SRAM型FPGA单粒子故障传播特性与测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天事业的蓬勃发展,SRAM型FPGA以其高性能、可重构等优势在卫星等航天器上得以应用,而空间单粒子效应一直是制约该类器件应用的瓶颈。近年来,随着SRAM型FPGA器件特征尺寸减小和工作频率的上升,单粒子效应的表现形式更为复杂:单个的、区域的单粒子效应通过电路的逻辑功能传播,引起相邻区域逻辑功能的故障,甚至导致电路输出的失效。本文称这种特性为单粒子故障在超大规模集成电路SRAM型FPGA中的传播特性。本文围绕SRAM型FPGA单粒子故障传播特性与测试方法问题,从器件应用层面出发,研究FPGA工作负载中局部的单粒子软错误对相关电路单元以及电路输出影响的量化描述和分析测试方法。主要研究内容如下:
     (1)根据单粒子效应特点,在分析SRAM型FPGA的结构模型及其单粒子敏感单元基础上,对单粒子故障在其中的传播进行归纳;阐明单粒子故障传播特性的研究内容,包括电路功能模块的耦合参数、故障传播模型和电路输出软错误失效率。
     (2)针对SRAM型FPGA单粒子故障传播现象,研究单粒子故障传播的建模方法。根据其动态传播过程特性,建立了基于元胞自动机的单粒子故障传播模型,研究该模型的算法设计与实现,并对该模型进行仿真,分析探讨影响故障传播的因素。
     (3)针对SRAM型FPGA的单粒子故障传播特性研究内容,给出了电路功能模块耦合因子的分析方法和软错误失效率的测试方法;研究基于SEU故障注入的原理与关键技术,在分析SEU故障注入系统结构的基础上,设计并实现了本文采用的SEU故障注入系统。
     最后,针对部分国际标准测试电路ISCASA'85和ISCASA'89,计算了其电路功能模块的耦合参数,采用SEU故障注入测试系统对电路输出软错误失效率进行了测试。本文研究的意义在于,加深理解SRAM型FPGA应用层的单粒子效应传播特性,为此类器件空间环境防护加固设计提供支撑。
With the rapid development of modern spacecraft, SRAM-based FPGA is adopted to applicate in space due to its excellent performance and programable advantage, however, Single Event Effect (SEE) is tough bottle-neck. In recent years, with device feature size shrinking and fast rising frequency ranges, SEE is becoming more complicated: SEE error is propagating in the logic circuit, affecting the interrelated area and even resuting the failure of circuit function.The thesis focuses on the modeling and testing methodology of SEE soft error propagation in application level, studies the effect of interrelated module and output of specific circuit induced by SEE soft error. The main content researched is as below:
     (1) According to the feature of SEE, starting off the structure model and sensitive unit of SRAM-based FPGA, soft error propagation is analysed and the science meaning is stated, the content includes coupling factor of function module, error propagation model and soft error failure rate.
     (2) According to the propagation of SEE soft error, the simulation method is proposed to study it. Aiming at the dynamic propagation progress, SEE soft error propagation simulation model which is based on Cellular Automaton is established. The algorithm is researched and carried out, simulation result is analysed and the effect factor is discussed.
     (3) Aiming at researching the content of SEE soft error in SRAM-based FPGA, method of coupling factor of function module and soft error failure rate is analysed and SEU fault injection system is introducd. The principle and algorithm of SEU fault injection, experiment system and flow is studied.
     At last, the soft error failure rate of the International Symposium of Circuits and Systems in 1985 and 1989 (ISCASA'85 and ISCASA'89), is tested by the SEU fault injection system. And coupling factor of function module is calculated.The experiment shows that the testing data accordants with the SEE soft error propagation model, and the test results were constructive for improving designs to space application. The meaning of the research is to enlarge the comprehendment of SEE soft error propagation in SRAM-based FPGA, and provide material to mitigate the SEE for such device in radiation environment.
引文
[1] D Binder, E Smith,A Holman. Satellite Anomalies from Galactic Cosmic Ray[J].IEEE Transactions On Nuclear Science,1975. 22(6): p. 2675~2680.
    [2] Koons HC, Mazur JE,Selesbick RS, et al. The Impact of the Space Environment on Space System[R].American Defence Report(20000509112).1999.
    [3]辛明瑞.面向空间应用的容错RISC处理器体系结构研究[D],西安:西北工业大学,博士学位论文,2006.
