载荷分流式增速行星齿轮传动机构动态性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源短缺和生态环境的日益恶化,人们普遍认识到了风力发电技术的重要性。行星齿轮传动具有结构紧凑,体积小、传动效率高和传动比大等优点,被广泛的应用在风力发电机设备中。风电行星齿轮被用于增速传动,其承受的载荷非常复杂,是风力发电机组故障率最高的部件之一。在运行的可靠性等方面,国产的风电行星齿轮传动系统与国外一流产品相比还有较大的差距,为了降低其故障率,提高其工作寿命和可靠性,有必要对行星齿轮传动的动态性能进行深入研究。本文提出了载荷分流式增速行星齿轮传动机构,采用理论分析方法,有限元方法和实验方法对行星齿轮传动系统的动态性能进行了研究。论文的主要的研究内容包括:
     提出一种风电增速箱用载荷分流式两级行星轮系传动机构,并对该机构的运动学进行研究。该新型机构是由简单行星轮系和差动行星轮系组成,第一级行星轮系的行星架和太阳轮分别与第二级行星轮系的内齿圈和行星架相连接,两级行星轮系可以同时承担叶片的扭矩,该机构可以实现载荷分流。应用转化机构法推导了该新型增速传动机构的运动学方程和总传动比方程。对比分析各级行星轮系的行星排特性参数对行星轮系的构件转速的影响。研究表明传动比随着两级行星排特性参数的增加而增大;增大行星排特性参数能减小第一级行星轮系和第二级行星轮系的行星齿轮的转速,同时能增大第一级行星轮系和第二级行星轮系太阳轮的转速,有利于更好的实现增速的要求。
     对载荷分流式增速行星齿轮传动系统的第一级行星轮系的行星齿轮副瞬态啮合过程进行有限元研究。利用三维建模软件Proe的参数化功能,并依托其装配模块进行组装,建立了的载荷分流式两级行星轮系与一级平行轴增速行星齿轮传动系统的三维简图。在此基础上,以载荷分流式增速行星齿轮传动机构的第一级行星轮系的行星齿轮副为研究对象,建立其有限元模型,为了确保接触分析收敛,将整个模拟过程拆分为多个分析步来进行,对其初始条件和边界条件进行了分析,并对有限元模型进行了校核,分析行星齿轮副接触面和非接触面的等效应力的规律。
     研究温差对载荷分流式增速行星齿轮传动机构第一级行星轮系的行星齿轮副动态特性的影响。建立齿轮的有限元模型,然后将有限元模型分割成两个不同的区域;利用有限元软件温度场预定义功能对分割的区域设置不同的温度,实现了温差的近似模拟;进而分析了温差与齿轮齿廓的齿顶,节圆和齿根节点应力的关系;应用所提出的温差模拟方法对行星轮系的瞬态接触特性进行研究。
     建立载荷分流式两级行星轮系和一级平行轴齿轮的增速传动系统的动力学模型,推导该传动系统的动力学微分方程。利用该行星齿轮传动系统的有关物理参数求解该系统的特征方程,研究载荷分流式增速行星齿轮传动系统的固有特性。根据振型的特点归纳总结出了该传动系统八种典型振动模式,并分析了各振动模式的规律特点。
     研究级间耦合刚度对载荷分流式增速行星齿轮传动系统的固有特性的影响。研究表明级间耦合振动模式所对应的固有频率随着级间耦合刚度增加而增大,但载荷分流式增速行星齿轮传动系统的振动模式的类型并不发生改变。采用数值积分的方法求解了载荷分流式增速行星齿轮传动系统的动力学方程,获得该传动系统的动态响应,推导该传动系统的均载系数表达式,分析该传动系统的均载特性。
     建立行星齿轮传动系统的模拟实验台,该模拟实验台能够检测传动系统的转速、扭矩和功率,可以实现调速和加载。根据模态分析技术对行星齿轮传动系统进行模态实验研究。模态实验研究表明,理论分析的啮合频率与模态实验获得的行星传动系统的低阶固有频率具有明显的差异,故不会发生传动系统的啮合共振现象。采用理论分析和实验验证相结合的方法,对行星齿轮传动系统的动态响应信号的频域特性进行分析。研究表明行星齿轮传动系统的动态信号的频率成分非常丰富,峰值信号对应的频率与行星轮系的啮合频率、各构件的特征频率和行星架的旋转频率有关。
     本课题得到国家自然科学基金(51175299)、山东省自然科学基金(ZR2010EM012)和山东大学研究生自主创新基金(yzc10117)的支持。
The importance of wind power generation technology is widely recognized with increasing deterioration of the ecological environment and energy shortage. Planetary gear train is widely used in wind turbine owing to their advantages such as little space required, large ratio of transmission and high efficiency. Wind power planetary gear is used in the growth of the transmission and has high failure rate, which is under a complex load. The technology of planetary gear train is improved, but the gap between domestic wind power planetary gear transmission system and those of the other countries is still large. It is necessary to research on the dynamic characteristics of planetary gear train to reduce the failure rate of wind power growth gearbox and enhance its life and reliability. A load-split spee-growth planetary gear train is proposed and the danamic characteristics of the transmission system is analyzed by adopting the method of theoretical analysis, finite element method and experimental method. The contents of the study are as follows:
     A load-split two-stage planetary gear train for wind turbine gearbox was studied, which was composed of simple planetary gear train and the differential planetary gear train. The kinematics of the transmission mechanism was analyzed. The carrier and the sun gear of the first-stage planetary gear train were provided to link up the ring gear and the carrier of the second-stage planetary gear train separately to form the transmission mechanism, which was used to withstand simultaneously the torque of blade. The kinematics equation of each component and transmission ratio equation were deduced based on the mechanism inversion method. The influence of characteristic parameter on rotational speed of the planetary gear train was analyzed. It was shown that the transmission ratio and the rotational speed of sun gear were increased and the rotational speed of planetary gear was decreased by increasing characteristic parameter of planetary gear train.
