应变型微小位移/载荷力检测单元的设计分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,针对原位微纳米力学测试仪器、扫描探针显微镜、三坐标测量仪等精密测试仪器的微小载荷信号的精密检测是非常重要,因此研究一种结构尺寸微小、精度和集成化均较高的微力传感器具有重要实际意义。本文将工作的重点放在微小载荷信号检测单元的设计与实验分析上,结合相关学科知识,基于压电元件的优点和柔性铰链的特点,研制了一种位移放大机构和自检测等功能为一体的具有较高精度、较宽测试范围、结构轻巧的应变型微力检测单元,同时结合相关定律,还实现了精密位移信号的同步检测功能。
     首先,介绍了用于检测位移和载荷力信号的传感器的国内外研究进展,结合国内外进展指出各种测量方式在实际应用中存在测量维数单一、串联其他传感器误差大等缺点而不适用于在有限空间中测量微小载荷,所以自主研发一种可同时检测位移载荷和力载荷的高精度和高度集成化的检测单元具有重要的意义。
     然后,介绍了检测单元的一个测量原理和一个关键技术。介绍了柔性铰链技术,分析了直圆型柔性铰链的优点,建立了力学分析模型,推导了理论柔度计算公式,对柔性铰链机构的设计与优化提供了依据。推导了不同布片方式时测量电路的输出电压,建立了在受力状态下应变与载荷、结构尺寸之间的关系;
     接着着重对检测单元的主要部件进行了设计与分析,包括载荷自检测模块的设计分析和压入模块的设计分析。利用有限元分析软件ANSYS10.0对检测单元的关键模块进行了静力学分析和模态分析,得到了各自应力分布图以及前六阶振型图。分析仿真结果得出结论:载荷自检测模块和压入模块具有较好的强度,并能在低频状态下良好的工作。最终设计出了以压电叠堆为动力源、柔性铰链为精密传动结构、应变片为检测结构信号的应变型微小位移/载荷力检测单元,并建立了相应的CATIA的模型图。
     最后,对检测单元在开环工作状态下的放大倍数、位移载荷、力载荷、刚度、分辨率和测试范围等性质进行了试验研究。试验结果表明:载荷自检测模块的放大倍数和刚度满足设计要求,整个检测单元的位移载荷和力载荷的检测结果在工作状态下输出特性良好,压入模块在加载过程中的分辨率为20nm,最大输出位移为196.24μm,最大输出力为69.39N;载荷自检测模块的刚度为44.28KN/m,分辨率为1mN。整个检测单元在空载情况下,加载卸载曲线具有良好的重复性。另外,又分析了试验过程中的主要误差因素,并针对每个影响因素给出了解决方案。仿真和试验结果表明本文设计的应变型微小位移/载荷力检测单元已经达到了一定的精度,但其误差影响需进一步的改进。
With the development of science and technology, in view of the in situ mechanicstest, scanning probe microscopy, three coordinates measuring instrument and otherprecision monitoring instruments, tiny load of force signal precision testing is veryimportant.Therefore, research and development a miniature, high-precision andhigh-integrated micro-force sensor has a very urgent subject of great practicalsignificance. Based on the advantages of Piezoelectric element as well as thecharacteristic of flexible hinge, this paper will put the key work for small signaldetection unit load power design and experiment analysis.The sensor relates tomechanics, testing technology, piezoelectric, electrical, mechanical and other relatedknowledge. Integrating displacement amplification platform and self-sensing function,the uint takes advantages of high accuracy, wide testing range and light weightstructure.
     First, the tiny force measurement methods of the domestic and foreign researchprogress are introduced and the advantages and disadvantages of each measurementmethod are given. There are some shortcomings during methods, such as singledimension measurement, a higher of deviation with series other sensors and so on. Sothey are not suitable to carry out tiny force measurement in a limited space. And a kindof high-precision and high-integrated sensor which can test force load anddisplacement load at the same time has the vital significance.
     Then, the one measurement principle and the one key technology of uint areintroduced. The flexible hinge technology is introduced. The advantages of Straightcircular flexure hinge is analyzed. Mechanics analysis model of Straight circularflexure hinge is established and the formula of theoretical flexibility is deduced whichprovides reference for the design and optimize of flexible hinge. The output voltage indifferent ways of measuring circuit is deduced. The relationship among State strain, load and the structure size in the stress is established.
