青藏高原热动力强迫对南亚夏季风影响的数值模拟研究和机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚洲夏季风的活动规律在海陆气相互作用的影响下表现的非常复杂,青藏高原的动力、热力强迫作用历来被科学家们认为对亚洲季风具有重要的调控作用,然而在夏季青藏高原如何影响南亚夏季风形成和维持的物理机制理解上科学家们仍旧存在着分歧,大多数科学研究表明青藏高原的地表感热加热和高空的潜热加热影响到周围大气环流,是南亚高压建立的主要因素,也对南亚夏季风的形成与维持占有重要作用;然而也有学者提出了不同观点,他们认为是高原的隔断作用使得暖湿空气在喜马拉雅山南侧进行堆积,地表高的比焓造成对流的产生,决定了对流层高层的温度廓线,而温度场暖中心的形成给南亚夏季风提供了驱动力。因此,有必要对青藏高原以及喜马拉雅山的动力、热力强迫作用进行一个再认识。
     本文利用多种观测资料,并结合数值试验研究了青藏高原和伊朗高原的动力强迫作用以及热力强迫作用对南亚夏季风形成与维持的影响,在此基础之上进一步讨论了青藏高原南侧斜坡对大气的加热效应以及喜马拉雅山热力强迫效应,此外,文章还从热成风平衡和地转平衡关系出发,从理论上讨论了南亚高压脊线附近大气非绝热加热如何影响高原西侧增暖的物理机制,并用数值试验证明了理论推论的结果,所得到的主要结论如下:
     (1)利用FGOALS-s2陆气耦合分量模式的地形敏感性试验结果表明,海陆热力差异是导致南亚夏季风南支环流形成与维持的主要原因,青藏高原和伊朗高原的动力、热力作用主要影响了印度大陆和高原南侧季风环流和降水的形成。而仅有青藏高原和伊朗高原的动力强迫存在时,由于没有感热加热,气流在经过高原时沿等熵面做绝热运动形成绕流,南亚夏季风降水无法北推至印度北部平原地区,南亚夏季风北支环流无法形成。青藏高原地表的感热加热使得环流场向加热场适应,气流有了穿越等熵线的向高原上爬坡运动,将低层的水汽带入到对流层高层,而大尺度的加热导致了低层气旋式环流异常,在仅有青藏高原地形的热力作用试验中,气旋式环流异常使得高原西侧降水减少而高原的南侧和东亚地区降水增加;仅有伊朗高原地形的热力试验中,在伊朗高原附近的气旋式环流异常使得青藏高原西侧的降水有所增加。两组试验的线性叠加结果基本与整体的热力强迫试验结果一致,所造成的降水分布与海陆热力对比试验的结果是互补的,说明青藏-伊朗高原的加热作用是南亚夏季风北支环流形成与维持的最主要原因,而不是隔断作用。
     (2)对青藏高原斜坡、平台以及印度北部平原的热力作用敏感性试验结果表明,高原斜坡的热力强迫是造成亚洲大陆低层气旋式环流形成的主要因素,而高原平台地区以及印度北部平原地区的热力作用对夏季风降水乃至环流的影响都非常小,可以忽略。由于斜坡的加热作用使得附近等熵面发生弯曲,表层出现了很强的上升运动,造成南亚夏季风北支季风降水的形成。而平台的加热导致了对流层高层暖中心的明显变化,但是由于4000m上水汽很少,其对季风降水的影响并不明显;此外,印度北部平原的热力强迫对局地的季风降水有一定影响,但不是南亚夏季风的主要驱动力。
     (3)喜马拉雅山地形的抬升试验表明,随着地形的不断升高,山脉南侧的感热加热增强使得斜坡上的垂直运动不断增强,同时导致了南亚夏季风北支降水的增加;此外,通过热力学方程和Sverdrup平衡关系,我们推导出低层的经向风对非绝热加热与位温分布的变化有指数上的响应关系,通过计算地形抬升试验中这种响应关系和非绝热加热场、垂直速度场、降水以及模拟的经向风的时间序列我们得出低层经向风对加热的响应存在一种线性增长的趋势,并且环流对加热的响应跟位温的空间分布以及垂直加热尺度密切相关。
     (4)通过热成风关系我们诊断出副热带地区夏季青藏高原西侧对流层上层暖中心的形成是准地转平衡下温度场和环流场相互适应的结果,而并不直接来自于湿对流活动的加热以及地表比焓分布的对应关系。而在热成风平衡关系下,温度场的极大值必然要出现在南亚高压的脊线附近,并且,高原东侧以及东亚地区的潜热释放对大气环流的影响是高原西侧暖中心形成的驱动力,温度场的变化正比于非绝热加热的纬向梯度。
     (5)根据上述关系,我们考虑在副高脊线上的加热如何影响西侧增暖的物理机制,由于副热带地区满足准地转平衡,科氏力与气压梯度力相当,当高原东侧有非绝热加热产生时,由于垂直方向的非均匀加热,导致经向风的变化,使得科氏力增强,气块向西移动增加气压梯度以平衡科氏力,使得高原西侧气柱增厚,南亚高压增强,厚度场加厚、温度场增暖;同时因为产生了向下的垂直速度场异常,使得对流活动减弱,降水减少。观测资料的环流和降水的年代际变化证明了这个纬向次级环流的可能存在性,我们进一步利用数值试验证实了这种物理机制的合理性,通过在高原东侧对流层高层副高脊线上给定固定热源强迫,在高原西侧的温度场暖中心明显增强,纬向的垂直剖面图异常场上表现出了高层东风异常以及在暖中心上空的下沉气流;此外,给定准60天振荡的热源强迫试验结果表明,热源强迫的振荡周期可以从高原东侧传播到高原西侧,温度场以及垂直运动场的时间序列和东侧热源的时间序列同位相。以上结果表明了,高原西侧暖中心的形成不是斜坡隔断作用造成湿对流发展的结果,而是温度场对高原东侧大尺度非绝热加热在环流场上的响应。
     结果表明,南亚夏季风主要是受到海陆热力对比和亚洲大地形热力作用的调控作用而形成的。
The activities of Asian summer monsoon are very complicated under the interactions of sea-ocean-atmosphere. The scientists always consider the mechanical and thermal forcing of Tibetan Plateau (TP) as an important factor in regularing Asian monsoon. But, in boreal summer, there still exist academic difference on the physical mechanism of TP effect over the formation and maintenance of South Asian Summer Monsoon (SASM). Most of the studies indicate that the surface sensible heat over TP and the latern heating in upper troposphere could have an impaction on the surrounding circulations, and it is the mainly contributor to the buildup of the South Asian High (SAH) together with the formation and maintenance of SASM. On the contrary, some scholars have raised a different viewpoint, the insulation of Himalaya make warm entropy accumulated on the south foothill and the cold entropy on the north. The high entropy caused the moist convections and linked directly with the vertical profile of virtual temperature, so the temperature in high troposphere becomes warmer and drives the SASM circulation. Therefore, it is necessary to have a new acquaintance on the mechanical and thermal effect of TP and Himalaya.
     Based on various observations and numerical simulations, the mechanical and thermal effects of TP and Iran Plateau (IP) are studied on the topic of formation and maintenance of SASM. A further discussion has been taken to find out the heating effect over south slope of TP and thermal forcing of Himalaya. Besides, based on the thermal wind balance and geostrophic wind balance, we discuss the physical mechanism of diabatic heating near the SAH ridge line could warm the troposphere temperature on its west, and test this hypothesis by numerical simulations. The main conclusions are derived as follows:
     (1) The topographical sensitive tests by FGOALS-s2atmospheric component indicate that, the thermal contrast of large scale land sea distribution is the dominant control of the SASM south branch, the mechanical and thermal impact of TP and IP is the main cause of the precipitation and circulation over India continent and south slope of TP. While on the condition of mechanical forcing of TP and IP without sensible heating, the air flow move along isentropic surface around the plateau, the precipitation cannot shift to the north of India continent, and the north branch of SASM cannot buildup. While the surface sensible heat exists over TP, the circulation must adapt to the diabatic heating, the air flow near TP can penetrate the isentropic surface and tend to cross the plateau, bring the water vapor at low level to the high level of troposphere. The large scale diabatic heating cause the cyclonic low level circulation, in the thermal experiment of TP solo, the cyclonic circulation anomaly cause the precipitation over west of TP to decrease and south of TP with East Asia to increase; while in the thermal experiment of IP solo, the cyclonic anomaly cause the precipitation over west of TP to increase. The linear composition of the results of these two experiments are almost in accordance with the results of whole thermal experiment, the precipitation pattern is also very similar to the land-sea contrast experiment, it indicates that the heating effect of TP and IP is the dominant control of the formation and maintenance of SASM north branch, while the insulation effect is not important.
     (2) The results of slope, platform and north India thermal experiments show that the slope heating is the main cause of the Asia continental cyclonic circulation formation at low level, while the thermal effects of the platform and north India on monsoon precipitation and circulation are quite weak and can be neglected. The diabatic heating over the TP slope bend the isentropic surface on each level and cause the vertical motion at the slope surface, form the precipitation of SASM north branch. The heating on the platform cause the upper level temperature change greatly, but due to the little water vapor above4000m, the precipitation of SASM is not affected much by platform heating. In addition, the thermal forcing over India north continent has a limited effect on the local precipitation, but it is not the main driven force of SASM.
     (3) The sensitive test of Himalaya orographic uplift shows that, as the orography increasing, the sensible heating of Himalaya south slope is also intensified, it cause the SASM north branch precipitation to increase. Moreover, with the relationship of thermodynamic balance and Sverdrup balance, we come to the exponential relationship between the meridional wind change with the distribution of diabatic heating and potential temperature. The calculated wind response is well in coordinated with the increase of diabatic heating, vertical velocity, precipitation and the simulated wind, moreover, the circulation pattern is determined by the spatial pattern of potential temperature and vertical heating scale.
     (4) According to the thermal wind balance, we diagnose that the upper-level temperature maximum over west TP is a kind of quasi-geostropic adaption. It is not the result of moist convection heating or the surface high entropy, but is a response of temperature to the circulations. On the condition of thermal wind balance, the temperature must achieve its maximum on the SAH ridge line, and the diabatic heating in the mid-troposphere over East of TP and East Asia is the driven force of this warm center, the change of the temperature in the west is in proportion to the zonal gradient of diabatic heating.