     The contact process of the first planetary gear pairs was studied according to the transient dynamic finite element method. The solid model of multi-stage transmission system made up of the two-stage planetary gear train and one-stage parallel-shaft gear train was built by using the parameterization function of Proe software. The finite element model of the first-stage planetary gear pairs was built. In order to ensure the convergence of contact analysis, the entire simulation process was divided into multiple analysis steps. Boundary conditions and load were analyzed. The result was checked. The equivalent stress law of contact and non contact surfaces of planetary gear pairs was studied.
     The influence of temperature difference on the first-stage planetary gear train was studied. The finite element model of gear was established and divided into two districts. The temperature of each district was set using temperature field pre-defined function in Abaqus to introduce the temperature difference, which could be used to simulate the temperature difference. The relationship between temperature difference and equivalent stress of addendum, pitch circle and dedendum of the gear was analyzed. The influence of temperature difference on equivalent stress of addendum, pitch circle and dedendum of internal and external meshing planetary gear tooth profile was analyzed.
     The dynamic model of load-split speed-growth planetary gear train was presented using lumped-parameter method and dynamic differential equations were established. The natural frequencies and vibration modes of the system were obtained through solution of the associated eigenvalue problem by using the related parameters. Based on the properties of the transmission system, the vibration modes of the system were classified into eight categories and the characteristics of vibration modes were analyzed.
     The influence of the coupling stiffness between the first stage and the second stage on the natural characteristics was studied. It was shown that the natural frequencies of coupling vibration mode could be changed by controlling the coupling stiffness. The frequencies increased with the increase of the coupling stiffness. The coupling stiffness didn't affect the type of vibration modes. The natural frequencies of coupling vibration mode could be controlled by changing the coupling stiffness between the first-stage carrier and the second-stage ring gear or between the first-stage sun gear and the second-stage carrier. The analysis was helpful in reducing the system vibration scope and avoiding resonating. Load sharing characteristic of the system was researched. The dynamic equations of the load-split speed-growth gear train were solved by using numerical integration method. The dynamic responses of the system were obtained and the uniform loading coefficient expressions of the system were deduced.
     The experimental platform of planetary gear train was established, which could detect the rotation speed, torque and power of the planetary gear train. An experimental mode technique was applied to study the dynamic characteristics of planetary gear train. The results indicated that meshing frequencies and the low order natural frequencies of planetary gear train had an obvious difference. The planetary gear meshing resonance phenomenon could not occur. The frequency characteristics of the dynamic response of the planetary gear train was analyzed by using the method of theoretical analysis and experimental verification. It was shown that frequency of the planetary gear train were abundant, which was relevant for the meshing frequencies, the characteristic frequencies and rotating frequency of the planetary gear train.
     The author gratefully acknowledges the support of the Chinese National Science Foundation (No.51175299), the Shandong Provincial Natural Science Foundation, China (No.ZR2010EM012) and the Graduate Independent Innovation Foundation of Shandong University (No. yzc10117).
引文
[1]梁昌鑫,贾廷纲,陈孝祺.国内外风电的现状和发展趋势[J].上海电机学院学报,2009,12(1):73-77.
    [2]罗如意,林晔,钱野.世界风电产业发展综述[J].可再生能源,2010,28(2):13-17.
    [3]林鹤云,郭玉敬,孙蓓蓓.海上风电的若干关键技术综述[J].东南大学学报(自然科学版),2011,41(4):880-888.
    [4]维平,刘建军,赵战华.海上风电基础结构研究现状及发展趋势[J].海洋工程,2009,27(2):130-133.
    [5]张太佶,汪张棠.海上风电设备安装船的崛起和发展[J].中国海洋平台,2009,24(5):1-5.
    [6]倪云林,辛华龙,刘勇.我国海上风电的发展与技术现状分析[J].能源工程,2009,(4):21-25.
    [7]张立勇,王长路,刘法根.风力发电及风电齿轮箱概述[J].机械传动,2008,(32):1-4.
    [8]王晶晶,吴晓铃.风电齿轮箱的发展及技术分析[J].机械传动,2008,(32):5-8.