    [4]王长河.单粒子效应对卫星空间运行可靠性影响[J].半导体情报,1998. 35(1): p. 1~8.
    [5]张森,石军,王九龙.卫星在轨失效统计分析[J].航天器工程,2010. 19(4): p. 41~46.
    [6]武文权.可重构并行小卫星星载计算机体系结构设计[D],上海:中国科学院上海微系统与信息技术研究所,博士学位论文,2004.
    [7]预测:今后十年全球卫星市场将大幅增长[J].2009. 8: p. 20~22.
    [8] R Hillman, G Swift,P Layton. Space processor radiation mitigation and validation technologies for an 1800 MIPS processor board[C]. Proceedings of RADECS. 2003: p.347~352.
    [9] Corporation VDC. Embedded COTS System in Military Aerosapce and Defense Application[R].2007.
    [10] kastensmidt Fernanda Lima, Carro Luigi,Reis Ricardo.Fault-Tolerance Techniques for SRAM-based FPGAs[M], Springer: 2006.
    [11] ITRS. International Technology Roadmap for Semiconductors 2007 Editon - Executive Summary[R]. http://www.itrs.net/.2007.
    [12] SOstler Patrick, PCaffrey Michael,SGibelyou Derrick, et al. SRAM FPGA Reliability Analysis for Harsh radiation enviroment[J].IEEE Transaction on Nuclear Science,2009. 56(6): p. 3519~3526.
    [13] ITRS. The International Technology Roadmap for Semiconductors (2009 Edition)[R].http://www.itrs.net/.2009.
    [14] J Wallmark,S Marcus. Minimum Size and Maximum Packing Density of Nonredundant Semiconductor Device[J].Proceedings of IRE,1962: p. 286~298.
    [15] Mclean FB,Oldham TR. Charge funneling in n- and p-type si substrates[J].IEEE Transactions On Nuclear Science,1982. NS-29(6): p. 2018~2023.
    [16] JR Hauser, SE Diehl-Nagle,AR Knudson, et al. Ion Track Shunt Effects in Multi-juction Structures[J].IEEE Transactions on Nuclear Science,1985. NS-32(6).
    [17] Messenger. Collection of charge on junction from ion tracks[J].IEEE Transaction On Nuclear Science,1982. 29(6): p. 2024.
    [18] M.Rebaudengo, M.Sonza, M.Violante. A new functional fault model for FPGA Application-Oriented testing[C]. Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02). 2002.
    [19] Ghazanfar Asadi Mehdi B. Tahoori. An Analytical Approach for Soft Error Rate Estimation of SRAM-Based FPGAs[C]. Military and Aerospace Applications of Programmable Devices and Technologies Conference. 2004. Washington DC.
    [20] M Renovell, JM Portal, J Figueras, et al. SRAM-based FPGA's: Testing the interconnect/logic interface[C]. Proceedings of the 1998 7th Asian Test Symposium, Dec 2-4 1998. 1998. Singapore, Singapore: IEEE Comp Soc, Los Alamitos, CA, USA: p.266-271.
    [21]邢克飞.星载信号处理平台单粒子效应检测与加固技术研究[D],国防科学技术大学,博士学位论文,2007.
    [22]周永彬.单粒子效应下星载处理平台的容错设计与测试验证[D],长沙:国防科学技术大学,博士学位论文,2008.
    [23] Bhanja Sanjukta, Ranganathan N. Switching activity estimation of VLSI circuits using Bayesian networks[J].IEEE Transactions on Very Large Scale Integration Systems,2003. 11(4).
    [24] Rejimon T, Bhanja S. A timing-aware probabilistic model for single-event-upset analysis[J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2006. 14(10): p. 1130~1139.
    [25] K Morgan, M Caffrey,P Graham, et al. SEU-induced persistent error propagation in FPGAs[J].IEEE Transactions On Nuclear Science,2005. 52(6Part 1): p. 2438~2445.
    [26]林金茂. SDR平台抗SEU性能评价关键技术研究[D],长沙:国防科学技术大学,硕士学位论文,2009.
    [27]梁斌.数字集成电路中单粒子瞬态脉冲的产生与传播[D],长沙:国防科学技术大学,博士学位论文,2008.
    [28]郭红霞,王伟,罗尹虹,赵雯,郭晓强,张科营.新型微电子技术单粒子效应研究面临的挑战[J].核技术,2010. 33(7): p. 538-542.