     (5) According to the relationship we found, a new physical mechanism has been proposed on how the heating over SAH ridge line increasing the temperature on its west. Because in the subtropical region, the atmospheric motion should obey quasi-geostropic relationship, the Coriolis force must equal to pressure gradient force. While the diabatic heating generate on the east of TP, the vertical inhomogeneous diabatic heating cause the meridional wind to change on the upper level by Sverdrup balance, so the Coriolis force enhanced and the balance of the two force break up, the air particle must move to the west to intensify the pressure gradient, result in the air column to be thick over west of TP, the SAH intensified, and the thickness field increasing, cause the temperature to increase; meanwhile, because of the generation of the downward vertical velocity, the convections over west of TP are weaken, the precipitation tend to decrease. The observed decadal change of circulation and precipitation in Asian boreal summer support the possibility of the secondary circulation's existence. We further test the rationality of this hypothesis by numerical simulations. By adding a fixed heating source on the ridge line over east of TP, the temperature maximum response over west is intensifed obviously, the zonal cross-section of the circulation indicate that there exist a east wind anomaly on the upper troposphere, and a descend motion anomaly under the temperature maximum; in addition, a quasi60days cycle heating source test has been preformed, and the results show that, the heating period can be propagate from east of TP to its west, the time serials of temperature maximum and vertical velocity on west of TP are in the same phase with the heating source over east. Then we come to the conclusion that the formation of the upper-level temperature maximum over west of TP is not driven from the moist convection caused by insulate effect of Himalaya, but is the response to the circulation by the large scale diabatic heating on east of TP.
     All the evidence shows that, the formation of SASM is dominant controlled by land sea thermal contrast and Asia continental heating effect.
引文
Abe, M., A. Kitoh, T. Yasunari.2003. An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift-Simulation with the MRI Atmosphere-Ocean Coupled GCM. J. Meteor. Soc. Japan.,81(5):909-933.
    Abe, M., T. Yasunari, A. Kitoh.2008. Climate change in East and Central Asia associated with the uplift of the Tibetan Plateau-A simuation with the MRI coupled atmosphere-ocean GCM. Himalayan Journal of Sciences,2(4):85-86.
    Adler, R. R, and co-authors.2003. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor.,4,1147-1167.
    Arora, V. K., J. F. Scinocca, G J. Boer, J. R. Christian, K. L. Denman, G M. Flato, V. V. Kharin, W. G Lee, and W. J. Merryfield.2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett.,38, L05805, doi:10.1029/2010GL046270.
    Bao, Q., P. lin, T. Zhou, Y. Liu, G. Wu and Co-authors.2013. The Flexible Global Ocean-Atmosphere-Land System model Version:FGOALS-s2. Adv. Atmos. Sci.30(3), 561-576,DOI:10.1007/s00376-012-2113-9.
    Bao, Q., Y. M. Liu, J. C. Shi,G X. Wu.2010. Comparisons of soil moisture datasets over the Tibetan Plateau and application to the simulation of Asian Summer Monsoon onset. Adv. Atmos. Sci.,27(2):303-314.
    Betts, A. K.1986. A new convective adjustment scheme. I:Observational and theroretical basis. Q. J. R. Meteorol. Soc,112.693-709.
    Betts, A. K. and M. J. Miller.1986. A new convective adjustment scheme. Ⅱ:Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc.,112, 693-709.
    Bolin, B.,1950. On the influence of the earth's orography on the general character of the westerlies. Tellus,2,184-195.
    Boos, W. R., and Z. Kuang,2010:Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature,463,218-222.
    Bougeault, P.1985. A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev.,113,2108-2121.
    Brinkop, S., and E. Roeckner.1995. Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus A,47,197-220.
    Brown, R. G. and C. S. Bretherton.1995. Tropical wave instabilities:Convective interaction with dynamics using the Emanuel convective parameterization. J. Atmos. Sci.,52,67-82.
    Cane, M. A.,2010:A moist model monsoon. Nature,463,163-164.
    Chakraborty, A., R. S. Nanjundiah, and J. Srinivasan.2006. Theoretical aspects of the onset of Indian summer monsoon from perturbed orography simulations in a GCM. Ann. Geophys., 24,2075-2089.
    Chang, C. P., Z. Wang, and H. Hendon.2006. The Asian winter monsoon. In:The Asian Monsoon. Springer/Praxis Publishing Co., New York, pp787. Chapter 3.
    Charney, J. G.1948. On the scale of atmospheric motions. Geofys. Publ.,17(2),17pp.
    Charney, J. G.1949. On a physical basis for numerical prediction of large scale motions in the atmosphere. J. Meteor.,6,371-385.
    Charney, J.G., Eliassen, A.1949. A numerical method for predicting the perturbation of the middle latitude westerlies. Tellus,1,38-55.
    Chen, M. P. Xie, J. E. Janowiak, and P. A. Arkin.2002. Global Land Precipitation:A 50-yr Monthly Analysis Based on Gauge Observations. J. of Hydrometeorology.3,249-266.
    Collins, W. D. and Coauthors.2006. The community climate system model version 3 (CCSM3). J. Climate.19,2122-2143.
    Dando, P. A.2004. Unified Model User Guide. Unified Model Documentation Paper 0, version 3.0.
    Duan, A.M., G. X. Wu, X. Y. Liang.2008. Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model. Adv. Atmos. Sci.,25(4):518-528.
    Eaton, B.2011. User's Guide to the Community Atmosphere Model CAM-5.1, report, UCAR, Boulder, Colo.
    Edwards, J. M., Slingo, A.1996. Studies with a flexible new radiation code. I:Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc.,122:689-720.
    Emanuel, K. A., J. D. Neelin, and C. S. Bretherton,1994:On large-scale circulations in convecting atmosphere. Quart. J. Roy. Meteor. Soc.,120,1111-1143.
