棉花种间导入系的构建、新型标记的开发与高密度遗传图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花在生物学分类上属于锦葵科棉属(Gossypium),是重要的经济作物和最主要的纤维作物。随着社会的不断发展进步,高产优质棉花品种的培育日益重要。但是,传统育种方法的局限性使得较多性状的同时改良难以在短期内实现。随着分子生物学及生物技术的迅猛发展,分子育种技术与常规育种技术的结合或许可以作为更有效的手段来开展棉花高产优质新品种的选育。
     本研究以分子标记技术为核心技术,主要开展了以下三方面的工作,以期为棉花育种提供育种资源和理论指导。(1)棉花海陆种间导入系的构建;(2)棉花新型分子标记的开发及遗传评价;(3)棉花海陆种间高密度遗传图谱的构建。
     1.棉花海陆种间导入系的构建
     本研究运用分子标记辅助选择的手段进行棉花海陆种间导入系的构建,利用在种间图谱上以10cM±为标准挑选的515个标记对每一世代单株进行代换片段的检测。截至2012年,337个单株入选,其中,82.79%的单株在陆地棉Emian22(受体)的遗传背景中仅含有三个甚至更少的海岛棉3-79(供体)的代换片段。总体说来,海岛棉3-79的供体片段较好地覆盖了棉花基因组,覆盖度为77.67%。但是,海岛棉3-79的供体片段对棉花26条染色体的覆盖度大小不一,从57.14%(Chr05)到100.00%(Chr23)变化不等。另外,单株所含代换片段的数目也不尽相同,从1到10变化不等。即将构建成功的导入系会大大促进棉花数量性状方面的相关研究,也能为棉花育种工作提供新的宝贵的育种资源。
     2.棉花新型分子标记的开发及遗传评价
     (1)棉花纤维发育相关功能标记的开发
     本研究根据棉纤维发育相关功能基因的序列,共设计了331对纤维基因引物和164对蛋白引物。经SSCP分型技术分析发现,52对引物产生了58个多态性位点,引物多态性率仅为10.51%。连锁分析发现,代表48个基因或蛋白的53个多态性标记广泛分布于棉花21条染色体上,意味着棉纤维的发育应该是受棉花整个基因组协同调控的。另外,多态性引物相关序列的GO分析结果说明了棉花纤维发育生物进程的复杂性。多态性引物对海陆棉种纤维发育各时期进行了RT-PCR和qRT-PCR分析,基因的表达模式与前人的相关报道比较吻合,而且与本实验室对海陆棉种纤维品质性状的考察结果一致。海陆种间的表达差异分析可以为陆地棉品种纤维品质的改良提供一定的理论指导,主要可以通过转基因技术将在海岛棉中特异或优势表达而又与纤维品质密切相关的功能基因转移到大面积推广的高产陆地棉品种中,以期快速有效地培育高产优质的棉花新品种。
     (2)棉花SNP和IDP标记的开发
     本研究利用in-silico方法共设计合成了1349对棉花SNP/IDP引物,包括455对Ghi系列引物、356对HAU-SNP系列引物、415对GhIDP系列引物和123对PCtIDP系列引物。SSCP分型技术使得137对引物产生了142个多态性位点,引物多态性率为10.16%。连锁分析显示,133个多态性标记广泛分布于棉花整个基因组,与SNPs/IDPs遍布整个基因组的事实相符,而且对提高遗传图谱的密度非常有利;另外,该部分SNP和IDP标记还能很好地补充说明棉花偏分离的相关研究。碱基变异的规律统计分析发现,棉花碱基替换中存在转换偏奇现象,碱基转换占总变异的55.78%。而碱基替换的功能聚集结果分析显示,不同功能的SNPs功能聚集情况千差万别,对不同类别的相关功能基因的研究具有一定的指导意义。最后,序列分析的实验结果表明in-silico方法是开发棉花SNP标记的一把双刃剑,因为实际的SNPs并不总是与预测的SNPs吻合。
     (3)棉花亚基因组特异标记的开发
     本研究共设计开发了260对At亚组特异的Ga-Gh系列引物和545对Dt亚组特异的Gr-Gh系列引物。SSCP分型技术使得25对Ga-Gh系列引物和25对Gr-Gh系列引物产生了共50个多态性位点,引物多态性率分别为9.62%和4.59%,意味着海陆棉种间的差异可能更多地源于At亚组。连锁分析显示,24个Ga-Gh多态标记中的15个定位于At亚组,另外9个定位于Dt亚组;21个Gr-Gh多态标记中的15个定位于At亚组,另外6个定位于Dt亚组。实验结果与预期结果有着巨大偏差,原因可能有以下两点:一方面是因为开发引物时数据库中序列信息的匮乏而导致的所开发引物并不真的是亚基因组特异的引物;另一方面则很大程度上是因为棉花基因组的复杂性,主要是指At和Dt亚组中同源染色体的高度同源性/共线性。
     3.棉花海陆种间高密度遗传图谱的构建
     利用6%变性聚丙烯酰胺凝胶电泳和8%非变性聚丙烯酰胺凝胶电泳两种分析方法,对CMD(http://www.cottonmarker.org/)中新公布的SSR标记、文献中报道的少量新型标记及本研究中开发的三大类标记等共13507对引物进行亲本间的多态性检测和群体的基因型分析,最终有2498对引物在两个作图亲本间表现出多态性,并产生了2751个多态性位点,引物多态性率为18.49%。汇总本实验室张艳欣和余渝所得的2528个多态性标记和其他人mic-RNA、靶标、转录因子、抗病基因、细胞发育等相关的共353个多态性标记,最后用Joinmap3.0作图软件对总数为5632的多态性标记进行遗传连锁分析,最终构建了一张包含5152个多态性标记、图谱全长为4696.03cM、标记间平均距离为0.91cM的高密度棉花海陆种间遗传连锁图谱。
     对异源四倍体棉花遗传图谱的26条染色体进行了同源染色体间的共线性分析。结果显示,At和Dt亚组的同源染色体间具有最高的同源性。此外,其中7个同源染色体对中的棉花染色体还与同亚组或非同亚组的非同源染色体间具有较高的同源性,说明异源四倍体棉花在进化过程中可能发生了染色体的倒位或易位。所以说,本研究不仅有助于揭示异源四倍体棉花复杂的基因组结构,还可能推动异源四倍体棉花进化相关方向的研究。
     以该高密度遗传图谱为基础进行的四倍体棉花与雷蒙德氏棉(Dt亚组二倍体棉种)进行的同一物种不同亚种间的比较基因组学分析显示,在较高比对标准下,仍有69.57%的标记成功比对,四倍体棉花染色体中除了Chr03和Chr04没有与雷蒙德氏棉对应的同源染色体得到最高同源度外,其余24条染色体均是与其同源染色体有着最高的同源度。与可可的物种间比较基因组学分析显示,在相对较低的比对标准下,成功比对标记比例为46.55%,与可可染色体Tc01获得最高同源度的棉花染色体最多,有8条。与拟南芥进行的物种间比较基因组学分析显示,在与可可同样的比对条件下,成功比对标记比例为13.74%,与拟南芥染色体Atl获得最高同源度的棉花染色体最多,有12条。总之,本研究中以四倍体棉种遗传图谱为基础进行的比较基因组学分析,为利用雷蒙德氏棉、可可、拟南芥全基因组序列信息来分析异源四倍体棉花的复杂基因组提供了一定程度的启示和指导。
