苹果Ty1-copia类逆转座子的特性及其在苹果属遗传多样性分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转座子是真核生物基因组内重要组成成分之一,可以从一个位点转移至另一个位点并能产生一系列变异的遗传因子。根据转座方式的不同,转座子通常被分为两类:一类是以RNA为中介进行转座的逆转座子,另一类是直接以DNA到DNA的方式进行的转座子。逆转座子是其中种类最多、分布最广的一类,其特殊的转座过程使其引起的突变为稳定突变,Ty1-copia类逆转座子是植物中研究的较为深入的一类。已有研究表明Ty1-copia类逆转座子对植物基因组大小、结构、基因功能以及基因和基因组进化等都有重要影响。
     苹果(Malus×domestica Borka.)是世界范围内广泛栽培的果树,但目前关于苹果基因组内Ty1-copia类逆转座子的研究却很少。本试验研究了苹果基因组内Ty1-copia类逆转座子在苹果属中存在的普遍性、多样性、甲基化水平、在基因组中的作用、转录活性、以及LTRs的特性,并利用基于LTRs的SSAP技术研究了苹果属部分野生种与栽培种的遗传多样性和芽变的分子机理。
     1、优化了苹果Ty1-copia类逆转座子逆转录酶保守片段的PCR反应体系:Mg~(2+)浓度为5mmol/L;dNTP浓度200μmol/L;引物浓度为0.5μmol/L;Taq聚合酶浓度为50μl反应体系中为1U。从苹果属12个野生种和苹果23个栽培品种中都扩增到了约270bp的目的产物,且所有试材的扩增结果一致,均无目的条带以外的产物扩增,说明Ty1-copia类逆转座子在苹果属植物中广泛存在,且存在历史可能较为久远;从扩增结果看不出该逆转座子的逆转录酶基因或附近区域在苹果基因组内有嵌套行为的发生。
     2、利用优化了的PCR方法从嘎拉苹果基因组克隆了45条Ty1-copia类逆转座子逆转录酶保守序列(登陆号分别为AY849580-AY849592和DQ105035-DQ105066),结果表明,同一基因组来源的这些序列存在高度的异质性。核甘酸序列长度变化范围为196bp-279bp,同源性为40%-99.2%,氨基酸序列同源性为31.3%-100%,其中有11条序列发生了移框突变,13条序列含有1-3个不等的终止密码子突变,22条序列在保守片段SLYGLKQ处发生了碱基替代突变,3条序列发生重组突变,至少有5条序列发生了碱基缺失突变,1条序列发生了插入突变。根据氨基酸序列的同源性将来自于同一祖先的45条序列对应的逆转座子分为10个家族,其中家族1-7中序列总数约占克隆总数的93%,存在有转座活性的逆转座子的可能性较大;家族8-10各只含有一条序列。比较苹果与其它物种中Tyl-copia类逆转座子逆转录酶基因保守片段同源性,发现苹果与挪威云杉、番茄和马铃薯中存在相似性很高的Tyl-copia类逆转座子。
     3、本试验以从嘎拉苹果基因组获得的Tyl-copia类逆转座子逆转录酶基因的总的保守序列为探针,以田间植株、组织培养植株和转基因植株的不同酶切产物为模板进行Southern杂交,结果表明苹果基因组内Tyl-copia类逆转座子拷贝数高;基因组内部分Tyl-copia类逆转座子被甲基化,这不仅在一定程度上维护了寄主基因的功能和基因组的稳定性,而且促进了寄主基因型多样性的发展与基因组进化;上述三种材料不同酶切产物的杂交信号及强度没有区别。
     4、研究了愈伤组织培养条件下苹果基因组内Tyl-copia类逆转座子的转录活性。在培养基MS+2,4-D 2mg/L+BA 0.2mg/L+NAA 0.5mg/L上诱导了1个月的愈伤组织呈现非正常生长状态、无再生迹象。以Tyl-copia类逆转座子逆转录酶区域的兼并引物进行RT-PCR,检测到了270bp的目的条带,而对照、继代组培苗和不含2,4-D诱导的愈伤组织及幼芽中均无该条带的扩增,说明2mg/L的2,4-D能诱导Tyl-copia类逆转座子转录活性的表达。将目的条带回收、克隆和测序后进行分析,所有序列都属于Tyl-copia类逆转座子逆转录酶的氨基酸保守序列。21条序列(登陆号分别为AY849591-AY849596和DQ105060-DQ105074)的变异性较大,核甘酸序列长度从196-277bp,同源性45.3%-99.6%;推断其氨基酸序列变异范围为36.8%-98.9%,其中有2条序列发生了移框突变,4条序列含有终止密码子突变,9条序列在保守片段SLYGLKQ处发生了碱基替代突变,2条序列发生重组突变,至少有1条序列发生了缺失突变,1条序列发生了插入突变。比较21条序列之间以及与其它物种中同类序列的相似性,发现21条序列被聚为五类,其中,第一类与甜菜、第二类与日本樱花和挪威云杉、第四类与拟南芥中含有相似性高的Tyl-copia类逆转座子。尤其是第二类的prt52与日本樱花中BAA02268.1的同源性高达91.6%。
     5、本文采用改进过的Pearce等方法获得了苹果Tyl-copia类逆转座子的RNase-LTR序列。所分离的20条序列的长度变化范围107-500bp;根据Tyl-copia类逆转座子的特征推断出的PPTs和IR中,有9条序列的PPTs全由嘌呤碱基构成,11条序列的PPTs中有1个嘧啶碱基的替代突变;19条序列的IR为“TG”,一条序列因重组而缺失;20条序列中有4条序列出现重组现象,重组率是20%。根据RNase氨基酸序列的同源性,20条序列可分为六类,每一类中各序列长度、组成、RNaseH的结构、PPTs的结构及起始位置等并不完全相同。在每一类中都有RNaseH核甘酸序列同源性达90%以上的序列存在,说明这些逆转座子的转座活性可能一直伴随着苹果基因组的进化历程,这增强了苹果基因组的可塑性。分析获得的Tyl-copia类逆转座子的LTRs,其中含有启动子的结构特征“CAAT box”和“TATA box”及受不同胁迫条件作用的调控元件。
     6、基于苹果Tyl-copia类逆转座子LTR-10的SSAP技术在苹果属8个野生种和28个栽培品种中表现出了丰富的遗传多态性,多态性片段比例为88.2%。所有供试材料被聚为三组,第一组全由国外引入的栽培种质构成;第二组由野生种质组成;槟子因其遗传背景复杂,被单独聚为第三组,第二、第三组种质都原产于中国。其中,具有相同或相近起源的种质多数能被聚在一起,说明基于Tyl-copia类逆转座子的分子标记在研究物种的遗传多样性上具有很大的发挥潜力。此外,在红星的芽变品种矮威尔中检测到了一条约180bp的特异带,表明该品种的芽变与逆转座子的插入突变可能有一定关系。
Transposons are genetic elements that can move, spread and generate mutations through insertions near or within genes, and that constitute an important fraction of eukaryote genomes. Transposable elements (TEs) are usually classified in two different groups according to their mode of transposition: retrotransposons transpose through an RNA intermediate, transposons transpose directly via a DNA intermediate. Retrotransposons are the most abundant and widespread class of transposable elements and generate stable mutations. The Ty1-copia-like retrotransposons are the best studied retrotransposons group in plant. Ty1-copia-like retrotransposons have been found associated with genome size, genome structure, gene function and the evolution of plant genes and genomes.Apple (Malus×domestica Borka.) is an important fruit tree planted widely in the world. Until now studies on Ty1-copia-like retrotransposons within apple genome are little. In this study, we carried out some works: existence of Ty1-copia-like retrotransposons in the genomes of different wild and cultural species of apple genus; heterogeneity and methylation level among retrotransposon; the roles of retrotransposon in genomic and chromosomal organization; transcription activity of retrotransposons in apple calli in vitro; the characterizatics of the long terminal regions (LTRs) of the retrotransposons and their contribution to genetic diversity and bud mutations using SSAP techniques based on LTRs.1 The factors that affected the PCR results were studied, using conserved reverse transcriptase region primers of Ty1-copia-like retrotransposons. The results showed that the optimized content of Mg~(2+) was 5mmol/L; dNTP was 200μmol/L; Primer was 0.5μmol/L; Taq polymerase was lU/50ul in the PCR system. Only one fragment of about 270bp was amplified within the genome of 12 wild species and 23 cultivars of Mallus Mill., which indicated that Ty1-copia-like retrotransposons were archaic components of apple genome. The nested insertion of near and within the reverse transcriptase gene of Ty1-copia-like retrotransposons wasn't found in apple genome.
