甜瓜属人工异源双二倍体Cucumis hytivus早期世代遗传与表观遗传变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多倍化是高等植物进化过程的重要阶段,是植物进化的主要动力之一。研究表明,异源多倍体在形成的早期会出现广泛的基因组遗传和表观遗传变化,这些变化直接关系到物种的形成和稳定。然而,现存的天然多倍体大多形成于成千上万年前,很难确定进化中种种不稳定现象发生的具体过程和机制。虽然分子标记及比较基因组学的发展为认识杂交及多倍化进程提供了重要依据,但由于分子进化机制的复杂性,这方面的相关机理知之甚少。
     人工合成的异源多倍体则为这方面的研究提供了良好的模式系统。通过这种模式系统,可以精确比较亲本二倍体种与人工异源多倍体早期世代间的基因组变化特点,从而为丰富多倍体物种进化理论提供重要的实证。本研究基于实验室已合成的甜瓜属远缘杂种F_1及人工合成的异源双二倍体及其不同自交世代,比较研究了杂种F_1及异源双二倍体的减数分裂染色体行为特征、基因组位点变化和甲基化模式变化特点,探索了远缘杂交与多倍化引发远缘杂种F_1和异源双二倍体基因组发生遗传和表观遗传变化的机制。具体如下:
     1.远缘杂种F_1及异源双二倍体减数分裂染色体行为与花粉育性研究
     研究了野生种C.hystrix(2n=2X=24)与栽培黄瓜C.sativus L.(2n=2X=14)远缘杂种F_1(2n=2X=19)、双二倍体及双二倍体(2n=4X=38)自交1~4代的减数分裂染色体行为特征与花粉育性。结果表明:减数分裂中期Ⅰ,杂种F_1花粉母细胞(pollen mother cell,PMC)染色体主要以单价体存在,染色体构型为:16.75Ⅰ+0.5Ⅱ+0.25Ⅲ+0.13Ⅳ;双二倍体染色体构型以二价体为主,伴随着自交,平均每个PMC所含二价体比例逐渐增加,非二价体配对比例减少。四分体时期,F_1不能形成正常的四分孢子,主要以多分孢子形态存在;双二倍体以四分孢子为主,并随着自交世代的增高,其比例增加。花粉育性观察发现,随着自交世代的增高,双二倍体花粉育性呈增加趋势。以上结果暗示双二倍体在遗传上逐渐趋于稳定。双二倍体PMCs在后期Ⅰ、Ⅱ普遍含有落后染色体、染色体桥及染色体不均等分离等异常现象,这可能是导致其花粉育性低于期望值的原因。
     2.甜瓜属远缘杂种F_1及人工异源双二倍体早期基因组序列变化研究
     利用12对Eco RI/Mse I选择性引物,对甜瓜属人工异源双二倍体C.hytivus及其二倍体父母本进行AFLP分析,结果发现多倍体基因组在形成早期发生了广泛的序列变化。基因组序列变化始于F_1代,变化最剧烈的时期发生在S_0到S_1代。但在S_1到S_2代基因组序列变化比率基本接近,暗示了伴随着异源双二倍体的自交过程,早期基因组表现出稳定的趋势,说明基因组序列变化是一个快速的事件。基因组序列变化主要表现为部分亲本片段丢失、新片段产生以及后代对亲本某些位点的跳跃式继承。对变化的序列进行深入研究发现,变化的序列主要是重复序列。实验还观察到少部分双亲差异性条带呈现出偏父性遗传的特点。
     不同分类群的异源多倍体在二倍化过程中,正反交序列丢失往往表现出不同特征,暗示了在不同物种中核质互作在多倍体进化过程的作用不同。为了研究细胞质背景对基因组序列丢失的影响,利用23对Eco RI-NN/Mse I-NNN选择性引物对Cucumishystrix与栽培黄瓜C.sativus的正反交F_1、异源双二倍体及亲本DNA进行AFLP分析。结果表明:杂种F_1与异源双二倍体基因组发生了广泛的序列丢失。正交后代与反交后代在丢失亲本基因组序列的频率上差异不显著,并且在序列丢失时间(均始于F_1代)及丢失类型上也表现出相同的特点,表明核质互作并不是影响序列丢失的主要因素。实验还发现,不论正交还是反交,后代丢失普通黄瓜基因组序列数大于丢失野生种基因组序列数,表明甜瓜属多倍化早期阶段易于丢失染色体数比较少的亲本基因组序列。
     3.甜瓜属远缘杂交及多倍化诱发基因组DNA胞嘧啶甲基化变化特征研究