Cotton (Malvaceae Gossypium) is an important cash crop and the uppermost source of textile fiber. Along with the society's advance, cultivation of varieties with high yield and super fiber quality is becoming increasingly important. However, it is difficult for conventional breeding methods to synchronously improve several characters in a short time. With rapid development of molecular biology and biotechnology, combination of molecular breeding technology and conventional breeding technology may be an efficient approach to cotton breeding.
     Laying molecular marker technology at the core, this study launched three parts of work aiming at providing germplasm resource and theoretical direction to cotton breeding:(1) construction of introgression lines in cotton;(2) development and evaluation of new markers in cotton;(3) construction of high-density genetic linkage map in cotton.
     1. Construction of introgression lines in cotton
     In this study, introgression lines were constructed using molecular marker-assisted selection, with substitution segments of plants checked by515markers evenly selected from the linkage map. Up to2012,82.79%of the total337plants harbored only three or less substitution segments. Totally speaking, substitution segments from the donor parent (3-79) comparatively well covered the cotton genome, with coverage of77.67%. However, coverage in different chromosomes varied from57.14%(Chr05) to100.00%(Chr23). In addition, numbers of substitution segments in different plants also varied greatly, ranging from1to10. It is expected that ILs constructed in this study will greatly accelerate research progress of quantitative traits, and will provide new valuable resource for cotton breeding.
     2. Development and evaluation of new markers in cotton
     (1) Development of functional markers related to cotton fiber development
     A total of331gene primers and164protein primers were designed from functional sequences related to cotton fiber development. After genotyping using SSCP method,52primers (10.51%) showed polymorphism, and produced58polymorphic loci. After linkage analysis,53loci representing48genes or proteins were distributed randomly throughout the cotton genome, indicating that cotton fiber development was regulated by the whole genome. Besides, GO analysis of functional sequences also illustrated the complexity of fiber development. Both RT-PCR analysis and qRT-PCR analysis of polymorphic primers obtained similar expression tendencies with previous reports, and they also support field experimental results obtained in our laboratory. These expression patterns may provide some guidance to improve fiber quality of G. hirsutum, which could be accomplished by transforming those genes preferentially expressed in G. barbadense and controlling fiber quality obviously.
