重燃压气机典型级气动性能的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机作为燃气轮机的一个重要部件,对燃气轮机的效率和功率起着决定性的作用。现代大功率燃气轮机对压气机的性能提出了更高的要求,如高压比、高转速、高的效率,同时又要求其具有较高的可靠性、较长的使用寿命及较轻的重量。
     在总结了国内外关于多级轴流压气机气动性能数值模拟的相关文献基础上,本文对多级轴流压气机气动性能数值模拟的现状进行了综述,并介绍了CFD软件的主要特点以及它在我国现今的应用现状。
     为了掌握多级轴流压气机的气动性能以及总体布局和结构性能特点,本文使用Numeca软件对某燃气轮机多级轴流压气机的第14、15、16级进行了全三维数值模拟,三级压气机网格划分采用IGG完成,采用FINE进行计算,湍流模型选择的是单方程Spalart-Alimaras模型。
     通过对三级轴流压气机的三维流场的定常数值模拟研究,首先对该三级压气机的总体性能参数进行了分析;从各列叶片表面的型面压力分布、叶片表面极限流线、以及各叶片排出口处S3截面熵等值线分布等角度对该三级压气机的三个运行工况:设计工况、喘振工况及阻塞工况分析了压气机的叶型与叶片的设计特点。
     采用适用于多级轴流式叶轮机械流动的非定常数值求解方法Harmonic方法对该三级压气机进行了非定常数值研究。分析了14、15、16级的非定常流场,通过对一个周期内熵和压力的对比,分析了非定常条件下叶片排之间存在的非定常干扰,及其叶片表面气动负荷呈现的周期性变化。对各列叶片进行了叶片气动力负荷计算,并分析了在一周期内不同时刻的气动力、气动力矩和气动力方向角的波动及幅值变化。
     经过分析结果发现,随着出口背压的增大,流动越来越复杂。进口气流对静叶有较大的负冲角,在改进设计中应该改善动、静叶之间的匹配。近端壁附近的流动由于粘性摩擦力的作用和前面级流动的积累偏离了设计工况,可改善各级动静叶的气流角匹配和各级间的气流角匹配来提高整体性能。由尾迹和势流引起的压力波动必然会清晰地反映在叶片气动负荷的非定常波动上。
As an important component of gas turbine, compressor plays a decisive role on the efficiency and power of gas turbine. Modern high-power gas turbine sets higher requirements on performance of compressor, such as high pressure ratio, high speed, high efficiency, but requires high reliability, long life and low weight.
     Based on the comprehensive research on simulation of aerodynamic performance of axial multistage compressor at home and abroad, the current developing status of numerical simulation of axial multistage compressor was reviewed. This paper gave a brief introduction about CFD chief characters and application in our country at present.
     In order to study the aerodynamic performance and configuration of axial multistage compressor, Numeca was used to carry out three-dimensional numerical simulation at No.14, 15, 16 stage of the multi-stage axial compressor. The meshes were generated by IGG, and used the single equation Spalart-Alimaras model to numerically simulate three stages of the compressor in FINE.
     Through three-dimensional numerical simulation of three stages of the axial compressor, total performance analysis for the stages of compressor was carried out firstly; analyzed blade design feature through studied profile static pressure, profile limit streamline, as well as the entropy contours on S3 section in three compressor operating conditions: design condition, surge condition, and choking condition.
     The three stages of compressor were studied by unsteady numerical solution of Harmonic method which applied for multi-stage axial turbo machinery. The unsteady flow field of the 14, 15, 16 stage was analyzed. The interference between the blades under unsteady condition and periodicity changes of the aerodynamic loads on blade surface were studied by contrast entropy and pressure in a cycle. This paper calculated aerodynamic load on each blade, analyzed the fluctuations and amplitude of the changes of aerodynamic force, aerodynamic torque and aerodynamic angle in different times in a cycle.
     The result showed that with the increase of the outlet pressure, the flow got more complex. Because of large negative incidence in inlet the of stator , rotor and stator matching should be improved in design. The flow of the end-wall deviated from the design condition because of the role of viscous friction and flow of the previous stage accumulation, so total performance could be improved by better match of flow angle between stages. Pressure fluctuations induced by the wake and the potential flow would clearly reflect in unsteady fluctuations of the aerodynamic load on the blade.