     为了研究DNA甲基化在甜瓜属人工异源多倍体形成过程中的作用,利用methylation-sensitive amplification polymorphism(MSAP)技术,对甜瓜属远缘杂种F_1、人工异源双二倍体及亲本基因组DNA进行研究。结果发现,远缘杂种F_1及人工异源双二倍体基因组发生了胞嘧啶甲基化模式变化,表明远缘杂交及多倍化均可诱发基因组胞嘧啶甲基化发生变化。甲基化变化根据变化模式的不同可以分为五种类型,主要是脱甲基化类型(甲基化水平降低)和过甲基化类型(甲基化水平升高),并且发生过甲基化变化的位点数是发生脱甲基化变化的2-4倍,说明甲基化变化主要表现为亲本基因组的部分位点在后代中发生过甲基化。研究还发现,与父本基因组相比,母本基因组在远缘杂交后代中易发生过甲基化变化,暗示了DNA甲基化在识别和保护自身DNA中起重要作用。对异源双二倍体不同自交世代甲基化进行研究,在S_1和S_2代之间发生甲基化模式变化的位点数显著多于S_2和S_3代,表明伴随着自交世代的升高,双二倍体基因组胞嘧啶甲基化变化剧烈程度逐渐降低,基因组逐渐趋于稳定,DNA甲基化可能在遗传二倍化过程中起重要作用。
     为了研究甜瓜属异源双二倍体在形成及稳定过程中甲基化变化位点的特征特性,我们对远缘杂交及多倍化诱发的基因组胞嘧啶甲基化变化位点进行分析。结果发现,在克隆测序的15条序列中,有7条序列与已知功能基因或调控基因具有较高的相似性。根据测序结果设计特异引物,进行PCR验证分析,发现MSAP多态性由DNA甲基化修饰引起。并且RT-PCR分析发现胞嘧啶甲基化可能参与了甜瓜属人工异源双二倍体基因表达的调控,表明其在异源多倍体二倍体化过程中起到重要作用。Southernblot结果发现,甲基化变化序列不仅有单拷贝序列,而且也有部分是多拷贝序列。
     为了研究组织培养对胞嘧啶甲基化的影响,利用MSAP技术研究了随机选取的普通黄瓜‘长春密刺'实生苗与组织培养再生苗之间胞嘧啶甲基化差异,结果发现在胞嘧啶甲基化水平上,实生苗与组织培养再生苗之间没有差异。对甲基化模式进行进一步研究分析发现,与实生苗相比,组培再生苗部分位点发生了甲基化模式的变化,但变化位点仅占总位点的0.6%。暗示了组织培养不能引起胞嘧啶甲基化发生很大程度的变化。
Polyploidy is a prominent process in higher plants and has played an important role in the evolutionary history of plants.Recent studies indicate that extensive genetic and epigenetic changes often occur at the early stage of allopolyploid's genome formation,these changes have played a significant role in stabilization of newly formed genome of species. Though,many investigations were focused on the characters and reasons for allopolyploid induced genomic changes,the mechanisms remain elusive,because of the lack of information during allopolyploid evolution.Although,the development of molecular markers and comparative genomics have provide important basis for understanding of hybridization and allopolyploidization,the mechanisms still remain poorly understood, because of the complicated molecular evolutionary mechanism.