     2 The reverse transcriptase conservative region of Ty1-copia-like retrotransposons were amplified from Gala apple using the optimized PCR system. The amplification product was isolated, cloned and sequenced. Forty-five clones containing reverse transcriptase(RT) conservative region were obtained (accession number: AY849580 -AY849592 and DQ105035-DQ105066). Cluster analysis of these sequences showed a great heterogeneity among RT domains isolated from the same genotype. The nucleotide acid sequences ranged from 196bp to 279bp. The homogeneity of nucleotide acid ranged from 40% to 99.2%, amino acid from 31.3% to 100%. Eleven of the sequences contained frameshifted translations, thirteen contained stop condons mutations of one, two or three, three contained recombination mutations, one contained insertion mutation, five contained deletion mutations, and twenty-two contained substitution mutations in the conserved SLYGLKQ of plant retrotransposons. According to the result of phylogenetic analysis of conceptually translated amino acid sequences, the forty-five clones were divided into ten families. The sequence number of family 1-7 was forty-two, accounting for 93% of the total number of clones. Transposable elements could exist in the seven families. The family 8-10 contained one clone respectively. Compared to the homogeneity of RT conserved region among apple and other species, the species presenting RT sequences most similar to apple RT clones were Norway spurce(gymnosperm), tomato and potato.
     3 Southern-blot hybridization using the total Gala RT PCR product as probes showed that multiple copies are integrated throughout the apple genome. The banding patterns among DNA extraction from control, tissue culture and genetic transformation showed no differences. Some Ty1-copia-like retrotransposons, presenting in apple, were found to be methylated, while no differences in methylation were observed among DNA extraction from the three materials. The methylation of retrotransposons maintained the stability of the host gene and genome, and promoted the genetic diversity of apple genotype and the evolution of apple genome.
     4 Transcriptionally activity of Ty1-copia-like retrotransposons were found in apple calli, propagated on MS solid medium supplemented with 2mg/L of 2,4-D, 0.2mg/L of BA and 0.5mg/L of NAA for a month. Calli, propagated on the medium, showed abnormal growth and lost the possibility of regeneration. RT-PCR was used for amplifying the conserved domain of reverse transcriptase gene using degenerated oligonucleotide primer. The 270bp of fragments were amplified from the mRNA of the above calli, while weren't detected from the mRNA of other materials. Therfore, 2mg/L of 2,4-D could induce the transcription activity of Ty1-copia-like retrotransposons within apple genome. The 270bp of frangments were isolated, cloned and sequenced. Twenty-one aimed sequences were obtained (accession number: AY849591-AY849596 and DQ105060-DQ105074). All 21 clones were different from each other, nucleotide acid ranged from 45.3% to 99.6%, and amino acid from 36.8% to 98.9%. Two of the sequences contained frameshifted translations, four contained stop condons mutations, three contained recombination mutations, one contained insertion mutation, one contained deletion mutations, and nine contained substitution mutations in the conserved SLYGLKQ of plant retrotransposons. A phylogenetic tree was constructed based on their predicted amino acids and twenty-one clones were divided into five families. The first, the second and the fourth family showed high homogeneity to the RT of beet, Prunus×yedoensis, Norway spruce, and A. thaliana respectively. The homogeneity of the clone prt52 in the second family and BAA02268.1 in Prunus×yedoensis was 91.6%.
     5 We adopted a modified version of Pearce et al.'s methodology for isolating RNase-LTR fragment of Ty1-copia-like retrotransposons in apple. The length of twenty sequences ranged from 107bp to 500bp isolated from the same genotype. Based on typical model of Ty1-copia-like retrotransposons, PPTs and IR were understood. PPTs of nine sequences consisted of purines, PPTs of eleven of continuous purines with a pyrimidine insertion. IR of nineteen sequences was the canonical "TG". One didn't contain 3'-LTRs owing to recombination mutation. Four of twenty sequences contained recombination mutations. Based on the homogeneity of amino acid sequence of RNaseH, twenty sequences were divided into six groups. Sequence length and combination, RNaseH structure and PPTs structure and starting location were different in the same group. In every group, there existed clones with more than 90% nucleotide identity, which showed that these retrotransposons could preserve transposable activity in the past. "CAAT box" and "TATA box", potential regulatory motifs from transcription, and conserved cis-acting regulator elements were discovered within LTRs in the great number of sequences using plantCARE sortware.
     6 The insertional polymorphism of LTR-10 element within the genome of 8 wild species and 28 cultivars of Mallus Mill. was studied by sequence-specific amplification polymorphism(SSAP). The result revealed high level of genetic diversity. The proportion of polymorphism products was 88.2%. Phylogenetic tree based on the SSAP data showed that SSAP marker was able to resolve different species lineages within apple genus. All species were divided into three groups. The first group consisted of foreign cultivar species. The second group included wild species. The third group only contained Malus asiatica var. rinid (Koidz.) Asami owing to complexity of genetic materials. The species in the second and third group origined from China. The 180bp amplification fragment was present in Wellspur Delicious, not in starking from which the former mutated, suggesting that retrotransposon activity might be involved in the bud mutation of Wellspur Delicious.