引文
1.林公舒,杨道刚.现代大功率发电用燃气轮机.机械工业出版社. 2007
    2. Supplee. H. H. The Gas Turbine. J. B. Lippincott, Co. 1910
    3.王仲奇,秦仁.透平机械原理.机械工业出版社. 1985
    4. Howell. A. R. Fluid Dynamics of Axial Compressors. Trans. of the ASME. 1947, 69(1)
    5. Ainley. D. G. Performance of Axial Flow Turbine. Proc. Institution of Meach. Eng, Vol. 159
    6. Wu. C. H. A General Through-flow Theory of Fluid F1ow with Subsonic or Supersonic Velocity in Turbomachinery of Arbitrary Hub and Casing Shapes. NACA TN-2302, 1951
    7. Wu. C. H. A General Theory of Three-Dimensional Flow in Subsonic or Supersonic Turbo machineries of Axial, Radial and Mixed-flow Types. NACA TN-2604, 1952
    8. J. D. Denton. Loss Mechanisms in Turbomachines. ASME Paper 93-GT-435, 1993.
    9.中国动力工程学会.火力发电设备技术手册第二卷汽轮机.机械工业出版社. 2000. 3.
    10.中国动力工程学会.火力发电设备技术手册第三卷自动控制,机械工业出版社. 2000. 3.
    11.顾战松,陈铁年.可编程控制器原理与应用.国防工业出版社, 1999. 8.
    12.耿文琅,朱晓东.汽轮发电机组振动监测与诊断系统的发展.汽轮技术, 2003, 45(2):71~72
    13. Inoue. M, Kuroumaru. M. Structure of Tip Clearance Flow in an Isolated Axial Flow Compressor Rotor. ASME Journal of Turbomachinery, 1989, 111(2): 250~256.
    14. Hunter. I. H, Cumpsty. N. A. Casing Wall Boundary Layer Development Through an Isolated Compressor Rotor. ASME Journal of Engineering for Power, 1982,104(4).
    15. Lakshminarayana. B, Sitaram. N, Zhang. J. End Wall and Profile Losses in a Low Speed Axial Flow Compressor Rotor. Journal of Engineering for Gas Turbines and Power. 1986, 108:22~31
    16. Lacor. C, Zhu. Z. W, Hirsch. C. A New FamIly of Iimiters within the Multigrid /Multiblock Navier-Stokes Code EURANUS. AIAA Paper 93-5023, 1993
    17. Kunz. R. F, Lakshminarayana. B, Basson. A. H. Investigation of Tip Clearance Phenomena in an Axial Flow Compressor Cascade Using Euler and Navier-Stokes Procedures. ASME Journal of Turbomachinery. 1993, 115: 453~467
    18. Baldwin. B, Lomax. H. Thin Boundary Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257,1978
    19. Jameson. A, Schmidt. W, Turkel. E. Numerical Solutions of the Euler Equations byFinite Volume Methods Using Rungekutta Time-stepping Schemes. AIAA Paper 81-1259, 1981
    20.陈乃兴.任意非正交曲线坐标系在叶轮机械气动计算中的应用.工程热物理学报. 1980, 1(2):110~119
    21.汪庆恒,陈乃兴.非正交曲线坐标在叶轮机械粘性流动计算中的应用.工程热物理学报. 1981, 2(4):320~327
    22. Giese. J. H. Stream Function for Three Dimensional Flows. J. of Mathematical Physics. 1951,30:31~35
    23. Yih. C. S. Stream Functions in Three Dimensional Flows. La Houi11e Blanche, 1957, 3:445~450
    24. Sheoran. Y, Tabakoff. W. A Study of Viscous Flow in Stator and Rotor Passages. ASME Paper 82-GT-248, 1982
    25. Sherif. A, Hafez. M. Computation of Three Dimensional Transonic Flows Using Two Stream Functions. AIAA Paper 83-1948, 1983
    26.董明.叶轮机械三维流动的正、反和杂交问题的数值求解.中国科学院工程热物理研究所博士论文, 1991:6~15
    27. Khalil. I, Tabakoff . W, Hamed. A. Viscous Flow Analysis in Mixed Flow Rotors. ASME J. of Engineering for Power, 1980, 102(1):193~201
    28. Luu. T. S, Loc. T. P. Numerical Method for the Study of Incompressible Viscous Flow in Cascade. Journal de Mecanique Appliquee, 1981, 5(4):125~131
    29. Fasel. H. Investigation of the Stability of Boundary Layers by Finite Difference Model of the Navier-Stokes equations. J. of Fluid Mechanics, 1976, 78: 353~383
    30. Dennis. S. C. R, Ingham. D. B, Cook. R. N. Finite-Difference Methods for Calculating Steady Incompressible Flows in Three Dimensions. J. of Computational Physics, 1979, 33:325~339