     Then, main components of the sensor mainly including self-detection unit of loadand head unit are designed and analyzed. Static analysis and modal analysis is carriedout for these components by finite element analysis software ANSYS10.0. And resultsof deformation and stress distribution as well as the first six order frequencies andmode shapes are obtained under different loading conditions. Through these resultsintensity and frequency response of these key parts are analyzed and the conclusion isthat self-detection unit of load and head unit have good strength and stability for lowfrequency work. Finally a sensor based on Piezoelectric stack as power source, flexiblehinge as precision transmission structure, strain gauge as the detection signal of strainis designed and its CATIA model is also established.
     Finally, the experimental researches contain magnification, displacement of theload, force of the load, stiffness, resolution, and test range in open loop. Experimentalresults indicate that magnification and stiffness of self-detection unit of load meet thedesign requirements, displacement of the load and force of the load in workingcondition have a good output characteristics, the resolution of indentation unit is20nm,the biggest displacement load is196.24μm, the biggest force load is69.39N, thestiffness of self-detection unit of load is44.28KN/m, the resolution is1mN. The curveshas a good reproducibility during loading and unloading with no load of the test uint.The thesis analyzes the experimental error of testing uint and puts forward somemeasures to reduce the error. The results show that the sensor presented in this papercan be able to reached a certain degree of accuracy but the error influence of its largerneed to be improved.
引文
[1]王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学学报,2000,40(5):505-508.
    [2] Fujita H. A decade of MEMS and its future[C]. IEEE. Tenth Annual International Workshopon Micro Electro Mechanical Systems,Nagoya,1997.
    [3]封松林,王渭源,王跃林等.微系统技术[J].科学中国人,2003,9:26-28.
    [4] T Gotszalka,P Grabiecb,I W Rangelow. Calibration and examination of piezoresistiveWheatstone bridge cantilevers for scanning probe microscopy[J].Ultramicroscopy,2003,97:385-389.
    [5] T Gotszalk,P B Grabiec,1W Rangelow.A novel piezoresistive microprobe for atomic andLateral force microscopy[J]. Sensors and Actuators A,2005,123-124:370-378.
    [6] R P Ried,H J Mamin,B D Terris,et al.5MHz,2N/m Piezoresistive Cantilevers withINCISIVE Tips,1997International Conferenee on Solid-State[J].Sensors and Actuators,Chicago,1997,1:447-450.
    [7] J Dargahi,M Parameswaran,S Payandeh. A micromachined piezoelectric tactile sensor foruse in endoscopic graspers[C]. Proeeedings of the1998IEEE/RSJ intl. Conference onintelligent robots and systems,Canda,1998.
    [8] M Tanimoto,F Arai,T Fukuda,et al. Micro force sensor for intravascular neurosurgery andin vivo experiment[C]. IEEE1997International Conference on Robotics&Automation,Heidelberg,1998.
    [9] W B Rong,L N Sun,L G Chen. Research on integrated micromanipulator and itsApplication in microassembly[C]. Proceeding Of The2003IEEE International Conferenceon Robotics Intelligent Systems and Signal Proeessing,China,2003.
    [10] G Yang,B J Nelson. Micromanipulation contact transition control by selective focusing andmicro force control[C]. Proceeding Of the2003IEEE International Conference on Robotics&Automation,USA,2003.
    [11] M R Wolffenbuttel,P P L Regtien. The Accurate Measurement of a Micromechanical ForceUsing Force-Sensitive Capacitances[J]. IEEE Transactions on Instrumentation andMeasurement,1995,44(2):188-191.
    [12] Y Sun,D P Potasek,D Piyabongkam,et al. Actively Servoed Multi-Axis MicroforceSensors[C]. Proceedings of the2003IEEE International Conference on Robotics&Automation,Taiwan,2003.
    [13] C K M Fung,I Elhaj,W J Lil,et al. A2-D PVDF Force Sensing System forMicromanipulation and Micro-assembly [C]. Proceedings of the2002IEEE InternationalConference on Robotics8Automation,Hong Kong,2002.
    [14] T Itoh,T Suga.Development of a force sensor for atomic force microscopy usingPiezoelectric thin films[J]. Nanotechnology,1993,4:218-224.
    [15] T Itoh,T Suga.Piezoelectric force sensor for scanning force microscopy[J].Sensors andActuators A,1994,43:305-310.