    Findlater, J.1969:A major low-level air current near the Indian Ocean during northern summer. Quart. J. Roy. Met. Soc.,95,362-380.
    Flohn, H.1957. Large-scale aspects of the summer monsoon in south and east Asia. J. Meteor. Soc. Japan. (Special 75th Ann. Vol.),180-186.
    Flohn, H.1960. Recent investigations on the mechanism of the 'summer monsoon'southern and eastern Asia. In:Monsoons of the World. India Meteorological Department, pp.75-88.
    Flohn, H.1968. Contributions to a meteorology of the Tibetan Highlands. Atomos. Sci. Paper No. 130, Colorado State University, Fort Collins,120pp.
    Flohn, H.1981. The elevated heat source of the Tibetan highlands and its role for the large scale atmospheric circulation. Geological and Ecological Studies of Qinghai-Xizang (Tibet) Plateau. Vol. II (Proc. Symp. Qinghai-Xizang (Tibet) Plateau, Beijing), Beijing,1463-1470.
    Fritsch, J. M. and Chappell, C. G. (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I:Convective parametrization. J. Atmos. Sci.,37,1722-1733.
    Gent, P. R., et al.2011. The Community Climate System Model Version 4, J. Clim.,24, 4973-4991.
    Gibson J. K., Kallberg P., Uppala S.1997. ERA description, ECMWF reanalysis project report series, ECMWF.
    Hahn, D.G., Manabe, S.1975. The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci.,32,1515-1541.
    Hazeleger, W. et al.2011. EC-Earth V2.2:description and validation of a new seamless earth system prediction model, Clim Dyn, DOI 10.1007/s00382-011-1228-5.
    He, H. J. W. McGinnis. Z. Song et al.1987. Onset of the Asian monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev.,115,1966-1995.
    Hoskins, B. J.1987. Diagnosis of forced and free variability in the atmosphere. In Atmospheric and oceanic variability. Ed:H. Cattle. Bracknell, UK:James Glaisher House.57-73.
    Huffman, G. J., and co-authors.1995. Global Precipitation Estimates Based on a Technique for Combining Satellite-Based Estimates, Rain Gauge Analysis, and NWP Model Precipitation Information. J. Climate.,8,1284-1295.
    Huffinan, G. J. and co-authors.1997. The Global Precipitation Climatology Project (GPCP) combined data set. Bull. Amer. Meteor. Soc.,78,5-20.
    Kanamitsu M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter.2002. NCEP-DEO AMIP-II Reanalysis (R-2), Bulletin of the American Meteorological Society, 1631-1643.
    Kitoh, A.1997. Mountain uplift and surface temperature changes. Geophy. Res. Let.24(2), 185-188.
    Kitoh, A.2002. Effects of large-scale mountains on surface climate-A coupled ocean-atmosphere general circulation model study. J. Meteorol. Soc. Janpan.,80 (5),1165-1181.
    Kitoh, A.2004. Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere-ocean GCM. Journal of Climate,17(4):783-802.
    Kitoh, A., Motoi, T., and Arakawa,O.2010. Climate modeling study on mountain uplift and Asian monsoon evolution. Geological Society, Special Publications,342,293-301.
    Koseki, S., Watanabe, M, and Kimoto, M.2008. Role of the midlatitude air-sea interaction in orographically forced climate. J. Meteorol. Soc. Japan.,86(2),335-351.
    Koteswaram, P.1958. Easterly jet stream in the tropics. Tellus,10,43-57.
    Krishnamurti, T. N.1971a. Observational study of the tropical upper tropospheric montion field during the Northern Hemisphere summer. J. Appl. Meteorol.,10,1066-1096.
    Krishnamurti, T. N.1971b. Tropical east-west circulation during the northern summer. J. Atmos. Sci.,28,1342-1347.
    Krishnamurti, T. N. and Rodgers, E. B.1970.200-mb wind field June, July, August 1967. Rept. No.&0-2. Dept. of Meteorol., Florida State University, Tallahassee,115pp.
    Krishnamurti, T. N., J. Molinari, and H. L. Pan.1976. Numerical simulation of the Somali jet. J. Atmos. Sci.,33,2350-2362.
    Li, L. J., X. Xie, B. Wang, et al.2012. Evaluating the performances of GAMIL1.0 and GAMIL2.0 during TWP-ICE with CAPT, Atmos. Oceanic Sci. Lett.,5,38-42.
    Lin, P. F., Y. Q. Yu, and H. L. Liu,2012:Long-term Stability and Oceanic Mean State Simulated by the Coupled Model FGOALS-s2. Adv. Atmos. Sci. doi:10.1007/s00376-012-2042-7
    Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang.2012. The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0. Acta Meteorologica Sinica.26,318-329.
    Liu, H., and G. X. Wu.1997. Impacts of land surface on climate of July and onset of summer monsoon:A study with an AGCM plus SSiB. Adv. Atmos. Sci.,14,289-308.
    Liu, X.D., and Yin, Z.Y.2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology,183,223-245.
    Liu, Y. M., G X. Wu, H. Liu, and P. Liu.2001. Condensation heating of the Asian summer monsoon and the subtropical anticyclones in the Eastern Hemipshere. Climate. Dyn.,17, 327-338.