     (2) Development of SNP and IDP markers in cotton
     A total of1349SNP/IDP markers were developed using in-silico analysis in this study, including455Ghi-prefixed primers,356HAU-SNP-prefixed primers,415GhlDP-prefixed primers, and123PCtIDP-prefixed primers. After genotyping using SSCP analysis,137primers (10.16%) showed polymorphism, and produced142polymorphic loci. Genetic mapping showed that133polymorphic loci randomly distributed throughout the cotton genome, which is in accordance with the fact that SNPs/IDPs always pervade the whole genome, and indicates that SNP and IDP markers are valuable resource to increase density of linkage map. In addition, mapped SNPs and IDPs also could supplement previous research of segregation distortion. Statistic analysis of base substitutions showed that bias of base transitions exists in cotton genome, with the fact that base transitions occupied55.78%of the total SNPs. Functional accumulation analysis showed that numbers of SNPs in different functional categories varied obviously, which may provide some guidance to research of genes belonging to different functional categories. Generally speaking, in-silico analysis is a double-faced method to develop SNP markers in cotton revealed by sequence analysis, as the practical SNPs were not always in accordance with the predicted ones.
     (3) Development of subgenome-specific markers in cotton
     A total of260At-subgenome-specific primers and545Dt-subgenome-specific primers were developed in this study. SSCP analysis made25(9.62%) At-subgenome-specific primers and25(4.59%) Dt-subgenome-specific primers produce50polymorphic loci, indicating that difference between G. hirsutum and G. barbadense may mainly originate from the At-subgenome. After linkage analysis,15loci of the24mapped Ga-Gh-prefixed loci were located on the At-subgenome, and other9loci were located on the Dt-subgenome. As far as the21Gr-Gh-prefixed mapped loci,15of them were located on the At-subgenome, while only6loci were located on the Dt-subgenome. Reasons why experimental results deviated from anticipation tremendously are as follows. On the one hand, sequence shortage of cotton resulted in the fact that designed primers were not really specific to subgenome. On the other hand, unfavorable results may largely originate from complexity of the cotton genome-high homology/collinearity between homologous chromosomes of the At-subgenome and Dt-subgenome.
     3. Construction of high density genetic linkage map in cotton
     A total of13507primers, including new published SSRs in CMD (http://www.cottonmarker.org/), new kinds of markers reported by previous researchers, and three parts of primers designed in this study, were used to detect polymorphism between the two mapping parents using two genotyping methods. As a result,2498(18.49%) primers showed polymorphism, and produced2751polymorphic loci. Gathering the original2528polymorphic loci obtained by Yu (2011) and other353polymorphic loci related to mic-RNAs, targets, transcription factors, anti-disease genes, cell development and so on, a total of5632polymorphic loci were used for linkage analysis using Joinmap3.0. Finally, a high density interspecific linkage map including5152loci was constructed, with4696.03cM in total length and0.91cM in average distance between adjacent markers.
     Colinearity analysis among cotton chromosomes showed that it harbored the highest value between homologous chromosomes. However, comparatively high colinearity appeared between non-homologous chromosomes in14chromosomes which are homologous chromosomes in pairs. It indicates that this study is useful to analyze complex genome of cotton, and is helpful to research evolution history of cotton.
     Comparative analysis between allotetraploid cotton and diplontic cotton (G.raimondii) showed that most of the allotetraploid cotton chromosomes (except Chr03and Chr04) had the highest autoploidy with homologous chromosomes of the diplontic cotton. Comparative analysis between allotetraploid cotton and T. cocoa showed that percentage of successfully blasted markers was46.55%, and Tc01of T.cocoa was the most frequent chromosome which had the highest autoploidy with chromosomes of cotton. Comparative analysis between allotetraploid cotton and Arabidopsis showed that percentage of successfully blasted markers was13.74%, and Atl of Arabidopsis was the most frequent chromosome which had the highest autoploidy with chromosomes of cotton. Totally speaking, all above provides revelation and guidance to analysis of complex genome of allotetraploid cotton, through exploiting genome sequences of G.raimondii, T.cocoa and Arabidopsis.