    [9]李俊峰.2008中国风电发展报告[M].北京:中国环境科学出版社,2008.
    [10]J A Baroudi,V Dinavahi,A M Knight.A Review of Power Converter Topologies for Wind Generators[J].Renewable Energy,2007(32):2369-2385.
    [11]T Burton著,武鑫译.风能技术[M].北京:科学出版社,2008.
    [12]秦大同,龙威,杨军,等.变风速运行控制下风电传动系统的动态特性[J].机械工程学报,2012,48(7):1-8.
    [13]魏静,孙清超,孙伟,等.大型风电齿轮箱系统耦合动态特性研究[J].振动与冲击,31(8):16-23.
    [14]张庆伟,张博,王建宏,等.风力发电机齿轮传动系统的动态优化设计[J].重庆大学学报,33(3):30-35.
    [15]陈涛,孙伟,张旭.基于灰色关联度的风电齿轮箱传动系统故障树分析[J].太阳能学报,33(10):1655-1660.
    [16]朱才朝,陈爽,马飞,等.轮齿修形对兆瓦级风电齿轮箱动态特性影响[J].振动与冲击,32(7):123-128.
    [17]秦大同,古西国,王建宏,等.兆瓦级风力机齿轮传动系统动力学分析与优化[J].重庆大学学报(自然科学版),2009,32(4):408-414.
    [18]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31.
    [19]张新燕,何山,张晓波,等.风力发电机组主要部件故障诊断研究[J].新疆大学学报(自然科学版),2009,26(2):140-144.
    [20]尚振国,王垡.风力发电增速器齿轮齿廓修形有限元分析[J].机械传动,2009,33(4):69-72.
    [21]张志宏,刘忠明,张和平,等.大型风电齿轮箱行星架结构分析及优化[J].机械设计,2008,25(9):54-56.
    [22]马朝锋,刘凯,靳艳丽.风力发电机行星传动增速系统动态均载研究[J].西安理工大学学报,2008,24(3):286-289.
    [23]王旭东,林腾蛟,李润方,等.风力发电机组齿轮系统内部动态激励和响应分析[J].机械设计与研究,2006,22(3):47-49.
    [24]朱才朝,黄泽好,唐倩等.风力发电齿轮箱系统耦合非线性动态特性的研究[J].机械工程学报,2005,41(8):203-207.
    [25]T Barszcz, R B Randall.Application of Spectral Kurtosis for Detection of a Tooth Crack in the Planetary Gear of a Wind Turbine[J].Mechanical Systems and Signal Processing,2009,23(4):1352-1365.
    [26]X L Xu,Z W Yu, Y M Gao, et al.Crack Failure of Gears Used in Generating Electricity Equipment by Wind Power[J].Engineering Failure Analysis,2008,15(7):938-945.
    [27]Y Guo,R G. Parker.Dynamic Modeling and Analysis of a Spur Planetary Gear Involving Tooth Wedging and Bearing Clearance Nonlinearity[J].European Journal of Mechanics-A/Solids,2010,29(6):1022-1033.
    [28]M Tristan,Ericson,R G Parker.Planetary Gear Modal Vibration Experiments and Correlation Against Lumped-parameter and Finite Element Models[J].Journal of Sound and Vibration,2013,332(9):2350-2375.
    [29]X. Gu,P. Velex.A Dynamic Model to Study the Influence of Planet Position Errors in Planetary Gears[J].Journal of Sound and Vibration,2012,331(20):4554-4574.
    [30]R G. Parker, X H Wu. Vibration Modes of Planetary Gears with Unequally Spaced Planets and an Elastic Ring Gear[J].Journal of Sound and Vibration,2010,329(11):2265-2275.
    [31]秦大同,田苗苗,杨军.变风载下风力发电机齿轮传动系统动力学特性研究[J].太阳能学报,2012,33(2):190-196.
    [32]白俊峰.风力发电增速机构动力学分析[D].沈阳:沈阳工业大学,2012.
    [33]历海宁.TY型风电齿轮箱行星传动系统动力学分析[D].山西:太原理工大学,2012.
    [34]刘文吉,宋朝省,洪英.NN型少齿差行星齿轮传动啮合冲击分析及修形设计[J].中国机械工程,2012,23(4):425-429.
    [35]尤小梅,杨伟,马星国,等.基于非线性接触理论的行星传动系统[J].振动.测试与诊断,2010,30(6):679-712.
    [36]朱才朝,罗召霞,宁杰,等.新型双曲柄内齿环行星减速器的接触分析[J].重庆大学学报,2009,32(4):402-407.
    [37]庄铁柱,胡荣君,王洪海.行星轮系动态啮合应力研究[J].航空工程进展,2010,1(2):195-200.
    [38]鄂加强,李光明,张彬,等.兆瓦级风电偏航减速机行星齿轮疲劳仿真分析[J].湖南大学学报,2011,38(9):32-38.
    [39]刘占生,崔亚辉,叶建槐,等.非线性油膜力和啮合力作用下齿轮系统的振动特性研究[J].中国电机工程学报,2009,29(23):84-91.