    [16] C K Lee,T Itoh,T Suga.Micromachined piezoelectric force sensors based on PZT thinfilms[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,1996,43(4):553-559.
    [17] T Itoh,C Lee,G Sasaki,et al.Sol-gel derived PZT force Sensor for scanning forcemicroscopy[J]. Materials Chemistry and Physics,1996,44(l):25-29.
    [18] T Itoh,T Suga. Self-excited force-sensing microcantilevers with piezoelectric thin films fordynamic scanning force microscopy[J].Sensors and Actuators A,1996,54(1-3):477-481.
    [19] C K Lee,T Itoh,T Suga.Self-excited piezoelectric PZT microcantilevers for dynamicSFM-with inherent sensing and actuating capabilities[J].Sensors and Actuators,1999,72(2):179-188.
    [20] C K Lee, T Itoh, T Ohashi.Development of a piezoelectric Self excitation andSelf-detection mechanism in PZT microcantilevers for dynamic scanning force microscopyin1iquid[J].Journal of Vacuum Science&Technology B,1997(15):1559-1563.
    [21] H J Nam, Y S Kim, C S Lee, et al. Integrated nitride cantilever array with Si heaters andpiezoelectric detectors for nano-data-storage application[C].18th IEEE InternationalConference on Micro Electro Mechanical Systems,2005:247-250.
    [22] W G Pfann,R N Thurston.Semiconducting stress transducers utilizing the transverse andshear Piezoresistive effects[J].J.APPl.Phys,1961,32:2008-2012.
    [23] D E Fulkerson.A silicon integrated circuit force sensor[J].IEEE Transactions on ElectronDevices,1969,16(10):867-870.
    [24] J Thaysen,A Boisen.Atomic force microscopy probe with piezoresistive read-out and ahighly symmetrical Wheatstone bridge arrangement[J]. Sensors and Actuators,2000,83:47-53.
    [25] D Viet Dao, T Toriyama,J Wells,et al. Development of Six-Degree of Freedom MicroForce Sensor for Application in Geophysies[J]. Proceedings of IEEE Sensors,2002,2:973-978.
    [26] Z X Yang,X X Li,Y L Wang,et al.Micro cantilever probe array integrated withpiezoresistive sensor[J].Microelectronics Journal,2004,35:479-483.
    [27] T C Due,J F Creemer,P M Sarro. Piezoresistive Cantilever for Nano-Newton Sensing intwo Dimensions[C],19th IEEE International Conference on Micro Electro MechanicalSystems,Istanbul,586-589.
    [28]刘安平. IPC-208B型原子力显微镜系统改进及其压电微悬臂的研究[D].重庆:重庆大学数学学院,2009.
    [29]曲兴华,赵英,杨学友.微动力测试仪原理及应用[J].电子测量与仪器学报,1994,9(3):40-45.
    [30]林启敬,赵玉龙,蒋庄德等.基于探针形式的三维硅微力传感器[J].微纳电子技术,2009,46(4),231-235.
    [31]刘宏,高晓辉,姜力.基于薄膜技术的微型六位力和力矩传感器[J].传感器与位系统,2008,6(6):12-15.
    [32]王嘉力.微型六维力/力矩传感器及其自动标定的研究[D].哈尔滨,哈尔滨工业大学机电工程学院,2007.
    [33]文智平,吉爱红,王金童等.2-维应变式力传感器的优化设计[J].传感技术学报,2008,21(6):938-941.
    [34]梁桥康.特殊应用的多维力/力矩传感器研究与应用[D].安徽合肥,中国科学技术大学,2010.
    [35]韩海军.面向晶圆传输的接触面微力与粘滑传感器研究[D].哈尔滨,哈尔滨工业大学机电工程学院,2011.
    [36] J. ButterfaB,M. Grebenstein, H. Liu and G. Hirzinger. DLR-Hand II: Next Generation ofa Dextrous Robot Hand[C]. The2001IEEE International Conference on Robotics&Automation Seoul, Korea,2001.
    [37] Joong-Jo Park,Gab-Soon.Kim. Development of the6-axis force/moment sensor for anintelligent robot’s gripper[J].Sensors and Actuators A,2005,118:127–134.
    [38] Liu T,Inoue Y. Wearable Force Sensor with Parallel Structure for Measurement ofGround-reaction Force[J]. Measurement,2007(40):644-653.
