盆状砂轮磨削钟形壳椭圆沟道的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等速万向节钟形壳是汽车的重要部件之一,其内球表面具有弧形轨道和直形轨道两种形式,其轨道的截面为椭圆弧形,材料为55钢。目前,生产厂家大多采用指状砂轮近似磨削椭圆沟道,理论误差较大。为了减小钟形壳椭圆沟道磨削的理论误差,本文提出用CBN盆状砂轮磨削椭圆沟道的一种新方法,并建立了盆状砂轮的数学模型。分别采用模拟椭圆圆弧的方法、单纯形法、随机方向搜索法对盆状砂轮形状进行了优化。对某钟形壳椭圆沟道的仿真结果表明,最大理论误差可减小到0.631μm,小于数控钟形壳沟道磨床运动控制的最小单位。
     针对弧形沟道和直形沟道的不同磨削特点,分别讨论了盆状砂轮对刀点位置的确定以及沟道磨床的运动过程。利用Pro/Engineer建立了等速万向节钟形壳沟道专用CNC磨床的运动仿真系统,分析了CBN盆状砂轮的修磨量对沟道磨床对刀点的影响。进行了弧形沟道和直形沟道的磨削实验,并利用柔性关节臂座标测量机对磨削的沟道廓形进行了测量,进一步证实了这种磨削工艺的可行性。
     为了计算盆状砂轮磨削钟形壳椭圆沟道的磨削力,将该磨削过程简化为:均匀分布的磨粒沿着假想椭圆上绕砂轮轴高速移动,同时假想椭圆又在与砂轮轴成一定夹角的直线上作进给运动。
     将磨粒简化为圆锥形,且假设只有第一圈磨粒参与磨削工作,详细研究了轴向进给周边轮廓磨削稳定阶段和切入阶段的磨削力模型;根据磨粒间距测量实验、CBN砂轮平面磨削55钢的实验,采用随机方向搜索法对所建立的基于未变形磨屑厚度的平面磨削力通用模型进行了优化拟合,得到了磨削55钢的CBN砂轮的参数;根据CBN砂轮的参数和平面磨削实验数据,得到了CBN砂轮磨削55钢的单位磨削力的拟合公式;通过CBN砂轮轴向进给周边轮廓磨削55钢的实验,对建立的轴向进给周边轮廓磨削力模型进行了验证和分析。
     对CBN盆状砂轮磨削等速万向节钟形壳椭圆沟道的磨削力进行了分析。结果表明:在盆状砂轮磨削万向节钟形壳椭圆沟道的过程中,可以通过提高砂轮转速或减小进给速度的办法来减小磨削力和提高表面加工质量;盆状砂轮的总磨削力随磨粒间距的减小而增加,但单颗磨粒的磨削力和残留高度均随磨粒间距的减小而减小,因此在保证表面质量的前提下,可以使用磨粒间距较大的砂轮来减小磨削功率。
     利用Deforn-3D软件,针对单个磨粒分别进行了平面磨削和轴向进给周边轮廓磨削的有限元仿真分析,进一步验证了本文所建立的平面磨削力模型和轴向进给周边轮廓磨削力模型。
The outer race of constant universal velocity joint (CVJ) is one of the most important components of vehicles, and its inner spherical surface has axially arc grooves or axially straight grooves with elliptical section, whose material is steel 55. At present, the finger-like grinding wheel is widely used to approximately grind elliptical groove in many manufacturers of CVJ, but the theoretical error of this method is large. In order to decrease the error, a novel grinding method with basin-like grinding wheel is proposed in this dissertation. Then the dissertation establishes the mathematical model, optimizes the parameters by means of simulating elliptical arc, restrictive random direction method and simplex method respectively. The results of simulation for a kind of elliptical groove ground by basin-like grinding wheel indicate that the maximum theoretical error will be reduced to 0.631μm, which is less than the resolution of grinding wheel axial motion of outer race ball track grinding machine.
     Refer to the different grinding characteristics between straight grooves and arc grooves, the dissertation focus on the grinding process of elliptical groove grinding machine, fixes the cutter setting position, establishes the simulation system of CNC outer race ball track grinding machine by Pro/ Engineer, and analyses the influence of dressing quantity on the cutter setting position of CBN basin-like grinding wheel in different elliptical groove grinding machine.The grinding experiments of arc grooves and straight grooves with the basin-like grinding wheel were completed ,and the measurements of the grooves by portable arm coordinate measuring machine were carried out, which validates the feasiblity of this grinding technology.