引文
1.别墅,王坤波,孔繁玲,周有耀,邹美娟,王春英.棉花基因组重复序列研究进展.分子植物育种,2003,1(3):373-379
    2.王石平,张启发.高等植物基因组中的反转录转座子.植物学报,1998,40(4):291~297
    3. Asins MJ, Monforte AJ, Mestre PF et al. Citrus and Prunus copia-like retrotransposons. Theor. Appl. Genet., 1999, 99:503-510
    4. Bajaj YSP. Somaclonal variation-origin, induction, cryopreservation, and implications in plant breeding, In: Bajaj YSP, (ed) Somaclonal variation in crop, Berlin: Springer Verlag, 1990:4-48
    5. Bancroft I, Dean C. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics, 1993a, 134:1221-1229
    6. Bancroft I, Jones JDH, and Dean C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell, 1993b, 5:631-638
    7. Beguiristain T, Grandbastien M, Puigdomenech P, Casacuberta JM. Three Tntl subfamilies show different stress different stress-associated pattern of expression in Tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology, 2001,127:212-221
    8. Bennetzen JL, Springer PS, Cresse AD, Hendrickx M. Specificity and regulation of the Mutator transponsable elements system in maize. Crit. Rev. Plant Sci., 1993,12:57-95
    9. Bennetzen, JL The contribution of retroelements to plant genome organization, function and evolution. Trends Microbiol., 1996,4:347-353
    10. Bevan M, Bancroft I, Bent E, Love K, Goodman H, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998,391:485-488
    11. Bingham PM, Zachar Z. Retrotransposons and FB elements from Drosophila melanogaster. In Mobile DNA, ed. by DE Berg, MM Howe, pp. Washington, DC:Am.Soc.Microbiol., 1989,485-502
    12. Boeke JD, Corces VG Transcription and reverse-transcription of retrotransposons. Annu. Rev. Microbiol., 1989,43:403-434
    13. Boeke JD. LINEs and Alus-the polyA connection. Nat. Genet., 1997,16:6-7
    14. Boyko E, Kalendar R, Korzun V, et al. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Molecular Biology, 2002,48:767-790
    15. Breto M P, Ruiz C, Pina J A. The diversification of citrus Clementina Hort.ex Tan., a vegetatively propagated crop species. Mol. Phylog. and Evol., 2001, 21(2):285-293
    16. Burbidge A, Grieve TM, Jackson A, et al. Characterization of the ABA deficient tomato mutant notablilis and its relationship with maize Vpl4. Plant J., 1999,17:427-431
    17. Bureau TE, White SE, Wessler SR. Transduction of a cellular genes by a plant retroelement. Cell, 1994,77:479-480
    18. Casacuberta JIM, Grandbastien MA. Characterisations of LTR sequences involved in the proplast specific expression of the tobacco Tntl retrotransposon. Nuclei. Acid. Res., 1993,21:2087-2093
    19. Casacuberta JM, Vernhettes S, Audeon C, Grandbastien MA. Quasispecies in retrotransposons: a role for sequence variability in Tntl evolution. Genetica, 1997,100:109-117
    20. Castle LA, Errampalli D, Atherton TL, et al. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet., 1993,24:504-514
    21. Chavanne F, Zhang DX, Liaud MF, Cerff R. Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol. Biol., 1998,37:363-375
    22. Chen M, Sanmiguel P, Bennetzen JL. Sequence organization and conservation in sh2/al-homologous regions of sorghum and rice. Genetics, 1998,148:435-443
    23. Chen W, Singh KB. The auxin, hygrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J., 1999,19:667-677
    24. Cost GJ, Boeke JD. Targeting of human retrotransposon intergration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry, 1998,37:18081-18093
    25. Devos KM, Brown JK, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome, 2002,12:1075-1079
    26. Doolittle R F, Feng D F, Johnson M S, McClure M A. Origins and evolutionary relationships of retroviruses. Q. Rev. Biol., 1989, 64:1-30
    27. Dorer D, Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell, 1994,77:993-1002
    28. Drouin G, Dover GA. A plant processed pseudogene. Nature, 1987,328:557-558
    29. Eickbush TH. Transposing without end: the non-LTR retrotransposable elements. New Biol., 1992,4:430-440
    30. Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature, 2002,420:316-320
    31. Flavell AJ, Knox MR, Pearce SR, Ellis THN. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J., 1998,16:643-650
    32. Flavell AJ, Pearce SR, Kumar A. Plant transposable elements and the genome. Curr. Opin. Genet. Dev., 1994,4:838-844
    33. Fukuchi A, Nakamura A, Hirano H, Hirochika H, Kikuchi F. Linkage analysis for a semi-dwarfing gene sd-J on chromosome1. Rice Genetic Newsletter, 1992,9:50-52
    34. Garber K, Bilic I, Pusch O, Tohme J, Baclmair A, et al. The Tpv family of retrotransposons of Phaseolus vulgaris structure, integration characteristics, and use for genotype classification. Plant Mol. Biol., 1999,39:797-807
    35. Gesteland RF, Atkin JF. The RNA world. New York: Cold Spring Harbor Press.
    36. Grandbastien MA, Spielmann A, Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature, 1989,337:376-380
    37. Grandbastien MA. Retroelements in high plants. Trends Genet., 1992,8(3):100-108
    38. Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, Casacuberta JM. The expression of the tobacco Tntl retrotransposon is linked to plant defense reponses. Genetica, 1997,100:241-252
    39. Grandbastien MA. Activation of plant retrotransposons under stress conditions. Trends Plant Sci., 1998,3:181-187
    40. Gribbon BM, Pearce SR, Kalendar R, Schulman A, Paulin L, et al. Phytogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol. Gen. Genet., 1999,261:883-891
    41. Grunstein M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell, 1998,93:325-328
    42. Hamilton A, Voinnet O, Chappell L, Baulcombe D. Two classes of short interfering RNA in RNA silencing. EMBO J., 2002,21:4671-4679
    43. Henikoff S, Comai L. Trans-sensing effects. Cell, 1998,93:329-332
    44. Hirano H Y, Mochizuki K, Umeda M, et al. Retrotransposon of a plant SINE into the wx locus during evolution of rice. J. Mol. Evol., 1994,38(2):132-137
    45. Hirochika H. Activation of tobacco retrotransposons during tissue-culture. EMBO J., 1993,12:2521-2528
    46. Hirochika H. Sugimoto K. Otsuki Y. et al. Retrotransposons of rice involved in mutation induced by tissue culture. Proc. Natil. Acad. Sci. USA, 1996a 93:7783-7788
    47. Hirochika h, Otsukawa M, Otsuki Y, Sugimoto K, Takeda S. Autonomous transposition of the tobacco. Tetrotransposon Ttol in rice. Plant Cell, 1996b,8:725-734
    48. Hirochika H. Retrotransposons of rice: their regulation and use for genome analysis. Plant. Mol. Biol., 1997,35:231-240
    49. Hirochika H, Okamoto H, Kakutani T. Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation. Plant Cell, 1999,12:357-369
    50. Hirochika H. Contribution of the Tos17 retrotransposon to rice function genomics. ScienceDirect, 2001,4(2):118-122