    Luo, H. B., Yanai, M.1983. The large-scale circulation and heat sources over Tibetan Plateau and surrounding areas during early summer of 1979, Part Ⅰ:Precipitation and kinetic analysis. Mon. Wea. Rev., 111,922-944.
    Luo, H. B., Yanai, M.1984. The large-scale circulation and heat sources over Tibetan Plateau and surrounding areas during early summer of 1979, Part Ⅱ:Heat and moisture budgets. Mon. Wea. Rev.,112,966-989.
    Manabe, S., Terpstra, T.B.1974. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci.,31(1),3-42.
    Martin, M.1999. The resolution of the Asian summer monsoon, and its sensitivity to horizontal resolution, in the UK meteorological office unified model. Q. J. R. Meteorol. Soc.,125, 1499-1525.
    Meehl, G. A.1994. Coupled ocean-atmosphere-land process and South Asian monsoon variability. Science.,265,263-267.
    Molnar, P., W. R. Boos., and D. S. Battisti.2010. Orographic Controls on Climate and Paleoclimate of Asia:Thermal and Mechanical Roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences.,38,77-102.
    Neale, R. B., et al.2010. Description of the NCAR Community Atmosphere Model (CAM5.0), NCAR/TN-486+STR, NCAR, Boulder, Colo.
    Neale, R.B., J. H. Richter, and M. Jochum,2008:The Impact of Convection on ENSO:From a Delayed Oscillator to a Series of Events. J. Climate,21,5904-5924.
    Needlin, J. D. and I. M. Held.1987. Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev.,115,3-12.
    Needlin, J. D. and J. Yu.1994. Modes of tropical variability under convective adjustment and the Madden-Julian oscillation. Part Ⅰ:Analytical results. J. Atmos. Sci.,51,1876-1894.
    Needlin, J. D., I. M. Held, and K. H. Cook.1987. Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci.,44,2341-2348.
    Nitta, T.1983. Observational study of heat source over the eastern Tibetan Plateau during the summer monsoon. J. Meteor. Soc. Japan.,58,378-393.
    Nordeng, T. E.1994. Extended versions of the convection parametrization scheme at ECMWF and their impact upon the mean climate and transient activity of the model in the tropics. Research Dept Technical Memorandum No.206, ECMWF, S. Park, Eds., UK.
    Okajima, H. and Xie, S.P.2007. Orgraphic effects on the northwestern Pacific monsoon:Role of air-sea interaction. Geophy. Res. Lett.,34, L21708.
    Oleson, K. W. and Coauthors.2004. Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR.
    Palmer, T. N., G. J. Shutts, and R. Swinbank.1986. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc.,112:1001-1039.
    Park, H. S., J. C. H. Chiang, and S. Bordoni.2012. The mechanical impact of the Tibetan Plateau on the Seasonal Evolution of the South Asian Monsoon. J. Climate.,25,2394-2407.
    Queney, P.1948. The problem of air flow over mountains:A summary of theoretical studies. Bull. Amer. Meteorol. Soc.,29,16-29.
    Rodwell, M. J., B. J. Hoskins.1996. Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc.,122,1385-1404.
    Ruddiman, W.F. and Kutzbach, J. E.1991. Pleateau uplift and climatic change. Scientific American,1991,66-72.
    Sashegyi, K. D. and J. E. Geisler.1987. A linear model study of the cross-equatorial flow forced by summer monsoon heat sources. J. Atmos. Sci.,44,1706-1722.
    Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer.2008. Technical Note:The CCCma third generation AGCM and its extension into the middle atmosphere, Atmos. Chem. Phys.,8,7055-7074, doi:10.5194/acp-8-7055-2008.
    Shi, L., Smith, E. A.1992. Surface forcing of the infrared cooling profile over the Tibetan Plateau. Part Ⅱ:Cooling-rate variation over large-scale plateau domain during summer monsoon transition. J. Atmos. Sci.,49,823-844.
    Simith, E. A. and Shi, L.1995. Reducing discrepancies in atmospheric heat budget of Tibetan Plateau by satellite-based estimates of radiative cooling and cloud-radiation feedback. Meteorol. Atmos. Phys.,56,229-260.
    Simth, E. A. and Shi, L.1992. Surface forcing of the infrared cooling profile over the Tibetan Plateau. Part Ⅰ:Influence of relative longwave radiative heating at high altitude. J. Atmos. Sci.,49,805-822.
    Sun, Z. A., and L. Rikus.1999a. Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophy. Res.104.6291-6303.
    Sun, Z. A., and L. Rikus.1999b. Parameterization of effective radius of cirrus clouds and its verification against observations. Q. J. Royal. Metor. Soc.125:3037-3056.
    Tao, S. Y. et al.1985. The east Asia summer monsoon. Proceedings of International Conference on Monsoons in the Far East. Tokyo. November 5-8.1-11.
    Tiedtke M.1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev.,117:1779-1800.
    Voldoire, A., et al.2012. The CNRM-CM5.1 global climate model:Description and basic evaluation, Clim. Dyn., doi:10.1007/s00382-011-1259-y, in press.
    Wang, B., and H. Lin.2002. Rain season of the Asian-Pacific Summer Monsoon. J. Climate.,15, 386-398.
    Wang, B., and Q. Ding.2009. Objective Definition of the Indian Summer Monsoon Onset. J. Climate.,22,3303-3316.
    Wang, B., and Z. Fan.1999. Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc.,80,629-638.