     In order to calculate the grinding force of the basin-like grinding wheel in grinding outer race elliptical grooves, the dissertation simplifies the grinding process as follow: the evenly distributed abrasive grains move around grinding wheel axis along an imaginary ellipse at high speed, while the imaginary ellipse moves along the trace deflected from the grinding wheel axis simultaneously.
     Simplifying the geometric shape of abrasive grains as cone-shape, the dissertation studies the grinding force models both of the cut-in phase and stable phase in profile grinding with axial feed in detail on the assumption that the first circuit abrasive grit of grinding wheel took part in the grinding process; According to the experiments of inter-grain spacing measures and surface grinding of steel 55 with CBN grinding wheel,optimizes the parameters of universal calculation model of grinding force based on undeformed chip thickness by restrictive random direction method, obtains the parameters of the CBN grinding wheel, then presents the optimum fitting equations of unit grinding force in grinding steel 55 with CBN grinding wheel; According to the experimental results for axial feed grinding of steel 55 with CBN grinding wheel, validates and analyses the grinding force model of profile grinding with axial feed.
     The analysis of grinding force in CVJ outer race elliptical groove grinding with basin-like grinding wheel reveals that, the grinding force will be decreased and the surface quality will be improved, if wheel velocity increased and feed velocity decreased. On the other hand, the grinding force of basin-like grinding wheel will be increased but the grinding remain height and the grinding force of abrasive grit will be decreased with the decrease of inter-grain spacing. Therefore, on the premise of guaranting surface quality, the grinding method of using bigger inter-grain spacing can reduce grinding power.
     At last, the dissertation further validates the grinding force models of surface grinding and profile grinding with axial feed by finite element simulation analysis of unit abrasive grit using Deform-3D.
引文
[1]Schmelz F,Ingolstadt,Aucktor E,et al.万向节和传动轴.伍德荣,肖生发,陶健民译.北京:北京理工大学出版社,1997.
    [2]石宝枢.球笼式万向节的共轭曲面原理与解析,轴承,2001(2):5-10.
    [3]臧新群.等速万向节椭圆沟道成形工艺参数的优化.轴承,1999(2):8-11..
    [4]周建军.可轴向移动球笼式万向节钟形壳内球道磨削加工参数计算.磨床与磨削,1996(4):39-42.
    [5]丁庆新,梁枕石,魏而巍,等.等速万向节CVJ磨削原理及指形砂轮几何形状研究.制造技术与机床,2003(9):72-75.
    [6]周兴建.陶瓷粘结剂CBN砂轮的修整.精密制造与自动化,1993(3):21-23
    [7]庞子瑞,李健壮,蔡光起.基于超高速磨削的CBN砂轮特性选择.机械制造,2007(2):30-33
    [8]董万福,杜齐明,陈云.CBN砂轮加工高速钢刀具磨削性能实验研究.成都大学学报(自然科学版),2007(4):329-331
    [9]毛淑芳,龚智伟.CBN砂轮的高速、超高速磨削技术.精密制造与自动化,2005(1):32-33
    [10]Ichida Y,Sato R,Morimoto Y,et al.Formation mechanism of finished surface in ultrahigh-speed grinding with cubic boron nitride (cBN) wheels.JSME International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,2006,49(1):100-105
    [11]雷伟坚.CBN砂轮的选择.现代制造,2006(17):46-47
    [12]徐西鹏,徐鸿钧,戴勇,等.树脂结合剂CBN砂轮缓进深磨钛合金-CBN砂轮在缓磨中的应用.南京航空航天大学学报,1993(5):631-637
    [13]You HY,Ye PQ,Wang JS,etal.Design and application of CBN shape grinding wheel for gears.International Journal of Machine Tools and Manufacture,2003,43(12):1269-1277