    51. Hu W, Das OP, Messing J. Zeon-1, a member of a new maize retrotransposon family. Mol. Gen. Genet., 1995,248:471-480
    52. Imsande J, Pittig J, Palmer RG, Wimmer G, Gietl C. Independent spontaneous mitochondrial malate dehydrogenase null mutants in soybean are the result of deletions. Journal of Heredity, 2001,92(4):333-338
    53. Jensen S, Gassama MP, Heidmann T. Taming of retrotransposable elements by homology-dependent gene silencing. Nat. Genet., 1999,21:209-212
    54. Jin YK, Bennetzen JL. Intergration and non-random mutation of a plasma membrane proton ATPase gene frangment within the BS1 retroelement of maize. Plant Cell, 1994,6:1177-1186
    55. Johns MA, Mottinger J, Freeling MA. A low copy number, copia-like transposon in maize. EMBO J., 1985,4:1093-1102
    56. Kalendar L, Grob T, Regina M, et al. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet., 1999,98(6):704-711
    57. Kalendar R, Tanskanen J, Immonen S, et al. Genome evolution of wild barely (Hordeum spontaneum) by bare-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Nati. Acad. Sci .USA., 2000,97(12):6603-6607
    58. Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposon alters the expression of adjacent genes in wheat. Nat. Genet., 2003,33:102-106
    59. Kazazian HH, Moran JV. The impact of L1 retrotransposon on the human genome. Nature Genetics, 1998,19(1):19-24
    60. Kenwad KD, Bai D, Ban MR, et al. Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco. Theoretical and Applied Genetics, 1999,98:387-395
    61. Kimura Y, Tosa Y, Shimada S, et al. OARE-1, a Ty1-copia retrotransposon in Oat activated by abiotic and biotic stresses. Plant Cell Physiol, 2001,42(12):1345-1354
    62. Knoop V, Unseld M, Marienfeld J, Brandt P, Sunkel S, Ullrich H, Brennicke A. Copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics, 1996,142(2):579-585
    63. Kobayashi S, Yamamoto NG, Hirochika H. Retrotransposon-induced mutation in grape skin color. Science, 2004,5(14):982
    64. Konieczny A, Voytas D F, Cumings M P et al. A super family of Arabidopsis thaliana retrotransposons. Genetics, 1991,127:801-809
    65. Kumar A. The adventures of the Ty1-copia group of retrotransposons in plants. Trends Genet., 1996,12:41-43
    66. Kumar A. The evolution of plant retroviruses: moving to green pasture. Trends Plant Sci., 1998, 3:371-374
    67. Kumar A, Bennetzen JL. Plant retrotransposons. Annu. Genet., 1999,33:479-532
    68. Kumar A, Pearce SR, McLean K, Harrison G, Heslop-Harrison JS, et al. The Tyl-copia group of retrotransposons in plants: genomic organization, evolution and use as molecular markers. Genetica, 1997,100:205-217
    69. Kumar A, Hirochika H. Applications of retrotransposons as genetic tools in plant biology. Trends in Plant Science, 2001,6(3):127-134
    70. Kunze R, Saedler H, Lonnig WE. Plant transposable elements. Adv. Bot. Res., 1997,27:331-470
    71. Kuwahara A, Kato A, Komeda Y. Isolation and characterization of copia-type retrotransposons in Arabidopsis thaliana. Gene, 2000,244:127-136
    72. Labrador M, Corces VG Transposable element-host interactions: regulation of insertion and excision. Annu. Rev. Genet., 1997,31:381-404
    73. Larkin PJ, Scowcroft WR, Somaclonal variation-a novel source of variability from cell culture for plant improvement. Theor. Appl. Genet., 1981,60:197—214
    74. Leeton PR, Smyth DR. An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol. Gen. Genet., 1993,237:97-104
    75. Lenoir A, Cournoyer B, Warwick S, et al. Evolution of SINE S1 retrotransposons in Cruciferae plant species. Mol. Biol. Evol., 1994,14(6):934-941
    76. Lenoir A, Lavie L, Prieto JL, Goubely C, Cote JC, Pelissier T, Deragon JM. The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Molecular Biology and Evolution, 2001, 18(12):2315-2322
    77. Leprince AS, Grandbastien MA, Meyer C. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion. Plant Mol. Biol., 2001,47:533-541
    78. Lim JK, Simmons JM. Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays, 1994,16:269-273
    79. Llaca V, Messing J. Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J., 1998,15:211-220
    80. Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell, 2002,14:1605-1619
    81. Loguercio LL, Wilkins TA. Structural analysis of a hmg-coA reductase pseudogene: insights into evolutionary processes affecting the hmgr gene family in allotetraploid cotton (Gossypium hirsutum L). Curr. Genet., 1998,34:241-249
    82. Lucas H, Feuerbach, F, Kunert K, Grandbastein M- A, et al. RNA -mediated transposition of the tabacco retrotransposon Tnt1 in Arabidopsis thaliana. EMBO J., 1995,14:2364-2373
    83. Manninen Q, Kalendar R, Robinson J,et al. Application of Bare-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barely. Mol. Gen. Genet., 2000,264:325-334
    84. Marillonnet S, Wessler SR. Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell, 1997(9):967-978
    85. Marillonnet S, Wessler SR. Exreme structural heterogeneity among the members of a maize retrotransposon family. Genetics, 1998,150:1245-1256
    86. Martin E, Nussaume I, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, and Marionpoll A. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolis, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thalianan, EMBO J,1996,15:2331-2342
    87. Matzke AJM, Matzke MA. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol., 1998,1:142-148
    88. McClintock B. The significance of reponses of the genome to challenge. Science, 1984,226:792-801
    89. Meyers BC, Tingey SV, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Research, 2001, 11(10):1660-1676
    90. Michael G, Francki. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome, 2001,44:266-274
    91. Mhiri C, De Wit PJGM, Grandbastein M A. Activation of the promoter of the Tntl retrotransposon in tomato after inoculation with the fungal pathogen Cladosporrium fulvum. Mol. Plant-Microbe Interact, 1999,12:592-603
    92. Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, et al. The promoter of the tobacco Tntl retrotransposons is induced by wounding and by abiotic stress. Plant Mol,Biol., 1997,33:257-266
    93. Moreau-Mhiri C, Morel JB, Audeon C, et al. Regulation of expression of the tobacco Tntl retrotransposon in heterologous species following pathogen-related stresses. Plant J., 1996,9:409-419
    94. Motohashi R, Mochizuiki K, Ohtsubo H, et al. Structures and distribution of p-SINE1 members in rice genomes. Theor. Appl. Genet., 1997,95:359-368
    95. Niggeweg R, Thurow C, Kegler C, Gatz. Tobacoo transcripion factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J. Biol. Chem., 2000,275:19897-19905