引文
1.郭旺珍,王凯,张天真.利用SSR标记技术研究棉属A、D染色体组的进化.遗传学报,2003,30:183-188
    2.韩志国,楚鹰,郭旺珍,张天真.棉纤维发育重要基因FbL2A的SNPs研究及定位.农业生物技术学报,2006,14:360-364
    3.贺道华.四倍体棉花分子标记遗传连锁图谱的构建和重要经济性状的QTL定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    4.李帅阳.棉花SSCP标记的开发及产量和纤维品质性状的QTL定位.[硕士学位论文].武汉:华中农业大学图书馆,2012
    5.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建.科学通报,2003,48:1676-1679
    6.孟金陵,Sharpe A, Bowman C,田志宏,傅廷栋,钱秀珍,Lvdiate D.用RFLP标记分析甘蓝型油菜的遗传多样性.遗传学报,1996,23:293-306
    7.蒙忻,刘学义,方宣钧.利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL.分子植物育种,2003,1:6-21
    8.王长彪,郭旺珍,蔡彩平,张天真.雷蒙德氏棉EST-SSRs分布特征及开发与利用.科学通报,2006,51:316-320
    9.王瑾,徐桂真,李玉荣,程增书,陈四龙.DNA分子标记技术在芝麻中的应用.中国农学通报,2009,12
    10.王坤波.棉花的多倍体起源.见:中国棉花学会年会论文汇编,2004
    11.王志伟.分子标记辅助选择构建棉花种间单片段代换系及其遗传评价.[硕士学位论文].武汉:华中农业大学图书馆,2009
    12.翁建峰,万向元,吴秀菊,王海莲,翟虎渠,万建民.利用CSSL群体研究稻米AC和PC相关QTL表达稳定性.作物学报,2006,32:14-19
    13.吴茂清,张献龙,聂以春,贺道华.四倍体栽培棉种产量和纤维品质性状的QTL定位.遗传学报,2003,3:443-452
    14.吴新儒,刘树兵,刘爱峰,邓世民,王洪刚,周荣华.小麦重要农艺性状QTL近等基因导入系的选育.麦类作物学报,2007,27:583-588
    15.席章营,吴建宇.作物次级群体的研究进展.农业生物技术学报,2006,14:128-134
    16.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994.22-56
    17.于拴仓,柴敏,郑晓鹰,姜立纲.番茄叶霉病抗性基因Cf-5的CAPS标记建立.分子植物育种,2005,3:57-60
    18.余渝,王夏青,冯常辉,林忠旭,张献龙.棉花纤维特异/优势表达基因的染色体定位.棉花学报,2009,21:435-441
    19.余渝,王志伟,冯常辉,张艳欣,林忠旭,张献龙.草棉EST-SSRs的遗传评价.作物学报,2008,34:2085-2091
    20.余渝.棉花种间群体配子重组率差异、偏分离研究与高密度分子标记遗传连锁图谱构建.[博士学位论文].武汉:华中农业大学图书馆,2010
    21.袁有禄,张天真,郭旺珍,沈新莲,Yu J, Kohel RJ.棉花高品质纤维性状QTLs的分子标记筛选及其定位.遗传学报,2001,28:1151-1161
    22.张洁夫,傅寿仲,戚存扣,浦惠明,陈玉卿,陈新军,高建芹.甘蓝型油菜有、无花瓣近等基因系花器官的比较研究.中国油料作物学报,2003,25(3)
    23.张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12:321-326
    24.张天真.作物育种学总论.北京:中国农业出版社,2003
    25.张燕洁,朱一超,郭旺珍,张天真.与棉纤维发育相关基因GhSAMS、 GhNLP的克隆、鉴定与定位.中国农业科学,2008,41:2581-2588
    26. Abdurakhmonov IY, Kushanov FN, Djaniqulov F, Buriev ZT, Pepper AE, Fayzieva N, Mavlonov GT, Saha S, Jenkins JN, Abdukarimov A. The role of induced mutation in conversion of photoperiod dependence in cotton. JHered,2007,98:258-266
    27. Ahn S, Tanksley SD. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA,1993,90:7980-7984
    28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. JMol Biol, 1990,215:403-410
    29. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics,2004,20:2324-2326
    30. Authony B. SNP attack on complex traits. Nat Genet,1998,20:217-218
    31. Barendse W, Armitage SM. The single strand conformational analysis of cattle and human single nucleotide polymorphisms may be biased towards specific sequence motifs that minimize local secondary structure of single strand DNA. Anim Biotechnol, 2001,12:21-28
    32. Basra AS, Malik CP. Development of the cotton fiber. Int Rev Cytol,1984,89:65-113
    33. Batley J, Barker G, O'Sullivan H, Edwards KJ, Edwards D. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol,2003,132:84-91
    34. Blenda A, Fang DD, Rami J-Fo, Garsmeur O, Luo F, Lacape J-M. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLOS ONE,2012,7e45739
    35. Brunel E, Mesquida J, Renard M. Distribution of the pollinating insect fauna on flowers of rape (Brassica napus) and turnip rape (Brassica campestris):effects of turnip rape, sapetalous characteristic. Apidologie,1994,25:12-20
    36. Cao ZF, Ma CX, Wang L, Cai B. Analysis of population stratification using random SNPs in genome-wide association studies. Hereditas,2010,32:921-928
    37. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics,2000,156:847-854
    38. Chaisan T, Van K, Kim MY, Kim KD, Choi B-S, Lee S-H. In silico single nucleotide polymorphism discovery and application to marker-assisted selection in soybean. Mol Breeding,2012,29:221-233
    39. Collins FS, Guyer MS, Chakravarti A. Variations on a theme:cataloging human DNA sequence variation. Science,1997,278:1580-1581
    40. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21:3674-3676
    41. Connell JP, Pammi S, Iqbal MJ, Huiziaga T, Reddy AS. A high throughput procedure for capturing microsatellites from complex plant genomes. Plant Mol Biol Rep 1998, 16:341-349
    42. Crow JF. Dominance and overdominance. Mexico:The genetics and exploitation of heterosis in crops,1999.49-58
    43. Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet,2003,106:912-922
    44. Eschholz TW, Peter R, Stamp P, Hund A. Genetic diversity of Swiss maize (Zea mays L. ssp. mays) assessed with individuals and bulks on agarose gels. Genet Resour Crop Evol,2008,55:971-983