    [29]刘必慰.集成电路单粒子效应建模与加固方法研究[D],长沙:国防科学技术大学,博士学位论文,2009.
    [30]刘征.纳米集成电路单粒子效应的电荷收集及其若干影响因素研究[D],长沙:国防科学技术大学,博士学位论文,2011.
    [31]王嘉家.大规模模拟电路故障传播特性研究[D],长沙:湖南大学,硕士学位论文,2010.
    [32] Thara Rejimon, Sanjukta Bhanja. A Timing-Aware Probabilistic Model for Single Event Upset Analysis[J].IEEE Transactions on Very Large Scale IntegrationSystems,2006. 14(10): p. 1130~1139.
    [33]吴继梅.基于元胞自动机的电路故障传播建模与应用研究[D],上海:东华大学,硕士学位论文,2008.
    [34]李爱国,洪炳熔,王司,朴松昊.软件中的错误传播分析[J].计算机研究与发展,2008. 44(11): p. 1962~1970.
    [35] Underwood C.I. The single-event-effect behaviour of commercial-off-the-shelf memory devices - A decade in low-Earth orbit[C]. Radiation and Its Effects on Components and Systems, 1997. RADECS 97. Fourth European Conference on. 1997: p.251~258.
    [36] Philip P. Fault-Tolerant Computing for Radiation Environments[R].Center for Reliable Computing, Stanford University.2001.
    [37] Nozomu Nishinaga, Makoto Takeuchi, Ryutaro Suzuki. Reconfigurable Communication Equipment on SmartSAT-1[C]. Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD). 2004. Washington DC, USA: NASA Office of Logic Design.
    [38]马兴瑞,张永维,白照光.实践五号卫星及其飞行成果[J].中国航天,1999(11).
    [39]蔡金荣,林云龙,任琼英等.实践五号卫星单粒子事件测量及对策研究试验初步结果[C]. 2001.
    [40] A Kenneth, K Amy,K Donald, et al. Single event effect proton and heavy ion test results for candidate spacecraft electronics[C]. 1994 IEEE Radiation Effects Data Workshop Proceedings, Jul 18-22 1994. 1994. Tucson, AZ, USA: IEEE: p.64~71.
    [41] KA LaBel, AK Moran,DK Hawkins, et al. Current single event effect test results for candidate spacecraft electronics[C]. IEEE Nuclear and Space Radiation Effects Conference (Cat. No.96TH8199). 1996: p.19~27.
    [42] M Bryan, K LaBel,R Reed, et al. Recent radiation damage and single event effect results for candidate spacecraft electronics[C]. IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588). 2001: p.82~99.
    [43] M Bryan, K LaBel,S Buchner. Compendium of Recent Single Event Effects Results for Candidate Spacecraft Electronics for NASA[C]. Radiation Effects Data Workshop. 2008
    [44]贺朝会,耿斌,杨海亮等.半导体器件单粒子效应的加速器模拟实验[J].强激光与粒子束,2002(01).
    [45]陈晓华,贺朝会,王燕平. 80C86单粒子效应实验研究[J].原子能科学技术,2000. 34(4): p. 344-346.
    [46]贺朝会,陈晓华,刘恩科,李国政. EEPROM 28C64和28C256的14MeV中子辐照特性[J].微电子学,1999. 29(4): p. 262~266.
    [47]贺朝会,耿斌,陈晓华等.浮栅ROM器件的质子辐射效应实验研究[J].空间科学学报,2002(02).
    [48]贺朝会,耿斌,王燕萍等.静态随机存取存储器重离子单粒子翻转效应实验研究[J].核电子学与探测技术,2002(02).
    [49]贺朝会,杨海亮,耿斌.静态随机存取存储器质子单粒子效应实验研究[J].核电子学与探测技术,2000. 20(4): p. 253~257.
    [50] V Asenek, C Underwood,R Velazco. SEU induced errors observed in microprocessor systems[J].IEEE Transactions On Nuclear Science,1998. 45(6): p. 2876~2883.
    [51] F Lima, C Carmichael,J Fabula, et al. A fault injection analysis of Virtex FPGA TMR design methodology[C]. 6th European Conference on Radiation and Its Effects on Components and Systems (Cat. No.01TH8605). 2002: p.275~282.
    [52] G Asadi, SG Miremadi,HR Zarandi, et al. Fault injection into SRAM-based FPGAs for the analysis of SEU effects[C].IEEE International Conference on Field-Programmable Technology (FPT). 2003: p.428~430.