    [14]黄伟,黄大明,韦志康,等.人工神经网络技术在CBN砂轮磨削表面粗糙度研究中的应用.现代制造工程,2003(4):40-42
    [15]Ebbrell S,Rowe WB,Morgan MN.Process characterisation of grinding AISI 52100 with vitrified CBN.Key Engineering Materials,2003,238-239:333-338
    [16]Gao H,Deng HB,Li J.The geometrical analysis of end-face cylindrical grinding hot roller with cup-type CBN wheel.Key Engineering Materials,2004,259-260:186-190
    [17]阎秋生,庄司克雄,田中宪司.金属结合层包覆单列磨粒小直径CBN砂轮端面磨削过程研究.机械工程学报,2005(8):208-2 12
    [18]阎秋生,庄司克雄,田中宪司.金属结合剂杯形小直径CBN砂轮端面磨削沟槽底面时砂轮的自锐效应.机械工程学报,2001(2):22-25,29
    [19]阎秋生,庄司克雄,田中宪司.小直径CBN砂轮的磨削特性研究.机械工程学报,2000(5):103-105
    [20]Yan QS,Zhang ZQ,Syoji K.Machining precision in the face grinding of a groove bottom using a cup CBN quill.Journal of Materials Processing Technology,2003,138,(1-3):527-530
    [21]史建茹.细纱机锭杆CBN砂轮成形磨削及修整方法研究.金刚石与磨料磨具工程,2007(6):47-50
    [22]Chen JF,Zhang RJ,Zhang SX,et al.Study on spherical face grinding of Gcr15-bearing-steel spindle pivot by CBN wheels.Key Engineering Materials,2004,259-260:307-311
    [23]Ota M,Nakayama T,Takashima K,et al.Ultra-high speed grinding using a CBN wheel for a mirror-like surface finish.Key Engineering Materials,2005,291-292:67-72
    [24]Stone W,Kurfess T.Grinding titanium aluminide:An experimental investigation of subsurface damage.Grinding and Abrasives,2004,2004:22-26
    [25]罗宁,黄红武,宓海青,等.CBN砂轮120m/s高速磨削表面粗糙度实验研究,精密制造与自动化,2005(2):22-24
    [26]Nakayama T,Wakuda M,Ota,M.Ultra-High Speed Cylindrical Grinding Using CBN Wheel for High Efficiency.Key Engineering Materials,2004,257-258:273-278
    [27]Pang ZR,Yuan SX,Wang WS,et al.Experiment study on residual stresses based on quick-point grinding with vitrified CBN wheel.Key Engineering Materials,2008,359-360:239-243
    [28]Zhang MD,Lv M,Ya G.,et al.Theoretical research on gear-honing and manufacturing technology with electroplated CBN honing wheel.Key Engineering Materials,2006,304-305:408-412
    [29]陈涛,盛晓敏,宓海青,等.45钢CBN砂轮高速磨削(120m/s)工艺研究.湖南大学学报(自然科学版),2006(1):47-50
    [30]Pearce TRA,Fricker DC,Speight A.The effect on workpiece roundness of the run-out of CBN electroplated grinding wheel.Key Engineering Materials,2007,329:483-488
    [31]黄宗响,李春广.CBN砂轮磨削薄壁球轴承内圈滚道的试验研究.金刚石与磨料磨具工程,2008():37-40
    [32]Lin SY,Liu YC,Huang CW.An investigation of surface grinding characteristics for titanium alloy with CBN wheel.Key Engineering Materials,2008,364-366:237-242
    [33]杨宏伟,汪志鹏.电镀CBN砂轮在汽车齿轮磨齿中的应用.机械设计与制造,2008(4):109-110
    [34]Guo C,Shi Z,Attia H,et al.Power and Wheel Wear for Grinding Nickel Alloy with Plated CBN Wheels.CIRP Annals-Manufacturing Technology,2007,56(1):343-346
    [35]Xu XP,Yu YQ,Huang H.Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys.Wear,2003,255(7-12):1421-1426
    [36]Shi Z,Malkin S.An investigation of grinding with electroplated CBN wheels.CIRP Annals - Manufacturing Technology,2003,52(1):267-270
    [37]罗伟文.砂轮进给速度对CBN砂轮磨损影响的试验研究.汽车工艺与材料,2005(9):6-8
    [38]罗伟文.砂轮线速度对CBN砂轮磨损影响的磨削试验研究.精密制造与自动化,2006(3):17-19
    [39]Fujimoto M,Ichida Y,Morimoto Y,et al.Characterization of wheel surface topography in cBN grinding.JSME International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,2006,49(1):106-113