    45. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W. Isolation of EST derived micro satellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet,2002,104:399-407
    46. Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol,2006,140:603-612
    47. Fan L, Shi WJ, Hu WR, Hao XY, Wang DM, Yuan H, Yan HY. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Integr Plant Biol,2009,5:626-637
    48. Fang Z, Polacco M, Chen S, Schroeder S, Hancock D, Sanchez H, Coe E. cMap:the comparative genetic map viewer. Bioinformatics,2003,19: 416-417
    49. Ferguson ME, Hearne SJ, Close TJ, Wanamaker S, Moskal WA, Town CD, Young Jd, Marri PR, Rabbi IY, Villiers EPd. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet,2012,124: 685-695
    50. Fray MJ, Evans EJ, Lydiate DJ. Physiological assessment of apetalous flowers and erectophile pods in oilseed rape(Brassica napus). JAgr Sci,1996,127:193-200
    51. Frelichowski JE Jr, Palmer MB, Main D, Tomkins JP, Cantrell RG, Stelly DM, Yu J, Kohel RJ, Ulloa M. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Mol Genet Genomics,2006,275:479-491
    52. Frudakis T, Venkateswarlu K, Thomas MJ, Gaskin Z, Ginjupalli S, Gunturi S, Ponnuswamy V, Natarajan S, Nachimuthu P. A classifier for the SNP-based inference of ancestry. J Forensic Sci,2003,48:771-782
    53. Fu Y, Wen TJ, Ronin YI, Chen HD, Guo L, Mester DI, Yang Y, Lee M, Korol AB, Ashlock DA, Schnable PS. Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics,2006,174:1671-1683
    54. Ganal MW, Altmann T, Roeder MS. SNP identification in crop plants. Curr Opin Plant Biol,2009,12:211-217
    55. Goodnight CJ. Epistasis and heterosis. Mexico:The genetics and exploitation of heterosis in crops,1999.59-67
    56. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res,2008,36:3420-3435
    57. Grabber JH, Ralph J, Lapierre C, Barriere Y. Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C R Biol,2004,327: 455-465
    58. Grivet L, Glaszmann J, Vincentz M, da Silva F, Arruda P. ESTs as a source for sequence polymorphism discovery in sugarcane:example of the Adh genes. Theor Appl Genet,2003,106,190-197
    59. Grodzicker T, Williams J, Sharp P, Sambrook J. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harb Symp Quant Biol, 1975,39:439-446
    60. Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in gossypium. Genetics,2007a,176:527-541
    61. Guo W, Cai C, Wang C, Zhao L, Wang L, Zhang T. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics,2008,9: 314
    62. Guo W, Wang W, Zhou B, Zhang T. Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet, 2006,112:1573-1581
    63. Guo WZ, Sang ZQ, Zhou BL,zhang TZ. Genetic relationships of D-genome species based on two types of EST SSR markers derived from G-arboreum and G-raimondii in Gossypium. Plant Sci,2007b,172:808-814
    64. Gutierrez AG, Carabali SJ, Giraldo OX, Martinez CP, Correa F, Prado G, Tohme J, Lorieux M. Identification of a rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa x O. glaberrima introgression lines. BMC Plant Biol,2010,10:6
    65. Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA,1982,79:6465-6469
    66. Han Y, Khu D-M, Monteros MJ. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa(Medicago sativa L.). Mol Breeding, 2012,29:489-501
    67. Han ZG, Guo WZ, Song XL, Zhang TZ. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics,2004,272:308-327
    68. Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet,2006,112:430-439
    69. Hazelhurst S, Hide W, Liptak Z, Nogueiral R, Starfield R. An overview of the wed EST clustering tool. Bioinformatics,2008,24:1542-1546
    70. He YJ, Guo WZ, Shen XL, Zhang TZ. Molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton. Planta, 2008,228:473-483
    71. Hoffman SM, Yu JZ, Grum DS, Xiao J, Kohel RJ, Pepper AE. Identification of 700 new microsatellite loci from cotton (G. hirsutum L.). J Cotton Sci,2007,11:208-241
    72. Ince AG, Karaca M, Onus AN. CAPS-microsatellites: use of CAPS method to convert non-polymorphic microsatellites into useful markers. Mol Breeding,2010a,25: 491-499
    73. Jenkins JN, Jr JCM, Wu J, Hayes R, Stelly D. Genetic effects of nine Gossypium barbadense L. chromosome substitution lines in top crosses with five elite Upland cotton G.hirsutum L. cultivars. Euphytica,2012,187:161-173
    74. Jiang A, Wright RJ, El-Zik KM, Paterson AH. Polyploid formation created unique avenues for response to selection in gossypium. Proc Natl Acad Sci USA,1998,95: 4419-4424