    [53] M Alderighi, S Angelo,M Mancini, et al. A Fault Injection Tool for SRAM-based FPGAs[C]. 9th IEEE International On-Line Testing Symposium. 2003.
    [54] A Benso, PL Civera,M Revaudengo, et al. A low-cost programmable board for speeding-up fault injection in microprocessor-based systems[C]. Annual Reliability and Maintainability. 1999: p.171~177.
    [55] P Bernardi, M Reorda,L Sterpone, et al. On the evaluation of SEU sensitiveness in SRAM-based FPGAs[C]. Proceedings - 10th IEEE International On-Line Testing Symposium, IOLTS 2004, Jul 12-14 2004. 2004. Madeira Island, Portugal: IEEE Computer Society, Los Alamitos, CA 90720-1314, United States: p.115~120.
    [56] Johnson E, Caffrey M,Graham P, et al. Accelerator validation of an FPGA SEU simulator[J].Nuclear Science, IEEE Transcations on,2003. 50(6Part 1): p. 2147~2157.
    [57] Kaddour F, Rezgui S,Velazco R, et al. Error rate estimation for a flight application using the CEU fault injection approach[C]. On-Line Testing Workshop, 2002. Proceedings of the Eighth IEEE International. 2002:195.
    [58] Velazco R, Rezgui S,Ecoffet R. Predicting error rate for microprocessor-based digital architectures through CEU (Code Emulating Upsets) injection[J].Nuclear Science, IEEE Transcations on,2000. 47(6Part 3): p. 2405~2411.
    [59] Segall Z, Vrisalovic D,Siewiorek D, et al. FIAT-Fault Injection Based Automated Testing Environment[C]. Proc. 18th IEEE Int. Symp. on Fault Tolerant Computing(FTCS-18). 1988. Tokyo,Japan: p.102~107.
    [60] Barton J.H, Czeck E.W, Segall Z.Z, et al. Fault Injection Experiments Using FIAT[C]. IEEE Transactions on Computer. 1990: p.575~582.
    [61] Kao W, Tang D, Iyer R. K. Study of fault propagation using fault injection in theUNIX system[C]. Test Symposium, 1993, Proceedings of the Second Asian. 1993:38~43.
    [62] Han S, K.Shin. Experimental Evaluation of Failure-Detection Schemes in Real-Time Communication Networks[C]. Proc. 27th IEEE Int. Symp. on Fault Tolerant Computing(FTCS-27). 1997. Seattle,WA.
    [63] Kanawati G.A, Kanawati N.A, J.A Abraham. FERRARI: A Tool for the Validatioin of System Dependability Properties[C]. Proc. 22th IEEE Int. Symp. on Fault Tolerant Compueting(FTCS-22). 1992. Boston,MA:336~344.
    [64] Carreira J, Madeira H, J.G. Silva. Xception: A Technique for the Experimental Evaluation of Dependability in Modern Computers[J].lEEE Trans. on Software Engineering,1998. 24(2): p. 125~126.
    [65]孙峻朝,王建莹,杨孝宗.故障注入方法与工具的研究现状[J].宇航学报,2001(1).
    [66]谭玲,曲峰,董剑等.基于软件故障注入的容错性能评测技术[J].计算机工程与科学,2005(11).
    [67] Jeitler M, Delvai M, Reichor S. FuSE - a hardware accelerated HDL fault injection tool[C]. 5th Southern Conference on Programmable Logic. 2009. SPL:89~94.
    [68] Niccolo Battezzati,Luca Sterpone Massimo Violante. A new low-cost non intrusive platform for injecting soft errors in SRAM-based FPGAs[J].2008.
    [69] R Velazco, S Rezgui, R Ecoffet. Predicting error rate for microprocessor-based digital architectures through C.E.U. (Code Emulating Upsets) injection[J].IEEE Transactions on Nuclear Science,2000. 47(6): p. 2405-2411.
    [70] Messenger GC. Collection of charge on junction nodes from ion tracks[J].IEEE Transaction On Nuclear Science,1982. 29(6): p. 2024.
    [71] Campbell A.B, Knudson A.R, Shapiro P, et al. Charge collection in test structures[J].IEEE Transactions on Nuclear Science,1983. NS-30(6):p. 4486~4492.
    [72] Zoutendyk J.A, Schwartz H.R, Nevill L.R. Lateral charge transport from heavy-ion tracks in integrated circuit chips[J].IEEE Transactions on Nuclear Science,1988. 35(6 pt 1): p. 1644~1647.