    [40][40]Shi Z,Malkin S.Wear of electroplated CBN grinding wheels.Journal of Manufacturing Science and Engineering,Transactions of the ASME,2006,128(1):110-118
    [41]Ichida Y,Sato R,Morimoto Y,et al.Profile grinding of superalloys with ultrafine-crystalline CBN wheels.JSME International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,2006,49(1):94-99
    [42]Upadhyaya RP,Fiecoat JH.Factors Affecting Grinding Performance with Electroplated CBN Wheels.CIRP Annals-Manufacturing Technology,2007,56(1):339-342
    [43]Jackson MJ.Sintering and vitrification heat treatment of CBN grinding wheels.Journal of Materials Processing Technology,2007,191 (1-3):232-234
    [44]童圣亭.单层钎焊CBN砂轮成型磨削钛合金的研究:[硕士学位论文].南京航空航天大学,2007
    [45]市田良夫,蒋修治.陶瓷结合剂CBN砂轮的组织均匀化对其磨削性能的影响,超硬材料工程,2007(4):46-51
    [46]黄大宇,王晓璐.并条机牵伸罗拉斜齿顶面CBN砂轮磨削加工.纺织学报,2008(3):110-112,117
    [47]Xu XP,Du,CJ.Friction studies on surface grinding of granite with a vitrified CBN wheel.Surface and Interface Analysis,2008,40(3-4):863-866
    [48]De Souza CN,Catai RE,De Aguiar PR,et al.Analysis of diametrical wear of grinding wheel and roundness errors in the machining of steel VC 131.Journal of the Brazilian Society of Mechanical Sciences and Engineering,2004,26(2):209-212
    [49]Monici RD,Bianchi EC,Catai,RE,et al.Analysis of the different forms of application and types of cutting fluid used in plunge cylindrical grinding using conventional and superabrasive CBN grinding wheels.International Journal of Machine Tools and Manufacture,2006,46(2):122-131
    [50]Fu YC,Xu H J,Sun FH.Experimental study on creep feed deep grinding titanium alloy with slotted CBN grinding wheel,Key Engineering Materials,2006,304-305:166-170
    [51]侯亚丽,李长河,冯宝富,等.磨削液对陶瓷结合剂CBN砂轮磨削性能影响.润滑与密封,2007(5):106-107,118
    [52]Tawakoli T,Westkamper E,Rabiey M,et al.Influence of the type of coolant lubricant in grinding with CBN tools.International Journal of Machine Tools and Manufacture,2007,47(5):734-739
    [53]Teicher U,Kunanz K,Ghosh A,et al.Performance of diamond and CBN single-layered grinding wheels in grinding titanium.Materials and Manufacturing Processes,2008,23(3):224-227
    [54]Fricker DC,Pearce TRA,Harrison AJL.Predicting the occurrence of grind hardening in cubic boron nitride grinding of crankshaft steel.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2004,218(10):1339-1356
    [55]Malkin S.Thermal Analysis of Grinding.CIRP Annals - Manufacturing Technology,2007,56(2):760-782
    [56]Pavel R,Srivastava A.An experimental investigation of temperatures during conventional and CBN grinding.International Journal of Advanced Manufacturing Technology,2007,33 (3-4):412-418
    [57]Ghosh S,Chattopadhyay AB,Paul S.Modelling of specific energy requirement during high-efficiency deep grinding.International Journal of Machine Tools and Manufacture,2008,48(11):1242-1253
    [58]Oliveira JFG,Franca TV,Wang JP.Experimental analysis of wheel/workpiece dynamic interactions in grinding.CIRP Annals - Manufacturing Technology,2008,57(1):329-332
    [59]Cai R,Qi HS,Cai GQ.Active cutting edges in vitrified CBN grinding wheels.Key Engineering Materials,2006,304-305:1-7
    [60]野野川岳司,蒋修治.一种新型陶瓷结合剂CBN砂轮-MUSCLE砂轮超硬材料工程,2008(1):49-51
    [61]陈志新.共轭曲面原理基础[M].北京:科学出版社,1985.
    [62]金久梅,杨坤怡.用等面积法求任意曲线的代用圆弧半径[J].工具技术,1998,32(7):26-28.