    75. Jiang Y, Guo W, Zhu H, Ruan Y-L, Zhang T. Overexpression of GhSusAl increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J,2012, 10:301-312
    76. John ME, Crow LJ. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proc Natl Acad Sci USA,1992,89:5769-5773
    77. Ju M, Wang HT, Wang LK, Li FF, Wu SJ, Zhu HY, Zhang TZ, Guo WZ. Associated analysis between temporal and spatial expression of fiber development genes and fiber quality. ActaAgron Sin,2009,35:1217-1228
    78. Kim HJ, Triplett BA. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol,2001,127:1361-1366
    79. Koepke T, Schaeffer S, Krishnan V, Jiwan D, Harper A, Whiting M, Oraguzie N, Dhingra A. Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3'UTR sequencing. BMC Genomics,2012,13:18
    80. Koornneef M, Alonso-Blanco C, Bentsink L, Vries HB-D, Debeaujon I. The genetics of seed dormancy in Arabidopsis thaliana. Wallingford: Dormancy in plants,2000. 365-373
    81. Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A. Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics,2003,270:24-33
    82. Kumpatla SP, Manley MK, Home EC, Gupta M, Thompson SA. An improved enrichment procedure to develop multiple repeat classes of cotton microsatellite markers. Plant Mol Biol Rep,2004,22:85-86
    83. Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics,2007,175:2009-2017
    84. Kwok PY. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genom Hum G,2001,2:235-258
    85. Kwok PY, Chen X. Detection of single nucleotide polymorphisms. Curr Issues Mol Biol,2003,5:43-60
    86. Labate JA, Baldo AM. Tomato SNP discovery by EST mining and resequencing. Mol Breeding,2005,16:343-349
    87. Lai D, Li H, Fan S, Song M, Pang C, Wei H, Liu J, Wu D, Gong W, Yu S. Generation of ESTs for flowering gene discovery and SSR marker development in upland cotton. PLOS ONE,2011,6:e28676
    88. Lander ES. The new genomics:global views of biology. Science,1996,274:536-539
    89. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    90. Li G, Quiros CF. Sequence-related amplified polymorphisim (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461
    91. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet,2013a,45:43-50
    92. Li LZ, Lu KY, Chen ZM, Mu TM, Hu ZL, Li XQ. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics,2008,180: 1725-1742
    93. Li S, Yin T, Wang M, Tuskan GA. Characterization of microsatellites in the coding regions of the Populus genome. Mol Breeding,2011,27:59-66
    94. Li X, Yuan D, Wang H, Chen X, Wang B, Lin Z, Zhang X. Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP. Genome,2012,55:459-470
    95. Li X, Yuan D, Zhang J, Lin Z, Zhang X. Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLOS ONE,2013b,8:e54444
    96. Li XB, Fan XP, Wang XL, Cai L, Yang WC. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell,2005,17:859-875
    97. Li XR, Wang L, Ruan YL. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation. J Exp Bot,2010,61:287-295
    98. Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart JM. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breeding,2005,124:180-187
    99. Lin Z, Zhang Y, Zhang X, Guo X. A high-density integrative linkage map for Gossypium hirsutum. Euphytica,2009,166:35-45
    100. Lippman ZB, Zamir D. Heterosis:revisiting the magic. Trend Genet,2007,23:60-66
    101. Liu G, Zeng R, Zhu H, Zhang Z, Ding X, Zhao F, Li W, Zhang G. Dynamic expression of nine QTLs for tiller number detected with single segment substitution lines in rice. Theor Appl Genet,2009,118:443-453
    102. Liu SB, Zhou RG, Dong YC, Li P, Jia JZ. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet,2006,112:1360-1373
    103. Lu YZ, Curtiss J, Percy RG, Hughs SE, Yu SX, Zhang JF. DNA polymorphisms of genes involved in fiber development in a selected set of cultivated tetraploid cotton. Crop Sci,2009,49:1695-1704
    104. Luan M, Guo X, Zhang Y, Yao J, Chen W. QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of Upland cotton. Plant Breeding,2009,128:671-679
    105. Luo M, Xiao YH, Li X, Lu XB, Li DM, Hou L, Hu MY, Pei Y. GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J,2007,51:419-430
    106. Marzougui S, Sugimoto K, Yamanouchi U, Shimono M, Hoshino T, Hori K, Kobayashi M, Ishiyama K, Yano M. Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice. Theor Appl Genet,2012, 124:893-902