    [73] Edmonds L.D. SEU cross sections derived from a diffusion analysis[J].IEEE Transactions on Nuclear Science,1996. 43(6): p. 3207~3217.
    [74] JS Fu, HT Weaver,R Koga, et al. Comparison of 2D memory SEU transport simulation with experiments[J].IEEE Transactions on Nuclear Science,1985. NS-32(6): p. 4145~4149.
    [75] M Varadharajaperumal, F Niu G,R Krithivasan, et al. 3-D simulation of heavy-ion induced charge collection in SiGeHBTs[J].IEEE Transactions on Nuclear Science,2003. 50(6Part 1): p. 2191~2198.
    [76] XILINX, Virtex-II Platform FPGA User Guide[Z],2007.
    [77]费尔南达利马.卡斯腾斯密得,杨孟飞译.基于SRAM型FPGA的容错技术[M].北京,中国宇航出版社: 2009.
    [78] Paul Graham, Michael Caffrey, Jason Zimmerman, Prasanna Sundararajan Cameron Patterson. Consequences and Categories of SRAM FPGA Configuration SEUs[C]. Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD). 2003. Washington DC.
    [79] Michael Caffrey, Paul Graham, Eric Johnson, Michael Wirthlin, Nathan Rollins Carl Carmichael. Single-Event Upsets in SRAM FPGAs[C]. Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD). 2002. Washington DC.
    [80] Aaron S.Kobayashi, AndrewL. Sternberg, LloydW. Massengill, Ronald D. Schrimpf Robert A. Weller. Spatial and Temporal Characteristics of Energy Deposition by Protons and Alpha Particles in Silicon[J].IEEE Transactions On Nuclear Science,2004. 51(6): p. 3312~3317.
    [81] J.W. Howard, R.C. Block, W.J. Stapor P.T. McDonald and A. R. Knudson. A Novel Approach For Measuring The Radial Distribution Of Charge In A Heavy-Ion Track[J].IEEE Transactions On Nuclear Science,1994. 41(6): p. 2077~2084.
    [82] Phil Oldiges, Robert Dennard, Dave Heidel, Bill Klaasen, Fariborz Assaderaghi Meikei Ieong. Theoretical Determination of the Temporal and Spatial Structure of a-Particle Induced Electron–Hole Pair Generation in Silicon[J].IEEE Transactions On Nuclear Science,2000. 47(6): p. 2575~2579.
    [83] M.Murat, A.Akkerman, J.Barak. Spatial Distribution of Electron-Hole Pairs Induced by Electrons and Protons in SiO2[J].IEEE Transactions On Nuclear Science,2004. 51(6): p. 3211~3218.
    [84] Z. Chunxiang, D.E. Dunn, R. Katz. Radial distribution of dose and cross-sections for the inactivation of dry enzymes and viruses[J].Radiation Protection Dosimetry,1985. 13: p. 215~218.
    [85] Swift Gary M. XILINX Single Event Effects 1st Consortium Report-Virtex-II Static SEU Characterization[R].NASA/JPL, Xilinx.2004.
    [86] Crain S.H, Crain W.R,Crawford K.B, et al. Single event effects test results for the 80C186 and 80C286 microprocessors and the SMJ320C30 and SMJ320C40 digital signal processors[C]. Proceedings of the 1998 IEEE Radiation Effects Data Workshop NSREC. 1998. Newport Beach, CA, USA: p.51~57.
    [87]张运杰.元胞自动机的演化及模糊元胞自动机[D],大连:大连海事大学,硕士学位论文,2006.
    [88] Stephen Wolfram. Statistical mechanics of cellular automata[J].Modern Physics,1983(3): p. 601~621.
    [89]于鑫.元胞自动机理论及其在计算机仿真模拟中的应用[D],沈阳:东北大学,硕士学位论文,2005.
    [90] Eric Johnson, Michael J. Wirthlin M.C. Single-event upset simulation on an FPGA[J].Engineering Of Reconfigurable Syetems and Algorithms,2002.
    [91] D Snodgrass J. Low-Power Fault Tolerance for Spacecraft FPGA-Based Numerical Computing[D],California:Naval Postgraduate School,2006.
    [92] F Faure, R Velazco,P Peronnard. Single-event-upset-like fault injection: a comprehensive framework[J].IEEE Transactions on Nuclear Science,2005. 52(6): p. 2205-2209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700