    [39] Liu T,Inoue Y.3D Force Sensor Designed Using Pressure Sensitive Electric ConductiveRubber[C]. IEEE Conference on Automation and Mechatronics in Robotics,2008.
    [40] Liu T, Inoue Y. A Small and Low-Cost3-D Tactile Sensor for a Wearable Force Plate[J].IEEE Sensors Journal,2009(9):1103-1110.
    [41] Liu T,InoueY.A Wearable Force Plate System to Successively measure multi-axial groundreaction force for gait analysis[C].IEEE International Conference on Robotics andBiomimetics,2009.
    [42] Liu T,Inoue Y.A Wearable Force Plate System Designed Using Small Triaxial ForceSensors and Inertial Sensors[J].Instrumentation and Systems on Advances in BiomedicalSensing,2010(55):61-73.
    [43] Liu T,Inoue Y. A Wearable Force Plate System for the Continuous Measurement ofTriaxial Ground Reaction Force in Biomechanical Applications[J]. MeasurementScience and Technology,2010(21):085804.
    [44] Hiske van Duinen,Marijn Post,Koen Vaartjes,et al. MR compatible strain gauge basedforce transducer [J]. Journal of Neuroscience Methods,2007,164:247–254.
    [45] Gab-Soon Kim.Design of a six-axis wrist force/moment sensor using FEM and itsfabrication for an intelligent robot[J]. Sensors and Actuators A,2007,133:27–34.
    [46] Andrew J. Fleming, Kam K.Leang.Integrated strain and force feedback forhigh-performance control of piezoelectric actuators[J].Sensors and Actuators A:Physical,2010,161:256–265.
    [47] C. Jacq,B. Lüthi,Th. Maeder,et al. Thick-film multi-DOF force/torque sensor for wristrehabilitation[J].Sensors and Actuators A: Physical,2010,162:361–366.
    [48]李学东,余志伟,杨明忠.基于MEMS技术的微型传感器[J].仪表技术与传感器,2005,9:4-5.
    [49]师树恒,王斌,朱健强.高精度电容式位移传感器的研究[C].2007’中国仪器仪表与测控技术交流大会,成都,2007.
    [50]王晓立.电容式位移传感器研究[D].湘潭:湘潭大学机械工程学院,2010.
    [51]高晓丁,许卫星,胥光申.电容式力传感器的研制[J].2002,21(7):21-22.
    [52]孙立宁,王家畴,荣伟彬等.基于侧壁压阻式的位移传感器研制及应用[J].半导体学报,2008,29(8):1589-1594.
    [53]冯平,蒋静坪.一种新型电感式位移传感器[J].仪器仪表学报,2002,23(3):313-316.
    [54]侯志武.微构件拉伸测试系统设计与实现[D].大连:大连理工大学机械工程学院,2008.
    [55]葛春亚,贾振元,王福吉等.超磁致伸缩力传感器及其实验研究[J].仪表技术与传感器2011,6:3-5.
    [56] Oak Ridge宣称其MEMS传感器灵敏度创记录.(2003-06-2)[2007-03-10]. http://www.bjx. com. cn/dl/news/69662. html.
    [57]吴鹰飞.压电驱动柔性铰链机构传动实现超精密定位[J].机械强度2002(2):157~160.
    [58] Renyi Yang. Design and Characterization of a low-profile micropositioning stage[J].Precision Engineering,1996,18(1):20~29.
    [59]胡磊磊.超精密加工中的刀具补偿驱动平台及熨压机构的研究[D].长春:吉林大学机械学院,2011.
    [60]吴鹰飞.压电驱动柔性铰链机构传动实现超精密定位[J].机械强度,2002(2);157~160.
    [61] Renyi Yang. Design and Characterization of a low-profile micropositioning stage[J].Precision Engineering,1996,18(1):20~29.
    [62]薛实福,李庆祥.精密仪器设计[M].北京:清华大学出版社,1991.
    [63]张志杰,袁怡宝.典型柔性铰链柔度性能的计算与分析[J],工程力学,2008,25(4):106-110.
    [64]吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学,2002,19(6):136-140.
    [65]刘巧玲,李洪.理论力学[M].北京:科学出版社,2010.
    [66]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2004.
    [67]黄长艺,严普强.机械工程测试技术基础[M].北京:机械工业出版社,2001.
    [68]黄长艺,严普强.机械工程测试技术基础[M].北京:机械工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700