    96. Nishimura M, Hayashi N, Jwa NS, Lua GW, Hamer JE, Hasebe A. Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2000,13(8): 892-894
    97. Norna K, Ohtsubo E. Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol. Gen. Genet., 1999,261:71-79
    98. Okada N, Hamada M, Ogiwara I, Ohshima K. SINEs and LINEs share common 3' sequences: a review. Gene, 1997,205:229-243
    99. O'Neill RJW, O'Neill MJ.Graves MA. Undermethylation associated with retroelements activation and chpomosomes remodeling in an interspecific mammalaian hybrid. Nature, 1998,393:68-72
    100. Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P. A contiguous 60 kb genomic stretch from barely reveals molecular evidence for gene islands in a monocot genome. Nucleic. Acids. Res., 1998, 26:1056-1062
    101. Pardue ML, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse, KL. Drosophila telomeres: new views on chromosome evolution. Trends Genet., 1996,12:48-52
    102. Parinov S, Sundaresan V. Functional genomica in Arabidopsis, large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotechnol., 2000,11:157-161
    103. Paul PK, Kunert E, Hunter E, et al. Expression of the tobacco Tntl retrotransposon promoter in heterologous species. Plant Mol.Biol., 1994,26:393-402
    104. Pearce SR, Harrison G, Li D. Heslop-Harrison JS. Kumar A, Flavell AJ. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localization. Mol. Gen. Genet., 1996,250:305-315
    105. Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis THN and Flavell AJ. Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J., 1999, 19(6):711-717
    106. Pearce SR, Knox M, Ellis THN, et al. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol. Gen. Genet., 2000,263:898-907
    107. Pouteau S, Huttner E, Grandbastien MA, Caboche M. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J., 1991,10:1911-1918
    108. Pouteau S, Grandbastien MA, Boccara M. Microbial elicitors of plant defense response activate transcription of a retrotransposon. Plant J., 1994,5:535-542
    109. Presting G, Alysheva L, Uchs J, Chubert I. Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J., 1998,16(6):721-728
    110. Purugganan MD, Wessler SR. Molecular evolution of magellan, a maize Ty1/gypsy-like retrotransposon. Proc. Natl. Acad. Sci. USA., 1994,91:11674-11678
    111. Qin X, Zeevaart JAD. The cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. USA., 1999,96:15354-15361
    112. Ramsay L, Macaulay M, Cardie L, et al. Intimate association of microsatelite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J., 1999,17(8): 415-423
    113. Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S. Site-specific acculation of a line-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Molecular Biology, 2000,44(6):723-732
    114. Sandhu D, Gill KS. Gene-containing regions of wheat and the other grass genomes. Plant Physiology, 2002,128(3):803-811
    115. Sanmiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996,274:765-768
    116. Sanmiguel P, Bennetzen JL. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot., 1998,81:37-44
    117. Sanmiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The palaeontology of intergene retrotransposons of maize. Nat. Genet., 1998,20:43-45
    118. Sanmiguel P, Bennetzen JL. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann.Bot., 1998,81:37-44
    119. Sasaki T, Song J, Koga-Ban Y, et al. Towards cataloguing all rice genes: large scale sequencing of randomly chosen cDNAs from a callus cDNA library. Plant J., 1994,6:615-624
    120. Sato Y, Swntoku N, Miura Y, et al. Loss-of-function mutations in the rice homebox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J., 1999,18:992-1002
    121. Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, and Mccarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize, Science, 1997,276:1872-1874
    122. Sentry J. and Smyth D. An element with long terminal repeats and its invariant arrangements in the genome of Lillum henryi. Mol. Gen. Genet., 1989, 215:349-354
    123. Shepherd NS, Schwarz-Sommer Z, Blumberg vel Spalve J. gupta M, Wienand U, Saedler H. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements. Nature, 1984,307:185-187
    124. Shirasu K, Schulman A, Lahaye T and Shulze L. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res., 2000,10:908-915
    125. Simmen MW, Leitgeb S, Chariton J, et al. Nonmethylated transposable elements and methylated genes in chordate genome. Science, 1999,11:64-67
    126. Steinhauer DA, Holland JJ. Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J. Virol., 1986,57: 219-228
    127. Stergiou G, Katsiotis A, Hagidimitriou M, et al. Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor. Appl. Genet., 2002,104:926-933
    128. Stuurman J, Nijkamp H J, et al. Molecular insertion-site selectivity of Ds in tomato. Plant Cell, 1998,14(2): 215-223
    129. Sugimoto K, Takeda S, Hirochika H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Ttol and defense-related genes. Plant Cell, 2000,12:2511-2528
    130. Suoniemi A, Anamthawat-Jonsson K, Arna T, Schulman AH. Retrotransposon BARE-1 is a major ,dispersed component of the barely (Hordeum vulgare L.) geome. Plant Mol.Biol., 1996,30:1321-1329
    131. Suoniemi A, Narvant A, Schulman AH. The BARE-1 retrotransposon is transcribed in barely from an LTR promoter active in transient assays. Plant Mol. Biol., 1996,31:295-306
    132. Suoniemi A, Schmidt D, Schulman AH. BARE-1 insertion site preferences and evolutionay conservation of RNA and cDNA processing sites. Genetica, 1997,100:219-230
    133. Takeda S, Sugimoto K, Otsuki H, et al. Transcriptional activation of the tobacco retrotransposon Tot1 by wounding and methyl jasmonate. Plant Mol. Biol., 1998,36:365-376
    134. Takeda S, Sugimoto K, Otsuki H, et al. 13-bp cis-regulatory element in the LTR promotor of tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J., 1999,18:1-11
    135.Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya, M. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001,13:521-534
    136. Tatout C, Lavie L, Deragon JM. Similar target site selection occurs in integration of plant and mammalian retroposons. J. Mol.Evol., 1998,47:463-470
    137. Temin HM. Origin of retroviruses from cellular moveable genetic elements. Cell, 1980,21:599-600
    138. Thompson AJ, Jackson AC, Parker RA, et al. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol. Biol., 2000,42:833-845
    139. Tignon M, Watillon B, Kettmann R. Identification of copia-like retrotransposable element by apple. Acta Hort., 2001,546: 515-520
    140. Tikhonov AP, Sanmiguel PJ, Nakajima Y, Gorenstein MD, Bennetzen JL, Avramova Z. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. ProcNatl. Acad.Sci. USA., 1999,96:7409-7414.