    107. Minic Z, Jouanin L. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Bioch,2006,44:435-449
    108. Mokry M, Feitsma H, Nijman IJ, Bruijn Ed, Zaag PJvd, Guryev V, Cuppen E. Accurate SNP and mutation detection by targeted custom microarray-based genomic enrichment of short-fragment sequencing libraries. Nucleic Acids Res,2010,38:el16
    109. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch JH, Guimaraes E, Tohme J, McCouch SR. Quantitative trait loci for yield and yield components in a Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet,2001,102:41-52
    110. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T et al. Initial sequencing and comparative analysis of the mouse genome. Nature,2002,420:520-562
    111.Munis MFH, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Bioph Res Co,2010,393:38-44
    112. Neff MM, Neff JD, Chory J, Pepper AE. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms:experimental applications in Arabidopsis thaliana genetics. Plant J,1998,14:387-392
    113. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet,2004,109:167-175
    114. Niu C, Lu Y, Yuan Y, Percy RG, Ulloa M, Zhang J. Mapping resistance gene analogs (RGAs) in cultivated tetraploid cotton using RGA-AFLP analysis. Euphytica,2011, 181:65-76
    115.Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J,2011,66:467-479
    116. Panaud O, Chen X, McCouch SR. Frequency of microsatellite sequences in rice (Oryza sativa L.). Genome,1995,38:1170-1176
    117. Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX. Comparative proteomics indicate that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics,2010,9: 2019-2033
    118. Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line (RIL) cotton population. Mol Genet Genomics,2005,274: 428-441
    119. Paterson AH, Brubaker C, Wendel JF. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep,1993,11:122-127
    120. Qureshi SN, Saha S, Kantety RV, Jenkins JN. EST-SSR: a new class of genetic markers in cotton. J Cotton Sci,2004,8:112-123
    121.Ramanujam S. An apetalous mutation in turnip (Brassica campestris L.). Nature, 1940,145:552-553
    122. Reddy OUK, Pepper AE, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci,2001,5:103-113
    123.Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH. A detailed RFLP map of cotton Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994,138:829-847
    124. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C-h, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics,2004,166:389-417
    125. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature,2001,409:928-933
    126. Salmaso M, Faes G, Segala C, Stefanini M, Salakhutdinov I, Zyprian E, Toepfer R, Grando MS, Velasco R. Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol Breeding,2004,14: 385-395
    127. Sawkins MC, Farmer AD, Hoisington D, Sullivan J, Tolopko A, Jiang Z, Ribaut JM. Comparative Map and Trait Viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments. Plant Mol Biol,2004,56:465-480
    128. Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res, 2003,13:1250-1257
    129. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX. Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell,2006,18: 651-664
    130. Shull GH. The composition of a field of maize. Ann Breeders' Assoc Rep,1908,4: 296-301
    131. Snelling WM, Casas E, Stone RT, Keele JW, Harhay GP, Bennett GL, Smith TP. Linkage mapping bovine EST-based SNP. BMC Genomics,2005,6:74
    132. Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid triticeae species carrying the A, B and D genomes. Theor Appl Genet,2001,103:346-352
    133. Stam P. Construction of integrated genetic linkage maps by means of a new computer package:Join Map. Plant J,1993,3:739-744
    134. Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA,2010, 107:5792-5797
    135. Taliercio E, Allen RD, Essenberg M, Klueva N, Nguyen H, Patil MA, Payton P, Millena ACM, Phillips AL, Pierce ML, Scheffler B, Turley R, Wang J, Zhang D, Scheffler J. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome,2006,49:306-319
    136. Tanksley SD, Bernatzky R, Lapitan NL, Prince JP. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA,1988,85: 6419-6423
    137. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA marker. Nucleic Acids Res,1989,17:6463-6471
    138. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR markers in barley (Hordeum vulgare L.). Theor Appl Genet,2003,106:411-422