    [40]T Osman,P Velex.A Model for the Simulation of the Interactions between Dynamic Tooth Loads and Contact Fatigue in Spur Gears[J].Tribology International,2012,46(1):84-96.
    [41]T Eritenel,P Robert.An Investigation of Tooth Mesh Nonlinearity and Partial Contact Loss in Gear Pairs Using a Lumped-parameter Model[J].Mechanism and Machine Theory,2012,56(l):28-51.
    [42]S Wang, M Huo, C Zhang,et al.Effect of Mesh Phase on Wave Vibration of Spur Planetary Ring Gear[J].European Journal of Mechanics-A/Solids,2011,30(6):820-827.
    [43]Y Hu, Y Shao, Z Chen, M Zuo.Transient Meshing Performance of Gears with Different Modification Coefficients and Helical Angles Using Explicit Dynamic FEA[J].Mechanical Systems and Signal Processing,2011,25(5):1786-1802.
    [44]L Shuting.Effects of Centrifugal Load on Tooth Contact Stresses and Bending Stresses of Thin-rimmed Spur Gears with Inclined Webs[J].Mechanism and Machine Theory,2013,59(l):34-47.
    [45]唐进元,彭方进.准双曲面齿轮动态啮合性能的有限元分析研究[J].振动与冲击,2011,30(7):101-106.
    [46]尹刚.高重合度齿轮应力场有限元分析[J].重庆大学学报,2010,33(7):53-57.
    [47]郭辉,赵宁,方宗德,等.基于接触有限元的面齿轮传动弯曲强度研究[J].航空动力学报,2008,23(8):1438-1442.
    [48]彼得·艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003.
    [49]严宏志,刘明.延伸外摆线齿准双曲面齿轮接触特性有限元分析[J].煤炭学报,2010,35(9):1576-1580.
    [50]J Y Tang,F J Peng.Finite Element Analysis for Dynamic Meshing of a Pair of Hypoid Gears[J].Journal of Vibration and Shock,2011,30(7):101-106.
    [51]D Vecchiato.Tooth Contact Analysis of a Misaligned Isostatic Planetary Gear Train [J].Mechanism and Machine,2006,41(6):617-631.
    [52]W Kim, J Y Lee, J Chung.Dynamic Analysis for a Planetary Gear with Time-varying Pressure Angles and Contact Ratios[J].Journal of Sound and Vibration,2012,331(4):883-901.
    [53]A. Bajer,L Demkowicz-Dynamic Contact/Impact Problems, Energy Conservation, and Planetary Gear Trains[J].Computer Methods n Applied Mechanics and Engineering,2002,191 (37):4159-4191.
    [54]C. Spitas, V. Spitas.Fast Unconditionally Stable 2-D Analysis of Non-conjugate Gear Contacts Using an Explicit Formulation of the Meshing Equations[J]. Mechanism and Machine Theory,2011,46(7):869-879.
    [55]S 1 Hwang,J H Lee,D H Lee,et al.Contact Stress Analysis for a Pair of Mating Gears[J].Mathematical and Computer Modelling,2013,57(1):40-49.
    [56]C Yuksel,A Kahraman. Dynamic Tooth Loads of Planetary Gear Sets Having Tooth Profile Wear[J].Mechanism and Machine Theory,39(7):695-715.
    [57]V V Simon.Influence of Tooth Modifications on Tooth Contact in Face-hobbed Spiral Bevel Gears [J].Mechanism and Machine Theory,201146(12):1980-1998.
    [58]Y C Chen,C C Liu.Contact Stress Analysis of Concave Conical Involute Gear Pairs with Non-parallel Axes Original[J].Finite Elements in Analysis and Design,2011,47(4):443-452.
    [59]V Moorthy,B A Shaw.An Observation on the Initiation of Micro-pitting Damage in As-ground and Coated Gears During Contact Fatigue[J].Wear,2013,297(1):878-884.
    [60]T Osman,P Velex.A Model for the Simulation of the Interactions between Dynamic Tooth Loads and Contact Fatigue in Spur Gears[J].Tribology International,2012,46(1):84-96.
    [61]V Simon.Design of Face-hobbed Spiral Bevel Gears with Reduced Maximum Tooth Contact Pressure and Transmission Errors[J].Chinese Journal of Aeronautics,2013,26(3):777-790.
    [62]G P Ignacio, L I Jose, F Alfonso.Implementation of Hertz Theory and Validation of a Finite Element Model for Stress Analysis of Gear Drives with Localized Bearing Contact[J].Mechanism and Machine Theory,2011,46(6):765-783.
    [63]G. Donzella,M Faccoli,A Mazzu, et al.Influence of Inclusion Content on Rolling Contact Fatigue in a Gear Steel:Experimental Analysis and Predictive Modelling[J].Engineering Fracture Mechanics,2011,78(16):2761-2774.