    Wang, B., R. Wu, and K. M. Lau.2001. Interannual variability of Asian summer monsoon: Contrasts between the Indian and western North Pacific-East Asian monsoon. J. Climate.14, 4073-4090.
    Webster, P. J.2006. The coupled monsoon system. In:The Asian Monsoon. Springer/Praxis Publishing Co., New York, pp787. Chapter 1.
    Webster, P. J. et al.1998. Monsoons:Processes, Predictability and the prospects for predicition. J. Geophys. Res.,103,14451-14510.
    Webster, P. J., and S. Yang.1992. Monsoon and ENSO:Selectively interactive systems. Q. J. R. Meteorol. Soc.,118,877-926.
    Wu et al.2007. The influence of the mechanical and thermal forcing of the Tibetan Plateau on the Asian climate. J. Hydrometeorology.,8,770-789.
    Wu, G. X.1984. The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J. Atmos. Sci.,41(16),2456-2476.
    Wu, G. X. and Y. M. Liu.2003. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett.,30(5),1201-1204.
    Wu, G X. et al.1997. Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian Summer Monsoon, Collections on the Memory of Zhao jiuzhang, eds Ye, D. Z. et al., Chinese Science Press, Beijing.
    Wu, G. X., and coauthors.2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeorol.,8,770-789.
    Wu, G., and Y. Zhang,1998:Tibetan Plateau forcing and the situating and timing of the Asian monsoon onset. Mon. Wea. Rev.,126,913-927.
    Wu, T. W., R. C. Yu, F. Zhang et al.2010. The Beijing Climate Center for Atmospheric General Circulation Model (BCC-AGCM2.0.1):Description and its performance for the present-day climate. Clim. Dyn.,34,123-147.
    Xie P., and P. A. Arkin.1997. Global precipitation:A 17-years monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc.,78, 2539-2558.
    Xu, Z.F., Fu, C.B. and Qian, Y.F.2009. Relative roles of land-sea distribution and orography in Asian monsoon intensity. J. Atmos. Sci.,66,2714-2729.
    Xu, Z.F., Qian, Y.F. and Fu, C.B.2010. The role of land-sea distribution and orography in the Asian monsoon. Part II:Orography,. Adv. Atmos. Sci.,27(3),528-542.
    Yanai, M., C. F. Li, and Z. S. Song.1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer Monsoon. J. Meteor. Soc. Japan.,70,319-351.
    Yanai, M., Esbensen, S. and Chu, J. H.1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci.,30,611-627.
    Yanai, M., and T. Tomita.1998. Seasonal and Interannual Variablilty of Atmospheric Heat Sources and Moisture Sinks as Deterimined from NCEP-NCAR Reanalysis., J. Climate,11,463-482.
    Yanai, M., and G. X. Wu,2006. Effects of Tibetan Plateau. In:The Asian Monsoon. Springer/Praxis Publishing Co., New York, pp787. Chapter 13.
    Yang, J., Q. Bao,X. Wang and T. Zhou,2012:The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models, Adv. Atm. Sci.,29(3),529-543, DOI: 10.1007/s00376-011-1087-3.
    Yano, J. I., and K. A. Emanuel.1991. An improved WISHE model of the equatorial atmosphere and its coupling with the stratosphere. J. Atmos. Sci.,48,377-389.
    Ye, D. Z. and Y. X. Gao.1979. Meteorology of the Qinghai-Xizang Plateau. Chinese Science Press, Beijing.
    Yeh, T. C., S. W. Luo, and P. C. Chu,1957:The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta. Meteor. Sin.,28,108-121.
    Yeh, T.G.1950. The circulation of the high troposphere over China in the winter of 1945-1946. Tellus,2(3),173-183.
    Yin, M.T.1949. A synoptic-aerologic study of the onset of the summer monsoon over India and Burma. J. Meteorol.,6,393-400.
    Yukimoto, S., et al.2011. Meteorological Research Institute Earth System Model Version 1(MRI-ESM1)-Model description, Tech. Rep.64,83 pp., Meteorol. Res. Inst., Tsukuba, Japan.
    Yukimoto, S., et al.2012. A new global climate model of the Meteorological Research Institute: MRI-CGCM3-Model description and basic performance, J. Meteorol. Soc. Jpn.,90a, 23-64.
    Zachary, A. E. and D. A. Randall.1999. Sensitivity of the simulated Asian summer monsoon to parametrized physical processes. J. Geophys. Res.,104(12),177-191.
    Zhang, G.J., and N. A. McFarlane,1995:Sensitivity of climate simulations to the parameterization of cumulus convection in the CCC GCM. Atmos.-Ocean,33,407-446.
    Zhang, G. J., and M. Mu.2005. Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3, J. Geophys. Res.,110, D09109, doi:10.1029/2004JD005617.
    Zhang, Q., Wu, G. X. and Qian, Y. F.2002. The bimodality of the 100hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J. Meteorol. Soc. Japan,80(4), 733-744.
    Zhang, X. H., G Y. Shi, H. Liu et al.2000. IAP Global Ocean-Atmosphere-Land System Model. Beijing:Science Press,251pp.
    Zhou and co-authors.2007. Progess in the development and application of climate ocean models and ocean-atmosphere coupled models in China. Adv. Atmos. Sci.,24,1109-1120.
    Zhou, T. J., B. Wu, B. Wang.2009. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian Monsoon? J. Climate., 22,1159-1173.