    31. Patankar. S. V, Spalding. D. B. A Calculation Procedure for Heat, Mass andMomentum Transfer in Three-Dimensional Parabolic Flows. International Journal of Heat Mass Transfer. 1972, 15:1787~1806
    32. Hah. C, Tsung. F. L, Loellbach. J. Comparison of Two Three-·Dimensional Unsteady Navier Stokes Codes Applied to a Turbine Stages Flow Analysis. JSME International Journal Series B, 1998, 41(1):200~207
    33. Moore. J, Moore. J. G. 3-D viscous Flow Calculation at Design and Off- Design Conditions for the NACA 48-inch Radial-Inlet Centrifugal Impeller. ISABE Paper 87-7008, 1987
    34. Moore. J, Moore. J. G. Secondary Flow Separation and Losses in the NACA 48 -Inch centrifugal Impeller at Design and Off-design Conditions. ASME Paper
    88-GT-101, 1988
    35. Rhie. C. M. A Pressure Based Navier-Stokes Solver Using the Multigrid Method. AIAA Paper 86-0207, 1986
    36. Jameson. A Time Dependent Calculations Using Multigrid W1th Applications to Unsteady Flows Past Airfoils and Wings. JR AIAA 91-1596, 1991
    37. Rhie. C. M, Gleixner. A. J, Spear. D. A, et al. Development and Application of a Muti-Stage Navier-Stokes Solver:Part 1- Multistage Modeling Using Body Forces and Deterministic Stresses. ASME Journal of Turbo machinery. 1998, 120(2):205~214
    38.苏欣荣,袁新.多级轴流压气机全工况特性计算.工程热物理学报. 2006, 3: 214~216
    39.侯安平,周盛.轴流式叶轮机时序效应的机理探讨,航空动力学报. 2003, 18(1):70~75.
    40. Huber. F. W, Johnson. P. D, Sharma. O. P, et al. Performance Improvement through Indexing of Turbine Airfoils Part I - Experimental Investigation, ASME Paper 95-GT-27, 1995
    41. Dorney. D. J, Sharma. O. P, Gundy-Burlet. K. L. Physics of Airfoil Clocking in a High-speed Axial Compressor. ASME Paper 98-GT-82, 1998
    42. Walker. G. J, Hughes. J. D, Solomon. W. J. Periodic Transition on an Axial Compressor Stator-Incidence and Clocking Effects Part I- experimental data, ASME Journal of Turbomachinery, 1999, 121(3):398~407.
    43. Hsu. S. T, Wo. A. M. Reduction of Unsteady Blade Loading by Beneficial Use of Vertical and Potential Disturbances in an Axial Compressor with Rotor Clocking[J], ASME Journal of Turbo machinery, 1998, 120(4):705~713.
    44. Hawthorne. Som. Formula for the Calculation of Secondary Flow in Cascade. ARC Report. 17519, 1955
    45. L. H. Simith. Secondary Flow in Axial Flow Turbomachines Trans, of the ASME. Oct. 1955:1065~1076
    46.王仲奇,苏杰先,钟兢军.弯曲叶片栅内减少能量损失机理研究的新进展.工程热物理学报. 1994, 15(2):147~152
    47. S. Kang. Investigation of the Three Dimensional Flow within a Compressor Cascade with and without Tip Clearance. Ph. D. Thesis. Dept. of Fluid Mechanics, Vrije Universiteit Brussel, 1993
    48.王福军,计算流体动力学分析-CFD软件原理与应用,清华大学出版社, 2004 9
    49. Thompson. J. F, Weatherill. N. P. Aspects of Numerical Grid Generation:Current Science and Art. AIAA Paper, 93-3539, 1993
    50. Sheng. C, Taylor, L, Whitfied. D. Multiblock Multigrid Solution of Three-dimensional Incompressible Turbulent Flows about Appended Submarine Configurations. AIAA Paper, 95-0203, 1995
    51. Steger. J. L, Rizk. Y. M. Generation of Three-dimensional Body Fitted Coordinates Using Hyperbolic Partial Differential Equations. NASA TM, 86-753, 1985
    52.王正明,王嘉炜,动静叶相互干扰非定常流动特性的数值研究,燃气涡轮实验与研究, 2004, 17(1):12~16
    53. Jameson. A. Time Dependent Calculations Using Multigrid W1th Applications to Unsteady Flows Past Airfoils and Wings. JR AIAA 91-1596, 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700