    [64]W Kim,J Y Lee,J Chung.Dynamic Analysis for a Planetary Gear with Time-varying Pressure Angles and Contact ratios[J].Journal of Sound and Vibration,2012,331(4):883-901.
    [65]刘景亚.二次包络少齿差行星齿轮传动啮合特性及动力学研究[D].重庆:重庆大学,2012.
    [66]王世宇.基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D].天津:天津大学,2005.
    [67]杨成云.齿轮传动系统耦合振动响应及抗冲击性能研究重庆大学[D].重庆:重庆大学,2006.
    [68]杨军.风力发电机行星齿轮传动系统变载荷激励动力学特性研究[D].重庆:重庆大学,2012.
    [69]T Hidaka,Y Terauchi,M Fujii.Analysis of Dynamic Tooth Load on Planetary Gear [J]. Bulletin of the JSME,1980,23(176):315-323.
    [70]Kahrama A. Natural modes of planetary gear trains [J]. Journal of Sound and Vibration,1994, 173(1):125-1230.
    [71]A Kahrama-Planetary Gear Train Dynamics[J].Journal of Mechanical Design,Transactions Of the ASME,1994,116(3):713-720.
    [72]J Lin, R G Parker.Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration[J]Journal of Vibration and Acoustics, Transactions of the ASME,1999,121(3):316-321.
    [73]J Lin,R G Parker. Structured Vibration Characteristics of Planetary Gears with Unequally Spaced Planets [J]. Journal of Sound and Vibration,2000,233(5):921-928.
    [74]T C Lim,J Li.Dynamic Analysis of Multi-mesh Counter-shaft Transmission[J]Journal of Sound and Vibration,1999,219(5):905-919.
    [75]R G Parker,J Lin.Mesh Phasing Relationships in Planetary and Epicyclic Gears[J].Journal of Mechanical Design, Transactions of the ASME,2004,126(2):365-370.
    [76]A Bodas,A Kahraman.Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets[J].JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2004,47(3):908-915.
    [77]M Kubur,A Kahraman,D M Zini, et al.Dynamic Analysis of a Multi-shaft Helical Gear Transmission by Finite Elements:Model and experiment[J] Journal of Vibration and Acoustics,Transactions of the ASME,2004,126(3):398-406.
    [78]R Hbaieb.F Chaari, T Fakhfakh,et al.Dynamic Stability of a Planetary Gear Train under the Influence of Variable Meshing Stiffnesses[J].Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2006,220(12):1711-1725.
    [79]V K Ambarisha, R G Parker.Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models [J]Journal of Sound and Vibration,2007,302(3):577-595.
    [80]S Dhouib,R Hbaieb,F Chaari, et al.Free Vibration Characteristics of Compound Planetary Gear Train Sets[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,222(8):1389-1401.
    [81]Y Guo, R G Parker.Purely Rotational Model and Vibration Modes of Compound Planetary Gears[J]. Mechanism and Machine Theory,2010,45(3):365-377.
    [82]孙涛,沈允文,孙智民.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2002,38(3):6-10.
    [83]郜志英,沈允文,李素有.间隙非线性齿轮系统周期解结构及其稳定性研究[J].机械工程学报,2004,40(5):17-22.
    [84]王世宇,宋轶民,沈兆光.行星传动系统的固有特性及模态跃迁研究[J].振动工程学报,2005,18(4):412-417.
    [85]王庆,张以都,张洪伟.基于有限元的齿轮传动系统动力修改研究[J].武汉理工大学学报,2008,30(9):120-128.
    [86]宋轶民,张俊,张君.3K-Ⅱ型直齿行星齿轮传动的固有特性[J].机械工程学报,2009,45(7):23-28.
    [87]马朝锋,刘凯,崔亚辉.风电增速箱行星轮系的扭转振动模型[J].机械科学与技术,2010,29(6):788-79.
    [88]张俊,宋轶民,张策.NGW型直齿行星传动自由振动分析[J].天津大学学报,2010,43(1):90-94.
    [89]巫世晶,刘振皓,王晓笋.基于谐波平衡法的复合行星齿轮传动系统非线性动态特性[J].机械工程学报,2011,47(1):55-61.
    [90]A Kahraman.Planetary Gear Train Dynamics[J]Journal of Mechanical Design,Transactions of the ASME,1994,116(3):713-720.
    [91]R Hbaier,F Chaari..Dynamic Stability of a Planetary Gear Train under the Influence of Variable Meshing Stiffnesses[J].Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2006,220(12):1711-1725.
    [92]Y Guo, R G Parker.Purely Rotational Model and Vibration Modes of Compound Planetary Gears[J].Mechanism and Machine Theory,2010,45(3):365-377.
    [93]刘振皓,巫世晶,王晓笋,等.基于增量谐波平衡法的复合行星齿轮传动系统非线性动力学[J].振动与冲击,2012,31(3):117-122.
    [94]A Bodas, A Kahraman.Influence of Carrier and Gear Manufacturing Errors on Static Load Sharing Behavior of Planetary[J] JSME International Journal, Series C,2004,47(3):908-915.