    [63]梁尚明,殷国富.现代机械优化设计方法.北京:化学工业出版社,2005
    [64]Kuan J,Lee DC,Barber LW.Automated gamma knife radio surgery treatment planning with image registration,data-mining,and Nelder-Mead simplex optimization.Medical Physics,2006,33:2532-2540
    [65]Lee HS,Chang SL.Development of a CAD/CAE/CAM system for a robot manipulator.Journal of Materials Processing Technology,2003,140(1-3):100-104
    [66]Xia YM,Bu YY,Ma ZG,et al.Modeling and simulation of ocean mining subsystem based on virtual prototyping technology.Journal of Central South University of Technology (English Edition),2005,12(2):176-180
    [67]Graciela VH,Victor M VH,Aristides PZ,et al.Simulation the motion of a parallel micromanipulator.WSEAS Transactions on Systems,2005,4(12):2307-2310
    [68]熊越东.基于虚拟现实技术的螺旋锥齿轮CNC加工仿真理论与方法研究:[博士学位论文].天津大学,2005
    [69]马军.5-UPS/PRPU并联机床运动仿真的研究:[硕士学位论文].燕山大学2005
    [70]Batur C,Sreeramreddy T,Khasawneh Q.Sliding mode control of a simulated MEMS gyroscope.ISA Transactions,2006,45 ( 1):99-108
    [71]赵建国,王庆海,肖宪国.装载机工作装置三维运动仿真.现代制造工程,2006(1):123-126
    [72]Feng SQ,Hu SS,Du NC,et al.Study on motion simulation of arc welding robot based on UG.China Welding (English Edition),2008,17(2):54-57
    [73]修珙理,隋秀凛,王亚萍,等.基于UG的虚拟数控仿真系统的研究.机械工程师,2008(1):38-39
    [74]徐云辉,高殿荣.基于PRO/E与ADAMS的锥形螺旋叶轮血泵虚拟样机建模及动态仿真.液压气动与密封,2008(4):34-38
    [75]余国联.基于Pro/E的一种微型收割机铺放装置的运动仿真.当代农机,2008(7):72-73
    [76]赵四海,李国平,骆铁楠.锤式破碎机三维建模与仿真研究.煤矿机械,2008(8):34-36
    [77]赵书晓,赵凯,宋树权.基于Pro/E的爬楼梯小车的设计和仿真.机械工程师,2008(7):134-135
    [78]Zhang C,Shin Y C.A Novel Laser - assisted Truing and Dressing Technique for Vitrified CBN Wheels.Inter.J.of Machine Tools & Manufacture,2002,42:825~ 835
    [79]Kang Renke,Yuan J ingting,Zhang Yunpeng.Truing of Diamond Wheels.Key Engineering Materials,2001,202-203:263~268
    [80]康仁科,原京庭,任敬心,等.激光修整金刚石砂轮的实验研究.西北工业大学学报,1999,17(4):624~628
    [81]王爱珍,王战.陶瓷CBN砂轮修整方法及修整工艺研究.金刚石与磨料磨具工程,2008(2):64-68
    [82]刘新才,崔仲鸣,楚保庆.CBN砂轮整形工具的优选.金刚石与磨料磨具工程,1993(5):2-4,24
    [83]王续跃,徐文骥,王连吉.激光修整圆柱形CBN砂轮中偏焦量对能量分布的影响.中国机械工程,2006(7):702-705
    [84]李迎,徐鸿钧,张幼帧.砂带修锐树脂结合剂CBN砂轮的研究.机械工程师,1995(4):4-5
    [85]范忠仁,薄化川,王扬,等.树脂粘结剂CBN砂轮的喷射修锐.东北林业大学学报,1993(3):68-71
    [86]Nomura M,Wu Y,Kato M,et al.Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes.Key Engineering Materials,2005,291-292:183-188
    [87]Tian YG,Shin,YC.Thermal modelling and experimental evaluation of laser-assisted dressing of superabrasive grinding wheels.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2007,221 (4):605-616
    [88]Badger J,Torrance A.A comparison of two models to predict the grinding force from wheel surface topography.Int J Mach Tools Manuf,2000,40:1099-1120
    [89]Shaw M.Fundamentals of grinding.Proceeding of the international grinding conference:new developments in grinding.Pittsburgh,PA.1972,pp 221-258
    [90]Gong YD,Wang B,Wang WS.The simulation of grinding wheels and ground surface roughness based on virtual reality technology,Journal of Materials Processing Technology 2002,129(1-3):123-126.
