mathematics of Diffusion,2nd ed., Oxford University Press:Oxford,1975
    [78]Mizoguchi K, Hirose T, Kamiya Y. CO2-induced crystallization of poly (ethylene terephthalate). Polymer,1987,28:1298-1302
    [79]Chiou J S, Barlow J W, Paul D R. Polymer Crystallization Induced by Sorption of CO2 Gas. J. Appl. Polym. Sci.,1985,30:3911-3924
    [80]Lambert S M, Paulaitis M E. Crystallization of Poly (ethylene terephthalate) Induced by Carbon Dioxide Sorption at Elevated Pressures. J. Supercritical Fluids,1991,4:15-23
    [81]Zhang Z, Handa Y P. CO2-Assisted Melting of Semicrystalline Polymers. Macromolecules,1997,30 (26):8505-8507
    [82]Takada M, Tanigaki M, Ohshima M. Effects of CO2 on crystallization kinetics of polypropylene. Polym. Eng. Sci.,2001,41 (11):1938-1946
    [83]Beckman E, Porter R S. Crystallization of Bisphenol a Polycarbonate Induced by Supercritical Carbon Dioxide. J. Polym. Sci. Polym. Phys. Ed.,1987,25:1511-1517
    [84]Handa Y P, Capowski S, O'Neill M. Compressed-gas induced plasticization of polymers. Thermochim Acta,1993,226:177-185
    [85]Schultze J D, Engelmann I A D, Boehning M, et al. Influence of Sorbed Carbon Dioxide on Transition Temperatures of Poly (p-Phenylene Sulphide). Polym. Adv. Technol.,1991,2: 123-126
    [86]Handa Y P, Roovers J, Wang F. Effect of Thermal Annealing and Supercritical Fluids on the Crystallization Behavior of Methyl-Substituted Poly (aryl etherether ketone). Macromolecules,1994,27:5511-5516
    [87]Handa Y P, Zhang Z, Wong B. Effect of Compressed CO2 on Phase Transitions and Polymorphism in Syndiotactic Polystyrene. Macromolecules,1997,30 (26):8499-8504
    [88]Zhang Z, Handa, Y P. CO2-Assisted Melting of Semicrystalline Polymers. Macromolecules,1997,30 (26):8505-8507
    [89]Chiou J S, Barlow J W, Paul D R. Polymer Crystallization Induced by Sorption of CO2 Gas. J. Appl.polym.Sci.,1985,30:3911-3924
    [90]Lei Z, Ohyabu H., Sato Y, et al. Solubility, swelling degree and crystallinity of carbon dioxide-polypropylene system. J. Supercritical Fluids,2007,40:452-461
    [91]Raymond G. Wissinger, Michael E. Paulaitis. Molecular thermodynamic model for sorption and swelling in glassy polymer-CO2 systems at elevated pressures. Ind. Eng. Chem. Res.,1991,30:842-851
    [92]Ashokgarg, Esin Gulari, Charles W M. Thermodynamics of polymer melts swollen with supercritical gases. Macromolecules,1994,27:5643-5653
    [93]Panayiotou C, Vera J H. Local Compositions and Local Surface Area Fractions:A Theoretical Discussion. Can. J. Chem. Eng.,1981,59(4):501-505
    [94]C Panayiotou, J H Vera. Statistical Thermodynamics of y-Mer Fluids and their Mixtures. Polym.J.,1982,14(9):681-694
    [95]I C Sanchez, R H Lacombe. An Elementary Molecular Theory of classical Fluids. J. Phys. Chem.,1976,80(21):2352-2362
    [96]R H Lacombe, I C Sanchez. Statistical Thermodynamics of Fluid Mixtures. J. Phys. Chem.,1976,80(23):2568-2580
    [97]I C Sanchez, R H Lacombe.Statistical thermodynamics of polymer solutions. Macromolecules,1978,11:1145-1156
    [98]M.B. Kiszka, M.A. Meilchen, M.A. McHUGH. Modeling high-pressure gas-polymer mixtures using the Sanchez-Lacombe equation of state. Journal of applied polymer science, 1988,36:583-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700