    [95]A Kahraman.Free Torsional Vibration Characteristics of Compound Planetary Gear Sets[J].Mechanism and Machine Theory,2001(36):953-971.
    [96]徐向阳.柔性销轴式风电齿轮箱动力学研究[D].重庆:重庆大学,2012.
    [97]赵永强.舰船用大功率两级串联混合行星传动系统动力学研究[D].哈尔滨:哈尔滨工业大学,2010.
    [98]曲弋.MW级风力发电机组关键部件振动分析与故障诊断方法研究[D].沈阳:沈阳工业大 学,2012.
    [99]张俊.少齿差环板式减速器的弹性动力分析与动态设计方法研究[D].天津:天津大学,2007.
    [100]赵勇.基于动力学的盾构机行星传动系统的可靠性研究[D].重庆:重庆大学,2011.
    [101]N C Perkins, C D Mote.Comments on Curve Veering in Eigenvalue Problems[J]. Journal of Sound and Vibration,1986,106(3):451-463.
    [102]C Pierre.Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures [J].Journal of Sound and Vibration,1988,126(3):485-502.
    [103]J Lin, R G Parker.Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters [J]. Journal of Sound and Vibration,1999,228(2):109-128.
    [104]A Kahraman.Free Torsional Vibration Characteristics of Compound Planetary Gear Sets[J].Mechanism and Machine Theory,2001,36(8):953-971.
    [105]X Wu, R G Parker. Modal Properties of Planetary Gears with an Elastic Continuum Ring Gear[J]. Journal of Applied Mechanics, Transactions ASME,2008,75(3):1-12.
    [106]T Eritenel,R G Parker.Modal properties of three-dimensional helical planetary gears[J]Journal of Sound and Vibration,2009,325(1):397-420.
    [107]Z H Bu, G Liu,L Y Wu.Modal Analyses of Herringbone Planetary Gear Train with Journal Bearings[J].Mechanism and Machine Theory,2012,54:99-115.
    [108]T M. Ericson,R.G. Parker.Planetary Gear Modal Vibration Experiments and Correlation against Lumped-parameter and Finite Element Models[J].Journal of Sound and Vibration,2013, 332(9):2350-2375.
    [109]王春光,常山,李应生.行星齿轮啮合刚度对其振动特性的影响[J].热能动力工程,2005,20(4):414-417.
    [110]杨通强,宋轶民,张策,等.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报,2005,41(7):50-55.
    [111]段福海,胡青春,谢存禧.钢/塑料齿轮组合行星传动的固有特性分析[J].中国机械工程,2008,19(20):2423-2427.
    [112]康忠,李振平,凌云.基于拉格朗日方法的行星齿轮动特性研究[J].机械设计,2009,26(7):45-47.
    [113]陈世其,赵继云,李炳文,等.超重型刮板输送机行星传动固有特性分析[J].煤炭科学技术,2011,39(11):84-87.
    [114]巫世晶,任辉,朱恩涌,等.行星齿轮传动系统动力学研究进展[J].武汉大学学报,2010,43(3):398-403.
    [115]A Kahraman.Static Load Sharing Characteristics of Transmission Planetary Gear Sets:Model and Experiment[J]. Society of Automotive Engineers,1999(1):1954-1963.
    [116]A Kahraman.Load Sharing Characteristics of Planetary Transmissions[J].Mechanism and Machine Theory,1994,29(8):1151-1165.
    [117]A Bodas,A Kahraman.Influence of Carrier and GearManufacturing Errors on Static Load Sharing Behavior of Planetary Gear[J]JSME International Journal,Series C,2004,47(3):908-915.
    [118]陆俊华,李斌,朱如鹏.行星齿轮传动静力学均载分析[J].机械科学与技术,2005,24(6):702-704.
    [119]J H Lu, B Li, R P Zhu.Analysis of Static Load Sharing in Planetary Gearing[J].Mechanical Science and Technology,2005,24(6):702-704.
    [120]叶福民,朱如鹏,鲍和云.非等模数非等压力角NGW型行星齿轮系静力学均载特性[J].中南大学学报,2011,42(7):1960-1966.
    [121]M Maatar, P Velex An Analytical Expression for the Time-varying Contact Length in Perfect Cylindrical Gears:Some Possible Applications in Gear Dynamics[J]Journal of Mechanical Design,1996,118(12):586-589.
    [122]R G Parker, J Lin.Mesh Phasing Relationships in Planetary and Epicyclic Gears[J] Journal of Mechanical Design,2004,126(3):365-370.
    [123]陆俊华,朱如鹏,勒广虎.行星传动动态均载特性分析[J].机械工程学报,2009,45(5):85-90.
    [124]方宗德,沈允文,黄镇东.2K-H行星减速器的动态特性[J].西北工业大学学报,1990,10(4):361-371.
    [125]尚珍.高可靠性行星齿轮传动设计技术及均载研究[D].北京:机械科学研究总院,2009.
    [126]张立勇.大型风电齿轮箱均载性能研究及优化[D].北京:机械科学研究总院,2009.