    141. Unseld M, Marienfeld JR, Brandt P, Bernnicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides. Nat. Genet., 1997,15:57-61
    142. Vance V, Vaucheret H. RNA silencing in plants - defense and counterdefense. Science, 2002,292,2277-2280
    143. Varagona MJ, Purugganan M, Weaaler SR. Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell., 1992,4:811-820
    144. Vaucheret H, Fagard M. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet., 2001,17:29-35
    145. Vernhettes S, Grandbastien MA, Casacuberta JM. In vivo characterization of transcriptional regulatory sequences involved in the defence-associated expression of the tobacco retrotransposon Tnt1. Plant Mol. Biol, 1997,35:673-679
    146. Vernhettes S, Grandbastien MA, Casacuberta JM. The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. Mol. Biol. Evol., 1998,15:827-836
    147. Vershinin AV, Ellis THN. Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Molecular and General Genetics, 1999,262 (45): 703-713
    148. Vicient CM, Suoniemi A, Anamththawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell., 1999,11:1769-1784
    149. Vicient CM, Schulman AH. Copia-like retrotransposons in the rice genome: few and assorted. Genome lett., 2002,1:35-47
    150. Voytas DF, Michael PC, Andrezej K, et al. Copia-like retrotransposon are ubiquitous among plants. Proc. Natl. Acad. Sci. USA., 1992,89:7124-7128
    151.Wessler SR, Bureau TE, White SE. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev., 1995,5:814-821
    152. White SE, Habera LF, Wessler SR. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA., 1994, 91.11792-11796
    153. Williamson VM. Transposable elements in yeast. Int. Rev. Cytol., 1983,83:1-25
    154. Witte CP, Le, QH, Bureau T, Kumar A. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc. Natl. Acad. Sci. USA., 2001(98):13778-13783
    155. Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J., 1990,9:3353-3362
    156. Yanez M, Verdugo I, Rodriguez M, et al. High heterogeneous families of Ty1/copia retrotransposons in the Lycopersicon chilense genome. Gene, 1998, 222:223-228
    157. Yoshioka Y, Matsumoto S, Kojima S, Ohsima K, Okada N, Machida Y. Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc. Natl. Acad. Sci. USA., 1993,90:6562-6566
    158. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet., 1997,13:335-340
    159. Yu GX, Wise RP. An anchored AFLP-and retrotransposon-based map of diploid Avena. Genome, 2000,43(5): 736-749
    1. Kumar A, Pearce SR, McLean K, Harrison G, Heslop-Harrison JS, Waugh R, and Flavell AJ. The Ty1-copia group of retrotransposons in plants: genomic organization, evolution, and use as molecular markers. Gennetica, 1997,100:205-217
    2. Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature, 1980,284:601-603
    3. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hareley R, Kumar A. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res., 1992,20:3639-3644
    4. Grandbastien MA. Retroelements in high plants. Trends Genet.,1992,8(3):100-108
    5. Kumar A, Pearce SR, Mclean K, Harrison G, Heslop-Harrison JS, Waugh R and Flavell AJ. The Ty1-copia group retrotransposons in plants: genomic organization, evolution and use as molecular markers. Genetica, 1997,100:205-217
    6. Murry MG, Thompsom WF. Rapid isolation of high weight DNA. Nucleic. Acids. Res., 1980,8(19):4235-4331
    7. Orgel LE, Crick FHC. Selfish DNA: the ultimate parasite. Nature, 1980,284:604-607
    8. Sanmiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996,274:765-768
    9. Sant VJ, Sainani MN, Sami-Subbu R, Ranjekar PK and Gupta VS. Ty1-copia retrotransposon-like element in chickpea genome: their identification, distribution and use for diversity analysis. Gene, 2000,257:157-166
    1. Bureau TE, White SE, Wessler SR. Transduction of a cellular genes by a plant retroelement. Cell, 1994, 77:479-480
    2. Flavell AJ, Dunbar E,Anderson R,Pearce SR,Hareley R,Kumar A. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res., 1992b,20:3639-3644
    3. Grandbastien M. A., Audeon C., Casacuberta J. M., Grappin P., Lacas H., Moreau C. and Poutea S.. Functional analysis of the tobacco Tnt1 retrotransposon. Genetica, 1994,93:181-189
    4. Gojobori T, Yokoyama S. Rates of evolution of the retroviral oncogene of moloney murine sarco ma virus and its cellular homologues. Proc. Natl. Acad. Sci. USA., 1985, 82:4198-4201
    5. Hirochika H. and Hirochika R.. Ty1-copia group retrotransposons as ubiquitous component of plant genomes. Jpn. J. Genet., 1993,68:35-46
    6. Hirochika H., Otsukawa M., Otsuki Y., Sugimoto K., Takeda S.. Autonomous transposition of the tobacco retrotransposon Ttol in rice. Plant Cell, 1996,8,725-734
    7. Hirochika H. Sugimoto K. Otsuki Y. et al. Retrotransposons of rice involved in mutation induced by tissue culture. Proc. Natil. Acad. Sci. USA., 1996b 93:7783~7788
    8. Hu W, Das OP, Messing J. Zeon-1, a member of a new maize retrotransposon family. Mol. Gen. Genet., 1995,248:471-480
    9. Konieczny A, Voytas D F, Cumings M P et al. A super family of Arabidopsis thaliana retrotransposons. Genetics, 1991,127:801-809
    10. Kumar A. The evolution of plant retroviruses: moving to green pasture. Trends Plant Sci., 1998, 3:371-374
    11. Kumar A., and Bennetzen J. L.. Plant retrotransposons, Annu. Rev. Genet., 1999,33,479-532
    12. Marillonnet S, Wessler SR. Extreme structural heterogeneity among the member of a maize retrotransposon family. Genetics, 1998,150:1245-1256
    13. McCarthy E M, Liu J, Gao L, et al. Long terminal repeat retrotransposons of Oryza sativa. Genome Biol.,2002,3:1-11
    14. Pearce S.R., Knox M., Ellis T.H.N., Flavell A.J., Kumar A.. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol. Gen. Genet., 2000 263:898-907
    15. Sanmiguel P,Tikhonov A,Jin YK,Motchoulskaia N,Zakharov D, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996,274:765-768
    16. Sean A, Rogers and K. Peter Pauls. Ty1-copia-like retrotransposons of tomato (Lycopersicon esculentum Mill). Genome, 2000,43:887-894
    17. Shepherd NS, Schwarz-Sommer Z, Blumberg vel Spalve J, Gupta M, Wienand U, Saedler H. Similarity of the Cinl repetitive family of Zea mays to eukarotic transposable elements. Nature, 1984,307:185-187
    18. Steinhauer D A, Holland J J. Direct method for quantitation of extreme polyrnerase error frequencies at selected single base sites in viral RNA. J. Virol., 1986,57: 219-228
    19. Stergiou G, Katsiotis A, Hagidi(?)itriou M, Loukas M.. Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor. Appl. Genet., 2002,104:926-933
    20. Tikhonov A. P., San Miguel P. J., Nakajima Y, Gorenstein N. D., Bennetzen J. L., and Avramova Z.. Colinearity and its exceptions in orthologous adh regions of maize and sorghum, Proc. Natl. Acad. Sci. USA., 1999,96,7409-7414
    21. Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell, 1999,11:1769-1784.
    22. Voytas D F,Michael P C, Andrzej K et al., Copia-like retrotransposon are ubiquitous among plants. Proc. Natl. Acad. Sci. USA., 1992, 89: 7124-7128.
    1.叶霞,黄晓德,陶建敏,章镇.农杆菌介导Ferritin基因转化苹果的研究.果树学报,2005,22(4):387-389
    2. Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 1991,9:208-218
    3. Asins M.J., Monforte A.J., Mestre P.F., Carbonell E.A.. Citrus and Prunus copia-like retrotransposons. Theor. Appl. Genet., 1999,99:503-510
    4. Barakat A, Matassi G, Bernardi G. Distribution of genes in the genome of Arabidopsis thaliana and its implications for the genome organization of plants. Proc. Natl. Acad. Sci. USA., 1998, 95: 10044-10049.
    5. Garber K, Bilic I, Pusch O, Tohme J, Baclmair A, et al. The Tpv family of retrotransposons of Phaseolus vulgaris structure, integration characteristics, and use for genotype classification. Plant Mol. Biol., 1999,39:797-807
    6. Hirochika H. Sugimoto K. Otsuki Y. et al. Retrotransposons of rice involved in mutation induced by tissue culture. Proc. Natil. Acad. Sci. USA., 1996 93: 7783~7788
    7. Martienssen RA. Epigenetic phenomena: paramutation and gene silencing in plants. Curr. Biol., 1996,6:810-813
    8. Matzake AJM, Matzake MA. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol., 1998,1:142-148
    9. Sanmiguel P,Tikhonov A,Jin YK, Motchoulskaia N,Zakharov D, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996,274:765-768
    10. Smyth DR. Dispersed repeats in plant genomes. Chromosoma,1991, 100: 355-359.
    11. Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M.. Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor. Appl. Genet., 2002,104:926-933
    12. Tikhonov AP, Sanmiguel PJ,Nakajima Y, Gorenstein MD,Bennetzen JL, Avramova Z. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc.Natl. Acad.Sci. USA., 1999,96:7409-14.