    139. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    140. Trick M, Long Y, Meng J, Bancroft I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J,2009,7:334-346
    141. Van Berloo R. The development of software for the graphical representation and filtering of molecular marker data:graphical genotypes (GGT). J Hered,1999,90: 328-329
    142. Varshney RK. Gene-based marker systems in plants:high throughput approaches for discovery and genotyping.2nd ed. Berlin: Molecular techniques in crop improvement Jain,2010.119-142
    143. Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, Sorrells ME. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci,2005,168:195-202
    144. Vos P, Hogers R, Bleeker M, Reijans M, Lee Tvd, Homes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414
    145. Wang GL, Mackill DJ, Bonman M, McCouch SR, Champoux MC, Nelson RJ. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics,1994,136:1421-1434
    146. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet,2012a,44:1098-1103
    147. Wang X, Ren G, Li X, Tu J, Lin Z, Zhang X. Development and evaluation of intron and insertion-deletion markers for Gossypium barbadense. Plant Mol Biol Rep,2011, DOI:10.1007/s11105-011-0369-3
    148. Wang Z, Yu C, Liu X, Liu S, Yin C, Liu L, Lei J, Jiang L, Yang C, Chen L, Zhai H, Wan J. Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theor Appl Genet,2012b,124:1351-1364
    149. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res,1990,18:7213-7218
    150. Wendel JF. New World tetraploid cottons contain Old World cytoplasm. Proc Nati Acad Sci,1989,86:4132-4136
    151. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990, 18:6531-6535
    152. Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome,2006,49:476-484
    153. Xiao J, Wu K, Fang DD, Stelly DM, Yu J, Cantrell RG. New SSR markers for use in cotton (Gossypium spp.) improvement. J Cotton Sci,2009,13:75-157
    154. Xiong M, Jin L. Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods. Genetics,1999,64:629-640
    155. Xu ZY, Kohel RJ, Song GL, Cho J, Alabady M, Yu J, Koo P, Chu J, Yu SX, Wilkins TA, Zhu YX, Yu JZ. Generich islands for fiber development in the cotton genome. Genomics,2008,92:173-183
    156. Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W. PIP:a database of potential intron polymorphism markers. Bioinformatics,2007,23:2174-2177
    157. Yang YW, Bian SM, Yao Y, Liu JY. Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res,2008,7: 4623-4637
    158. Yu J, Yu S, Lu C, Wang W, Fan S, Song M, Lin Z, Zhang X, Zhang J. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol,2007,49:716-724
    159. Yu JZ, Kohel RJ, Fang DD, Cho J, Deynze AV, Ulloa M, Hoffman SM, Pepper AE, Stelly DM, Jenkins JN, Saha S, Kumpatla SP, Shah MR, Hugie WV, Percy RG. A High-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3,2012,2:43-58
    160. Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense. BMC Genomics,2011,12:15
    161. Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet,2011,122:1017-1028
    162. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review. Mol Ecol,2002,11:1-16
    163. Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol,2011,189:321-334
    164. Zhang L, Li S, Chen L, Yang G. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet,2012a,125:695-705
    165. Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M, Xiao Y, Luo X, Zhang J, Xiang B, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol,2011,29:453-458
    166. Zhang Y, Lin Z, Li W, Tu L, Nie Y, Zhang X. Studies of new EST-SSRs derived from Gossypium barbadense. Chinese Sci Bull,2007,52:2522-2531
    167. Zhang Y, Lin Z, Xia Q, Zhang M, Zhang X. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome,2008,51: 534-546
    168. Zhang Y, Yang J, Shan Z, Chen S, Qiao W, Zhu X, Xie Q, Zhu H, Zhang Z, Zeng R, Ding X, Zhang G. Substitution mapping of QTLs for blast resistance with SSSLs in rice(Oryza sativa L.). Euphytica,2012b,184:141-150
    169. Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia GX. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res,2010,9: 1076-1087
    170. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB. Single-nucleotide polymorphisms in soybean. Genetics,2003,163:1123-1134
    171.Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20: 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700