    包庆,刘屹岷,周天军等.2006.LASG/IAP大气环流谱模式陆面过程的敏感性试验.大气科学,30(6),1077-1090.
    包庆.2007.青藏高原气候动力学的数值模拟研究.中国科学院研究生院博士学位论文.
    边巴次仁,陈万隆,周锁铨,王革丽.1997.夏季青藏高原雪盖对东亚大气环流影响的数值试验.南京气象学院学报,20(4),453-459.
    卞林根,陆龙骅,逯昌贵等.2001.1998年夏季青藏高原辐射平衡分量特征.大气科学,25,577-588.
    陈丽娟,吕世华,罗思维.1996.青藏高原春季积雪异常对亚洲季风降水影响的数值试验.高原气象,15(1),122-130.
    陈隆勋,李维亮.1983.亚洲季风区各月的大气热源结构.全国热带夏季风学术会议文集,云南人民出版社.
    丁一汇,陈隆勋,Murakami, M.1994亚洲季风.北京,气象出版社,1-263.
    段安民.2003.青藏高原热力和动力强迫对东亚气候格局的影响.中国科学院研究生院博士学位论文.
    范广洲,罗思维,吕世华.1997.青藏高原冬季积雪异常对东、南亚夏季风影响的初步数值模 拟研究.高原气象,16(2),140-152.
    高由禧,徐淑英,郭其蕴等.1962.东亚季风的若干问题.北京:科学出版社,12-27.
    顾震潮.1951.西藏高原对东亚大气环流的动力影响和它的重要性.中国科学,2,283-303.
    郭其蕴,叶维明.1979.南北半球大气环流与东亚季风.气象学报,37(1),86-95.
    何金海,祁莉,韦晋等.2007.关于东亚副热带季风和热带季风的再认识.大气科学,31(6),1257-1265.
    黄荣辉.1985.夏季青藏高原对于南亚平均季风环流形成与维持的热力作用.热带气象,1(1),1-8.
    李崇银.1988.亚洲季风气候若干问题研究近况.热带气象,4(3),203-215.
    李斐.2012.青藏高原地形动力作用的定量化研究及其气候效应的数值模拟.中国科学院研究生院博士学位论文.
    李剑东,刘屹岷,吴国雄.2010.积云对流和云物理过程调整对气候模拟的影响.大气科学,34(5):891-904.
    李剑东.2009.大气环流谱模式SAMIL中辐射过程的数值模拟研究.中国科学院研究生院博士学位论文.
    李庆,陈月娟.2006.青藏高原积雪异常对亚洲夏季风气候的影响.解放军理工大学学报(自然科学版),7(6),605-612.
    梁潇云,刘屹岷,吴国雄.2005.青藏高原隆升对春、夏季亚洲大气环流的影响.高原气象,24(6),837-845.
    刘晓东,罗思维,钱永甫.1989.青藏高原地表热状况对夏季东亚大气环流影响的数值模拟.高原气象,8(3),205-216.
    刘晓东,田良,韦志刚.1994.青藏高原地表反射率变化对东亚夏季风影响的数值试验.高原气象,13(4),468-472.
    刘新,吴国雄,刘屹岷等.2002.青藏高原加热与亚洲环流季节变化和夏季风爆发.大气科学.,26(6),781-793.
    刘屹岷,刘辉,刘平,吴国雄.1999a.空间非均匀加热对副热带高压形成和变异的影响Ⅱ.陆面感热于东太平洋副高.气象学报,57(4),385-396.
    刘屹岷,刘辉,刘平,吴国雄.1999b.空间非均匀加热对副热带高压形成和变异的影响,Ⅲ.凝结潜热加热与南亚高压及西太平洋副高.气象学报,57(5),525-538.
    刘屹岷,吴国雄,宇如聪等.2001.热力适应、过流、频散和副高Ⅱ.水平非均匀加热与能量频散.大气科学,25(3),317-328.
    钱永甫,颜宏,王谦谦等.1988.行星大气中地形效应的数值研究.北京:科学出版社.
    钱云,钱永甫.1996.青藏高原隆升影响夏季大气环流的敏感性试验.气象学报,54(4),474-483.
    宋晓良.2005.两种质量通量型积云参数化方案在气候模拟中的评估分析研究.中国科学院研究生院博士学位论文.
    陶诗言,陈隆勋.1957.夏季亚洲大陆上空大气环流结构。气象学报,28,234-246.
    陶诗言,朱福康.1964.夏季亚洲南部100hPa流型的变化及其与太平洋副热带高压进退的关系.气象学报.,34(4),385-395.
    陶诗言等.1983.1979年东亚夏季风建立的观测研究.大气科学,7,347-355.
    王军,包庆,刘屹岷,等.2012.大气环流模式SAMIL模拟的夏季全球加热场和东亚夏季风.大气科学,36(1),1-14.
    王安宇,王谦谦.1985.青藏高原大地形对冬季东亚大气环流的影响.高原气象,4(2),109-120.
    王谦谦,王安宇,李学锋等.1984.青藏高原大地形对夏季东亚大气环流的影响.高原气象,3(1),13-26.
    王瑞,李伟平,刘新,王兰宁.2009.青藏高原春季土壤湿度异常对我国夏季降水影响的模拟研究.28(6),1233-1241.
    王同美,吴国雄,宇婧婧.2009.春季青藏高原加热异常对亚洲热带环流和季风爆发的影响.热带气象学报.,25(增刊),92-102.