    13. Yoder JA,Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 1997,13:335-340
    1. Beguiristain T, Grandbastien M, Puigdomenech P and Casacuberta JM. Three Tnt1 subfamilies show different stress different stress-associated pattern of expression in Tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology, 2001,127:212-221
    2. Bureau TE, White SE, Wessler SR.. Transduction of a cellular genes by a plant retroelement. Cell, 1994,77:479-480
    3. Chen W, Singh KB. The auxin, hygrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J., 1999,19:667-677
    4. Grandbastien M-A. Activation of plant retrotransposons under stress conditions. Trends Plant Sci., 1998,3:181-187
    5. Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO J., 1993, 12: 2521-2528
    6. Hirochika H, Sugimoto K, Otsuki Y, et al. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA., 1996, 93: 7783~7788
    7. Hu W, Das OP, Messing J.. Zeon-1, a member of a new maize retrotransposon family. Mol. Gen. Genet., 1995,248:471-480
    8. Jin Y-K, Bennetzen JL. Structure and coding properties of BS1, a maize retrovirus-like transposon. Proc. Natl. Acad. Sci. USA., 1989,86:6235-6239
    9. Jin Y-K, Bennetzen JL.. Integration and non-random mutation of a plasma membrane proton ATPase gene fragment within the BS1 retroelement of maize. Plant Cell, 1994,6:1177-1186
    10. Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposon alters the expression of adjacent genes in wheat. Nat. Genet., 2003,33:102-106
    11. Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H and Mayama S. OARE-1, a Ty1-copia retrotransposon in Oat activated by abiotic and biotic stresses. Plant Cell Physiol., 2001,42(12):1345-1354
    12. Kumar A, Bennetzen JL. Plant retrotransposons. Annu. Genet., 1999,33:479-532
    13. Kuwahara A, Kato A, Komeda Y. Isolation and characterization of copia-type retrotransposons in Arabidopsis thaliana. Gene, 2000,244:127-136
    14. Labrador M, Cores V G Transposable element-host interactions: regulation of insertion excision. Annu. Rev. Genet., 1997,31:381-404
    15. Marillonnet S, Wessler SR. Extreme structural heterogeneity among the member of a maize retrotransposon family. Genetics, 1998,150:1245-1256
    16. Niggeweg R, Thurow C, Kegler C, Gatz. Tobacoo transcripion factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J. Biol. Chem., 2000,275:19897-19905
    17. Steinhauer D A, Holland J J. Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J. Virol., 1986,57: 219-228
    18. Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M.. Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor. Appl. Genet., 2002,104:926-933
    19. Takeda S, Sugimoto K, Otsuki H, et al. Transcriptional activation of the tobacco retrotransposon Tot1 by wounding and methyl jasmonate. Plant Mol. Biol., 1998,36:365-376
    20. Takeda S, Sugimoto K, Otsuki H, et al. A 13-bp cis-regulatory element in the LTR promotor of tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J., 1999,18:383-393
    21. Tikhonov AP, Sanmiguel PJ, Nakajima Y, Gorenstein ND, Bennetzen JL, Avramova Z. Colinerarity and its exceptions in orthologus adh region of maize and sorghun. Proc. Natl. Acad. Sci. USA., 1999,96:7409-7414
    22. Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, et al. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant cell, 1999,11:1769-1784
    23. Voytas D F, Michael P C, Andrzej K et al., Copia-like retrotransposon are ubiquitous among plants. Proc. Natl. Acad. Sci. USA., 1992, 89: 7124-7128.
    24. White SE, Habers L, Wesseler SR. Retrotransposons in the flanking regions of normal plant genes. A role for copia-like elements in the evolution of gene structure and expression. Proc Natl. Acad. Sci. USA., 1994, 91:11792-11796
    25. Xiong Y, Eickbush TH. Origin an evolution of retroelements based upon their reverse transcriptase sequences. EMBO J., 1990, 9: 3353-3362.
    1. Araujo PJ, Casacuberta JM, Costa AP, Hashimoto RY, Grandbastien MA, Van Sluys MA. Retrolycl subfamilies defined by different U3 LTR regulatory regions in the Lycopersicon genus. Mol. Gen. Genet., 2001
    2. Beguiristain T, Grandbastien MA, Puigdomenech P and Casacuberta JM. Three Tnt1 subfamilies show different stress different stress-associated pattern of expression in Tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology, 2001,127:212-221
    3. Boeke JD, Corces VG Transcription and reverse-transcription of retrotransposons. Annu. Rev. Microbiol., 1989,43:403-434
    4. Costa AP, Scortecci KC, Hashimoto RY, Araujo PG, Grandbastien MA, Van Sluys MA. Retrolycl-1, a member of the Tntl retrotransposon super-family in the Lycopersicon peruvianum genome. Genetica, 1999,107:65-72
    5. Grandbastien M.A. Retroelements in higher plants. Trends Genet., 1992 8:103-108
    6. Grandbastien MA. Activation of plant retrotransposons under stress conditions. Trends Plant Sci., 1998,3:181-187
    7. Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Versinin AV, Alkhimova EG, Kamm A, Doudrick RL, Schwarzacher T, Katsiotis A, Kubis S, Kumar A, Pearce SR, Flavell AJ, Harrison GE The chromosomal distributions of Ty1-copia group retrotransposble elements in higher plants and their implications for genome evolution. Genetica, 1997,100:197-204
    8. Hirochika H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol., 1997, 35:231-240
    9. Hirochika H. Sugimoto K. Otsuki Y. et al. Retrotransposons of rice involved in mutation induced by tissue culture. Proc. Natil. Acad. Sci. USA, 1996b, 93:7783-7788
    10. Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H and Mayama S. OARE-1, a Tyl-copia retrotransposon in Oat activated by abiotic and biotic stresses. Plant Cell Physiol., 2001,42(12):1345-1354
    11. Kumar A. The adventures of Ty1-copia group of retrotransposons in plants. Trends. Genet., 1996,12:41-43
    12. Kunze R., Saedler H. and Lonnig W. Plant transposable elements. Adv. Bot. Res., 1997, 27:331-470
    13. Liu B, Wendel JF. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome, 2000,43:874-880
    14. Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis THN and Flavell AJ. Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J., 1999, 19(6):711-717
    15. Sato Y, Sentoku N, Miura Y, et al. Loss-of-function mutations in the rich homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J., 1999,18,(4):992-1002
    16. Sentry J. and Smyth D. An element with long terminal repeats and its invariant arrangements in the genome of Lillum henryi. Mol. Gen. Genet., 1989, 215:349-354
    17. Shirasu K, Schulman A, Lahaye T and Shulze L. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res., 2000,10:908-915
    18. Takeda S, Sugimoto K, Otsuki H, et al. A 13-bp cis-regulatory element in the LTR promotor of tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J., 1999,18:383-393
    19. Varmus H. Form and function of retroviral provirus. Science (Wash., D. C), 1982,216:812-820