    [91]王颖淑,丁宁.外圆纵向磨削加工磨削力模型.长春大学学报,2005,15(6):1-3
    [92]Cooper WL,Lavine AS.Grinding process size effect and kinematics numerical analysis.Joumal of Manufacturing Science and Engineering,2000,122:59-69.
    [93]王龙山,李国发.磨削过程模型的建立及其计算机仿真.中国机械工程,2002,13(1):1-4
    [94]Hecker RL,Liang SY,Wu XJ,et al.Grinding force and power modeling based on chip thickness Analysis.Int J Adv Manuf Technol,2007,33:449-459
    [95]Malkin S.Grinding technology.Theory and applications of machining with abrasives.New York:Ellis Horwood,1989
    [96]T(o|¨)nshoff H,Peters J,Inasaki I,Paul T.Modeling and simulation of grinding processes.Annals of the CIRP,1992,42(2):677-688
    [97]李伯民,赵波.现代磨削技术,北京:机械工业出版社,2003
    [98]S.Malkin.磨削技术理论与应用.蔡光起,巩亚东,宗贵亮.沈阳:东北大学出版社,2002,1-137
    [99]张国华.超高速磨削温度的研究:[湖南大学硕士学位论文].长沙:湖南大学,2006,20-29
    [100]李力钧,付杰才.磨削力的数学模型的研究.机械工程学报,1981,17(4):31-41
    [101]Malkin S,Cook NH.The Wear of Grinding Wheels,Partl-Attritious Wear.Journal of Engineering for Industry,1971,93 (4):1120-1128
    [102]Hecker RL,Ramoneda I,Liang SY.Static and dynamic wheel microstructure characterization.Trans North Am Manuf Res Inst Soc ManufEng,2003
    [103]尤芳怡,徐西鹏.平面磨削中金刚石砂轮有效磨粒数的研究.中国机械工程,2007,18(9):1092-1096
    [104]Liao TW,Sathyanarayanan G,Storer RH,et al.Grinding fundamentals and applications,American Society of Mechanical Engineering,New York.1989,39:241-251.
    [105][105]Liao TW and Chen LJ.A neural network approach for grinding processes:modeling and optimization,Int.J.Mach.Tools Manufact.,1994,34:919-937.
    [106]Upadhyaya RP,Malkin S.Thermal Aspects of Grinding With Electroplated CBN Wheels.Journal of Manufacturing Science and Engineering,2004,126:107-114
    [107]Li K,Liao TW.Modelling of ceramic grinding processes Part Ⅰ.Number of cutting points and grinding forces per.Grit.Journal of Materials Processing Technology,1997,65:1-10
    [108]沈宁福,张东捷,李仲达.新编金属材料手册.北京:科学出版社,2003,63-203
    [109]杨叔子.机械加工工艺手册.北京:机械工业出版社,2002
    [110]邓朝晖,安磊,胡中伟.聚晶金刚石复合片磨削试验研究.金刚石与磨料磨具工程,2007(6):31-33
    [111]邓朝晖,张璧,孙宗禹.纳米结构金属陶瓷(n-WC/Co)涂层材料精密磨削的试验研究.金刚石与磨料磨具工程,2003(1):13-17
    [112]Brinksmeier E,Aurich J C.Govekar E,et al.Advances in modeling and simulation of grinding processes.Annals of the CIRP,2006,55(2):667- 696
    [113]Rowe WB,Chen X.Characterisation of the size effect in grinding and the sliced bread analogy.Int.Journal of Production Research,1997,35(3):887-899.
    [114]罗宁,黄红武,宓海青.CBN砂轮高速磨削磨削力分力比实验研究.厦门理工学院学报,2007,15(3):22-26
    [115]郭家隆,姜君,谢晋.高速钢材料的粗金刚石砂轮轴向进给数控磨削机理研究.机械设计与制造,2008(1):174-177
    [116]黄先德,叶邦彦,陈建红.金属纤维大刃倾角切削变形的三维有限元分析.机械制造,2005,43(10):19-21
    [117]Dong HY,Ke YL.Simulation of 3D chip shaping of aluminum alloy 7075 in milling processes.Transactions of Nonferrous Metals Society of China (English Edition),2005,15(6):1315-1321
    [118]Li ZJ,Dong LH,Tan GY,et al.MATHEMATICAL MODEL OF MILLING TEMPERATURE AND TEMPERATURE FIELD ANALYSIS FOR THREE-DIMEN-SIONAL COMPLEX GROOVE MILLING INSERT.CHINESE JOURNAL OF MECHANICAL ENGINEERING,2003,16(4):340-343.