    [127]李斌.行星齿轮传动系统均载分析方法的研究[D].南京:南京航空航天大学,2005.
    [128]尹林林.行星齿轮增速机构的浮动均载及固有特性研究[D].郑州:郑州大学,2012.
    [129]蔡黎明.滑动轴承支撑的行星齿轮传动系统均载特性分析研究[D].南京:南京航空航天大学.
    [130]周建星,董海军.基于非线性动力学的行星传动均载性能研究[J].机械科学与技术,2008,27(6):808-811.
    [131]周建星,刘更,吴立言,等.中心轮浮动式行星传动动态均载性能研究[J].机械科学与技术,2009,28(7):857-861.
    [132]渠珍珍,鲍和云,朱如鹏,等.高重合度行星齿轮传动系统动态特性分析[J].机械科学与技 术,2012,31(7):1174-1179.
    [133]李同杰,朱如鹏,鲍和云,等.履带车辆双排行星齿轮传动系统非线性动力学模型与方程[J].机械设计,2013,30(1):49-54.
    [134]周惠琴,李素有,吴立言.行星齿轮传动系统均载分析[J].机械科学与技术,2008,27(9):1239-1242.
    [135]朱振荣,蒋立冬,常山.渐开线行星齿轮传动技术的发展[J].热能动力工程,2007,22(4):351-356.
    [136]李发家,朱如鹏,鲍和云,等.行星齿轮系动力学特性分析及试验研究[J].南京航空航天大学学报,2012,44(4):511-519.
    [137]杨建明,张策,林忠钦,等.行星齿轮传动动力学特性研究进展[J].航空动力学报,2003,18(2):299-304.
    [138]徐正兴,辛洪兵,战晓磊.行星齿轮传动均载问题的研究[J].北京工商大学学报,2007,25(6):24-31.
    [139]张涛.行星齿轮传动均载的研究[J].机械科学与技术,2008,27(9):1167-1170.
    [140]李阳,刘光磊,刘更,等.基于间隙浮动的行星齿轮传动系统静力学均载分析[J].机械科学与技术,2009,28(8):1115-1120.
    [141]尚珍,刘忠明,王长明.双浮动行星齿轮传动非线性动力学均载及浮动量分析[J].机械科学与技术,2011,30(4):683-688.
    [142]刘文彬,刘更,李阳.串联型行星齿轮传动系统均载特性分析[J].机械传动,2012,36(7):92-95.
    [143]A Singh.Load Sharing Behavior in Epicyclic Gears:Physical Explanation and Generalized Formulation[J].Mechanism and Machine Theory,2010,45(3):511-530.
    [144]A Kahraman.Load Sharing Characteristics of Planetary Transmissions[J].Mechanism and Machine Theory,1994,29(8):1151-1165.
    [145]X L Shu.Determination of Load Sharing Factor for Planetary Gearing with Small Tooth Number Difference[J].Mechanism and Machine Theory,1995,30(2):313-321.
    [146]X. Gu, P. Velex.A Dynamic Model to Study the Influence of Planet Position Errors in Planetary Gears [J] Journal of Sound and Vibration,2012,331(20):4554-4574.
    [147]S Honda.Rotational Vibration of a Helical Gear Pair with Modified Tooth Surfaces[J].JSME International Journal, Series C:Dynamics, Control, Robotics, Design and Manufacturing,1995, 38(1):112-121.
    [148]S Baud,P Velex.Static and Dynamic Tooth Loading in Spur and Helical Geared Systems-experiments and Model Validation [J].Journal of Mechanical Design, Transactions Of the ASME,2002,124(2):334-346.
    [149]H W Wang, L Q Xue, Y H Cui.Characteristic Analysis and Experiment Study of the Closed Planetary Gear Transmission[C].ASME.17th International Conference on Design Theory and Methodology/Power Transmission and Gearing Conference, Long Beach,2005:665-670.
    [150]A Singh, A Kahraman,H Ligata. Internal Gear Strains and Load Sharing in Planetary Transmissions:Model and Experiments[C].ASME.International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Las Vegas,2008:917-928.
    [151]H Ligata, A Kahraman, A Singh.An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing[C]. ASME. International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Las Vegas,2007:149-158.
    [152]M Ialpolat, A Kahraman. A Theoretical and Experimental Investigation of Modulation Sidebands of Planetary Gear Sets[J] Journal of Sound and Vibration,2009,323(3):677-696.
    [153]S Seetharaman, A Kahraman,M D Moorhead. Oil Churning Power Losses of a Gear Pair: Experiments and Model Validation[J]. Journal of Tribology,2009,131(2):1-10.
    [154]C Park.Multi-objective optimization of the tooth surface in helical gears using design of experiment and the response surface method[J] Journal of Mechanical Science and Technology, 2010,24(3):823-829.
    [155]刘更,蔺天存,沈允文.斜齿轮齿根动应力数值计算与实验研究[J].航空动力学报,1994,9(1):59-62.
    []56]朱传敏,宋孔杰,田志仁.齿轮修形的优化设计与试验研究[J].机械工程学报,1998,34(4):42-46.