    王在志,宇如聪,包庆等.2007.大气环流模式(SAMIL)海气耦合前后性能的比较.大气科学,31(2),202-213.
    王在志.2005.青藏高原天气气候效应的数值模拟研究.中国科学院研究生院博士学位论文.
    吴爱民,倪允琪.1997.青藏高原对亚洲季风平均环流影响的数值试验.高原气象,16,153-164.
    吴池胜,王安宇.1995.青藏高原隆起对亚洲季风形成作用的数值试验.高原气象,14(4),425-433.
    吴国雄,刘屹岷.2000.热力适应、过流、频散和副高:Ⅰ.热力适应和过流.大气科学,24(4),433-446.
    吴国雄,丑纪范,刘屹岷,何金海等.2002.副热带高压形成和变异的动力学问题.北京,科学出版社.
    吴国雄,李伟平,郭华等.1997.青藏高原感热气泵和亚洲夏季风。赵九章纪念文集(叶笃正主编)。北京:科学出版社,116-126.
    吴国雄,刘还珠.1999.全型垂直涡度倾向方程和倾斜涡度发展.气象学报.,57(1),1-15.
    吴国雄,刘新,张琼等.2002.青藏高原抬升加热气候效应研究的新进展.气候与环境研究.7,184-201.
    吴国雄,刘屹岷,刘平.1999.空间非均匀加热对副热带高压形成和变异的影响Ⅰ.尺度分析.气象学报,57(3),257-263.
    吴国雄,刘屹岷,刘新等.2005.青藏高原加热如何影响亚洲夏季的气候格局.大气科学,29(1),47-56.
    吴国雄,毛江玉,段安民等.2004.青藏高原影响亚洲夏季气候研究的最新进展.气象学报.62(5),528-540.
    吴国雄,张永生.1998.青藏高原的热力和动力强迫作用以及亚洲季风的爆发,Ⅰ.爆发地点.大气科学,22(6),825-838.
    吴国雄,张永生.1999.青藏高原的热力和动力强迫作用以及亚洲季风的爆发,Ⅱ.爆发时间.大气科学,23(1),51-61.
    吴国雄.2001.全型涡度方程和经典涡度方程比较.气象学报.,59(4),385-392.
    徐祥德,周明煜,卞林根,等.2001.青藏高原地、气过程动力、热力结构综合物理图像.中国科学,31(5),428-440.
    杨伟愚,叶笃正,吴国雄.1992.夏季青藏高原热力场和环流场的诊断分析,Ⅰ:盛夏高原西部地区的水汽状况.大气科学,16(1),41-51.
    杨伟愚,叶笃正,吴国雄.1992.夏季青藏高原热力场和环流场的诊断分析,Ⅱ:环流场的主要特征及大型垂直环流场.大气科学,16(3),287-307.
    杨伟愚,叶笃正,吴国雄.1992.夏季青藏高原热力场和环流场的诊断分析,Ⅲ:环流场稳定 维持的物理机制.大气科学,16(4),409-425.
    杨伟愚.1988.夏季青藏高原热力场和环流场的诊断分析.中国科学院大气物理研究所博士论文.
    叶笃正,高由禧等.1979.青藏高原气象学.科学出版社,北京,278pp.
    叶笃正,罗四维,朱抱真.1957.西藏高原及其附近的流场结构和对流层大气的热量平衡.气象学报,28,108-121.
    叶笃正,陶诗言,李麦村.1958.六月和十月大气环流的突变现象,气象学报,29(4),249-263.
    叶笃正,张捷迁.1974.青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验.中国科学,3,301-320.
    叶笃正.1988.夏季青藏高原上空热力结构、对流活动和与之有关的大尺度环流现象.大气科学(1988年特刊),1-12.
    章基嘉,彭永清,钱维宏.1984.南亚高压的建立及其迁移的数值模拟研究.南京气象学院学报.,2,192-203.
    章基嘉,彭永清,王鼎良.1983.南亚高压在时域和频域上的特征.气象学报.,41(3),348-353.
    张耀存,钱永甫.1999.青藏高原隆升作用于大气临界高度的数值研究.气象学报.57(2),157-167.
    赵平,陈隆勋.2001.35年来青藏高原大气热源气候特征及其与中国降水的关系.中国科学(D辑),31(4),327-332.
    赵平.1999.青藏高原热源状况及其与海气关系的研究.中国气象科学研究院博士学位论文.
    郑庆林,王三杉,张朝林等.2001.青藏高原动力和热力作用对热带大气环流影响的数值模拟研究.高原气象.,20(1),14-21.
    郑益群,钱永甫,苗曼倩,季劲钧.2000.青藏高原积雪对中国夏季风气候的影响.大气科学,24(6),761-774.
    周天军,王在志,宇如聪等.2005.基于LASG/IAP大气环流谱模式的气候系统模式.气象学报,63(5),702-715.
    周天军,宇如聪,王在志,等.2005.大气环流模式SAMIL及其耦合模式FGOALS-s[M]北京:气象出版社,288pp.
    周秀骥,赵平,陈军明等.2009.青藏高原热力作用对北半球气候影响的研究.中国科学D辑,39(11),1473-1486.
    朱乾根,胡江林.1993.青藏高原大地形对夏季大气环流和亚洲夏季风影响的数值试验.南京气象学院学报,20,186-192.
    竺夏英.2011.夏季副热带多尺度热力强迫和东亚夏季风年际及年代际变化的关系.中国科学院研究生院博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700