    20. Varmus H. Retroviruses. In Mobil genetic elements. Edited by A. Shapiro, Academic Press, Orlando, Fla. pp., 1983,411-503
    1.肖尊安,成明昊,李晓林.苹果属植物两种同工酶的模糊聚类分析.西南农业大学学报,1989,11(5):485-490
    2.王涛,祝军,李晨光等.苹果砧木亲缘关系AFLP分析.中国农业科学,2001,34(3):256-259
    3.陆秋农,贾定贤.中国果树志.苹果卷.中国农业科技出版社,中国林业出版社,1999
    4. Breto M P, Ruiz C, Pina J A. The diversification of citrus clementina Hort.ex Tan., a vegetatively propagated crop species. Mol. Phylog. Evol., 2001,21(2):285-293
    5. Dunemann F,Kahnam R and Schmidt H. Genetic relationships in Malus evaluated by RAPD "fingerprinting" of cultivars and wild species. Plant Breeding, 1994,113:150-159
    6. Gianfranceschi L, Seglias N, Tarchini R, et al. Simple sequence repeats for the genetic analysis of apple. Theoretical and Applied Genetics, 1998,96:1069-1076
    7. Kalendar R, Tanskanen J, Immonen S, et al. Genome evolution of wild barely (Hordeum spontaneum) by Bare-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Nati. Acad. Sci. USA., 2000,97(12):6603-6607
    8. Kenward KD, Bai D, Ban M R, Brandle J E. Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco. Theoretical and Applied Genetics, 1999,98(3-4): 387-395
    9. Kobayashi S, Yamamoto NG, Hirochika H. Retrotransposon-induced mutation in grape skin color. Science, 2004,5(14):982
    10. Manninen Q, Kalendar R, Robinson J, Schyknab A H. Application of Bare-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barely. Mol. Gen. Genet., 2000, 264: 325-334
    11. Pearce SR, Knox M, Ellis T H N, Flavell A J, Kumar A. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol. Gen. Genet., 2000, 263: 898-907
    12. Tignon M, Watillon B, Kettmann R. Identification of copia-like retrotransposable element by apple. Acta Hort., 2001,546: 515-520
    13. Waugh R, McLean K, Flavell A J, Pearce S R, Kumar A, Thomas B B T, Powell W. Genetic distribution of BARE-1-tike retrotransposable elements in the barely genome revealed by sequence-specific amplification polymorphisms(S-SAP). Mol. Gen. Genet., 1997,253: 687-694
    1. Beguiristain T, Grandbastien M, Puigdomenech P, Casacuberta JM. Three Tnt1 subfamilies show different stress different stress-associated pattern of expression in Tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology, 2001,127:212-221
    2. Breto M P, Ruiz C, Pina J A. The diversification of citrus Clementina Hoit.ex Tan. , a vegetatively propagated crop species. Mol. Phylog. and Evol., 2001, 21(2):285-293
    3. Casacuberta JIM, Grandbastien MA. Characterisations of LTR sequences involved in the proplast specific expression of the tobacco Tntl retrotransposon. Nuclei. Acid. Res., 1993,21:2087-2093
    4. Chen M, Sanmiguel P, Bennetzen JL. Sequence organization and conservation in sh2/al-homologous regions of sorghum and rice. Genetics, 1998,148:435-443
    5. Grandbastien MA, Spielmann A, Caboche M. Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature, 1989,337:376-380
    6. Henikoff S, Comai L. Trans-sensing effects. Cell, 1998,93:329-332
    7. Hirochika H. Activation of tobacco retrotransposons during tissue-culture. EMBO J., 1993,12:2521-2528
    8. Hirochika H. Sugimoto K. Otsuki Y. et al. Retrotransposons of rice involved in mutation induced by tissue culture. Proc. Natil. Acad. Sci. USA, 1996a 93:7783-7788
    9. Hirochika H. Retrotransposons of rice: their regulation and use for genome analysis. Plant. Mol. Biol., 1997,35:231-240
    10. Hirochika H, Okamoto H, Kakutani T. Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation. Plant Cell, 1999,12:357-369
    11. Jensen S, Gassama MP, Heidmann T. Taming of retrotransposable elements by homology-dependent gene silencing. Nat. Genet., 1999,21:209-212
    12. Johns MA, Mottinger J, Freeling MA. Alow copy number, copia-like transposon in maize. EMBO J., 1985,4:1093-1102
    13. Kalendar R, Tanskanen J, Immonen S, et al. Genome evolution of wild barely (Hordeum spontaneum) by bare-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Nati. Acad. Sci .USA, 2000,97(12):6603-6607
    14. Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposon alters the expression of adjacent genes in wheat. Nat. Genet., 2003,33:102-106
    15. Kimura Y, Tosa Y, Shimada S, et al. OARE-1, a Ty1-copia retrotransposon in Oat activated by abiotic and biotic stresses. Plant Cell Physiol, 2001,42(12):1345-1354
    16. Kobayashi S, Yamamoto NG, Hirochika H. Retrotransposon-induced mutation in grape skin color. Science, 2004, 5(14):982
    17. Kumar A, Pearce SR, McLean K, Harrison G, Heslop-Harrison JS, et al. The Ty1-copia group of retrotransposons in plants: genomic organization, evolution and use as molecular markers. Genetica, 1997,100:205-217
    18. Kunze R, Saedler H, Lonnig WE. Plant transposable elements. Adv. Bot. Res., 1997,27:331-470
    19. Lim JK, Simmons JM. Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays, 1994,16:269-273
    20. McClintock B. The significance of reponses of the genome to challenge. Science, 1984,226:792-801
    21. Niggeweg R, Thurow C, Kegler C, Gatz. Tobacoo transcripion factor TGA2.2 is the main component of as-1 -binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J. Biol. Chem., 2000,275:19897-19905
    22. Pearce SR, Knox M, Ellis THN, et al. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol. Gen. Genet., 2000,263:898-907
    23. Pouteau S, Huttner E, Grandbastien MA, Caboche M. Specific expression of the tobacco Tntl retrotransposon in protoplasts. EMBO J., 1991,10:1911-1918
    24. Pouteau S, Grandbastien MA, Boccara M. Microbial elicitors of plant defense response activate transcription of a retrotransposon. Plant J., 1994,5:535-542
    25. Shepherd NS, Schwarz-Sommer Z, Blumberg vel Spalve J. gupta M, Wienand U, Saedler H. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements. Nature, 1984,307:185-187
    26. Sugimoto K, Takeda S, Hirochika H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes. Plant Cell, 2000,12:2511-2528
    27. Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya, M. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001,13:521-534
    28. Takeda S, Sugimoto K, Otsuki H, et al. Transcriptional activation of the tobacco retrotransposon Tot1 by wounding and methyl jasmonate. Plant Mol. Biol., 1998,36:365-376
    29. Takeda S, Sugimoto K, Otsuki H, et al. 13-bp cis-regulatory element in the LTR promotor of tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J., 1999,18:1-11
    30. Vernhettes S, Grandbastien MA, Casacuberta JM. In vivo characterization of transcriptional regulatory sequences involved in the defence-associated expression of the tobacco retrotransposon Tnt1. Plant Mol. Biol, 1997,35:673-679
    31. Vershinin AV, Ellis THN. Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Molecular and General Genetics, 1999,262 (45): 703-713
    32. Vicient CM, Suoniemi A, Anamththawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell. 1999,11:1769-1784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700