    [119]Wang SY,Ai X,Zhao J,et al.FEM simulation of the residual stress in the machined surface layer for high-speed machining.Key Engineering Materials,2006,315-316:140-144.
    [120]任翀,侯学元,韩淑华.高速铣削立铣刀切削受力的有限元分析.机电工程技术,2008,37(6):20-22,92
    [121]帅美荣,周存龙,秦建平.平三角孔型轧制TC4钛合金棒材的三维弹塑性有限元分析.稀有金属快报,2008,27(2):21-24
    [122]周利平,吴能章.基于FEM的三维切削力预报研究.工具技术,2006,40(6):14-18
    [123]刘伟,李家春.三维车削加工的Deform-3D有限元模拟.现代机械,2007,(1):11-12,17
    [124]邓朝晖,荆琦,安磊.纳米结构WC/12Co涂层精密平面磨削表面残余应力有限元模拟与试验.机械工程学报,2008(7):58-62
    [125]荆琦.纳米结构WC/12Co涂层精密磨削表面残余应力的实验研究与有限元模拟:[硕士学位论文].湖南大学,2005
    [126]明兴祖,严宏志,陈书涵,钟掘.3D力热耦合磨齿模型与数值分析.机械工程学报,2008(5):17-24
    [127]明兴祖,严宏志,熊显文,钟掘.基于力热耦合作用的磨齿残余应力研究.中国机械工 程,2008(9):1037-1044
    [128]王志峰.先进陶瓷磨削表面/亚表面残余应力有限元预测及其实验研究:[硕士学位论文].天津大学,2006
    [129]刘德福,于晓霞.预应力磨削工件表面残余应力的有限元分析.长沙铁道学院学报,2000(1):48-52
    [130]范敏霞,张飞虎,崔玲丽.用有限元法进行低温磨削钛合金温度场的研究.金刚石与磨料模具工程,2002,130(4):20-23
    [131]黄强.磨削过程中硬质合金材料热应力的有限元分析:[硕士学位论文].武汉理工大学,2007
    [132]王霖,秦勇,刘镇昌,等.磨削温度场的研究现状与发展趋势.工具技术,2002,36(6):7-10
    [133]王霖,秦勇,刘镇昌,等.计算机仿真技术在磨削温度场中的应用.工具技术,2001,35(10):19-21
    [134]Mahdi M,Zhang L.Applied mechanics in grinding-Ⅵ:Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation.International Journal of Machine Tools&Manufacture,1998,38(10):1289-1304.
    [135]Mahdi M,Zhang L.The finite element thermal analysis of grinding processes by ADINA.Computers and Structures,1995,56(2):313-320.
    [136]Tian XL,Yu AB.A thermal elastoplastic model of the surface residual stress of ceramics grinding.Journal of Materials Processing Technnology,2002,129(3):451-453
    [137]Yu XX,Lau WS.A finite-element analysis of residual stress in stretch grinding.Journal of Materials Processing Technology,1999,94(1):13-22
    [138]张磊,葛培琪,张建华,等.40Cr钢磨削强化的试验与数值仿真.机械工程学报,2006(8):60-64
    [139]李传民,王向丽,闫华军.DEFORM5.03金属成形有限元分析实例指导教程.北京:机械工业出版社,2006
    [140]方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术,2003,22(4):641-645
    [141]Salomon C J.Process for the Machining of Metals or Similarly Acting Materials When Being Worked by Cutting Tools.German Patent,1931,12 (4):523-594.
    [142]Kaldos A,Dagiloke I F ,Boyle A.Computer Aided Cutting Process Parameter Selection for High Speed Milling.Journal of Materials Processing Technology,1996,61(1-2):219~224
    [143]刘战强,万熠,艾兴.高速铣削中切削力的研究.中国机械工程,2003,4(9):734-737.
    [144]张倩,占君.切削速度影响切削力的有限元模拟工具技术.2008,42(6):41-43
    [145]赵恒华,孙顺利,高兴军,等.超高速磨削的比磨削能研究.中国机械工程,2006,17(5):453-456
    [146]牛文铁,张大卫,付佑侗.连续轴向进给时工程陶瓷的平面磨削.金刚石与磨粒磨具工程,1995(113):23-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700