    [157]李润方,韩西,林腾蛟.齿轮系统耦合振动的理论分析与试验研究[J].机械工程学报,2000,36(6):79-81.
    [158]刘白,汪大鹏.齿轮传动效率的试验研究[J].机械工程学报,2001,37(1):109-112.
    [159]王淑仁,闫玉涛,丁津原.渐开线直齿圆柱齿轮啮合磨损试验研究[J].东北大学学报(自然科学版),2004,25(2):146-149.
    [160]戴雪晴,周哲波.齿轮几何参数对传动效率影响的实验[J].上海交通大学学报,2006,40(7):1226-1229.
    [161]霍晓强,吴传虎.齿轮传动系统搅油损失的试验研究[J].机械传动,2007,31(1):63-65.
    [162]韩志武,董立春,王玉洁.齿面微观形态对齿轮耐磨性能影响的试验研究[J].摩擦学学报,2008,28(6):503-506.
    [163]李国云,秦大同.风力发电机齿轮箱加速疲劳试验技术分析[J].重庆大学学报,2009,(11):1252-1256.
    [164]徐向阳,朱才朝,张晓蓉.大功率船用齿轮箱试验模态分析[J].振动与冲击,2011,30(7):266-270.
    [165]J Helsen, B Marrant, F Vanhollebeke, et al.Assessment of Excitation Mechanisms and Structural Flexibility Influence in Excitation Propagation in Multi-megawatt Wind Turbine
    Gearboxes:Experiments and Flexible Multibody Model Optimization[J]. Mechanical Systems and Signal Processing,2013,40(1):114-135.
    [166]J Helsen,F Vanhollebeke, B Marrant, D Vandepitte,et al.Multibody Modelling of Varying Complexity for Modal Behaviour Analysis of Wind Turbine Gearboxes[J]. Renewable Energy, 2011,36(11):3098-3113.
    [167]Z P Feng, M J. Zuo, J Qu, et al. Joint Amplitude and Frequency Demodulation Analysis Based on Local Mean Decomposition for Fault Diagnosis of Planetary Gearboxes[J]. Mechanical Systems and Signal Processing,2013,40(1):56-75.
    [168]严宏志,刘明.延伸外摆线齿准双曲面齿轮接触特性有限元分析[J].煤炭学报,2010,35(9):1576-1580.
    [169]E Atan. On the prediction of the design criteria for modification of contact stresses due to thermal stresses in the gear mesh [J]. Tribology International,2005,38(3):227-233.
    [170]G Kaur, D. Homa, K. Singh, et al. Simulation of thermal stress within diffusion couple of composite seals with Crofer 22APU for solid oxide fuel cells applications[J]. Journal of Power Sources,2013,242:305-313.
    [171]王延忠,周元子,陈聪慧,等.弹流润滑螺旋锥齿轮热摩擦行为分析[J].航空动力学报,2011,26(10):2382-2387.
    [172]薛建华,李威,斜齿圆柱齿轮副热机耦合三维有限元分析[J].华中科技大学学报(自然科学版),2013,41(10):54-58
    [173]何国旗,严宏志,胡威,等.面齿轮啮合过程中压力角对齿面摩擦生热的影响分析[J].中南大学学报(自然科学版),2012,13(9):3415-3419.
    [174]黄厚诚,王秋良编著.热传导问题的有限元分析[M].北京:科学出版社,2011.
    [175]A Kahraman. Free Torsional Vibration Characteristics of Compound Planetary Gear Sets[J].Mechanism and Machine Theory,2001,36(8):953-971.
    [176]李亚鹏,孙伟,魏静,等.齿轮时变啮合刚度改进计算方法[J].机械传动,2010,34(5):22-26.
    [177]刘国华,李亮玉,赵继学.考虑反向齿面啮合力的齿轮系统时变啮合刚度的研究[J].天津工业大学学报,2006,25(6):54-57.
    [178]付昆昆,郑百林,石玉权.基于接触有限元法的齿轮多齿时变啮合刚度数值分析[J].计算机辅助工程,2012,21(5):65-68.
    [179]刘增民,刘更,吴立言,等.人字齿轮啮合刚度计算与齿面载荷分布研究[J].计算机仿真,2009,26(2):298-353.
    [180]唐进元,蒲太平.基于有限元法的螺旋锥齿轮啮合刚度计算[J].机械工程学报,2011,47(17):23-29.
    [181]崔玲丽,张飞斌,康晨晖,等.故障齿轮啮合刚度综合计算方法[J].北京工业大学学报,2013,39(3):353-358.
    [182]孙华刚,冯广斌,曹登庆,等.裂纹故障齿轮啮合内部动态激励分析[J].机械传动,2010,34(10):58-61.
    [183]李润方,王建军.齿轮系统动力学一振动,冲击,噪声[M].北京:科学出版社,1997.
    [184]北京东方振动和噪声技术研究所.DASP-V10软件操作使用手册[M].北京:北京东方振动和噪声技术研究所,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700