     Synthesized allopolyploids can be a very useful model system to study polyploidization, as the information at the early stage can be obtained exactly.With the newly formed allopolyploids,the genomic changes can be studied accurately compared to their diploid parents,which might help enriching the evolutionary theory.In this work,the chromosome behavior,genomic changes and DNA methylation pattem changes of a newly formed Cucumis amphidiploid were studied,in order to investigate the mechanisms of genetic and epigenetic changes.The detailed results as follows:
     1.Meiotic chromosome behavior and pollen fertility of the interspecific hybrid F_1 and amphidiploid
     The meiotic chromosome behavior and pollen fertility of the F_1 hybrid(2n = 2X = 19) and self-cross progenies(S_(1-4)) of amphidiploid(2n = 4X = 38) from Cucumis hystrix chakr(2n = 2X = 24)×C.sativus L(2n = 2X = 14) were studied.The results showed that at metaphase I(MI),the chromosome configuration of F_1 hybrid was 16.75Ⅰ+0.5Ⅱ+0.25Ⅲ+0.13Ⅳ.Most chromosomes in the F_1 were univalent,while in the amphidiploid were bivalent.At metaphaseⅡ,the F_1 could not produce normal tetrads but mostly polyads,while the amphidiploid mainly produced tetrads.Moreover,the frequency of bivalent at MI,tetrads at anphaseⅡand fertility of pollen increased during the self-cross course that indicated the improved cytogenetic stability of the amphidiploid.It was also found that at anaphase I(AI) and AⅡthe PMCs contained lagging chromosome,bridge fragment,unequal disjunctions and nonsynchronized disjunctions in amphidiploid,which might cause the low pollen fertility.
     2.Studies on sequence changes in the early genomes of interspecific F_1 hybrid and amphidiploid in Cucumis
     In the present study,extensive genomic changes were detected in newly obtained allotetraploid of Cucumis,namely Cucumis hytivus Chen and Kirkbride(C.hytivus),by AFLP analysis using 12 pairs of EcoR-I/Mse-I primers.The results indicated that extensive genomic changes occurred at the early stage of allopolyploid genome.The genomic changes occurred form F_1 and the greatest changes of sequence was occurred from S_0 generation to S_1 generation,while,there were miner changes from S_1 to S_2, which indicated that the allopolyploid genome became more stable following the selfing process and the sequence change was a rapid event.Most genomic changes involved loss of parental restriction fragments and appearance of novel fragments,with some fragments disappearing in one generation and reappearing in others.Further investigation suggested that most of the changed sequences were related to repetitive sequence.In addition,it was observed that some variable bands were inherited preferentially from the male parent.
     During diploidization,sequence loss in reciprocal alloployploids often appears variable in different species,suggesting that the nuclear-cytoplasmic interactions play different roles in different polyploid plants.In this study,Amplified fragment length polymorphism(AFLP) analysis was carried out by using 23 pairs of EcoRI-NN/MseI-NNN selective primers in amplification of the DNAs from reciprocal F_1 hybrids of Cucumis hystrix Chakr.and C. sativus L.,the synthetic amphidiploids and the diploid parents.The results indicated that extensive DNA sequence loss was occurred in the reciprocal F_1 hybrids and amphidiploids. The frequency of loss of parental sequences was not statistically significant between the reciprocal crosses;moreover,the time(both started in the F_1) and the type of loss were also the same,suggesting that the nuclear-cytoplasmic interactions might not be the main factor causing sequence loss.In addition,the frequency of lost sequence from the C.sativus genome was more than from the C.hystrix,indicating that the sequence loss was more common from the parent,which has fewer chromosomes.
     3.Changes of cytosine methylation induced by wide hybridization and allopolyploidy in Cucumis
     To explore the molecular involvement of epigenetic phenomena,cytosine methylation of interspecific F_1 hybrids,allotetraploid and parental genome was investigated by using methylation-sensitive amplified polymorphism in Cucumis.Results from analysis of the methylation pattern found that methylation pattern changed in both the F_1 hybrids and in the allotetraploid genome compared to their corresponding parents,suggesting that wide hybridization and allopolyploidization induced cytosine methylation changes.Furthermore, these methylation changes could be classfied into five types according to the changed pattern,mainly including hyper-methylation and de-methylation,moreover,the hyper methylated sites was 2 to 4 fold more than the de-methylated sites,indicating that most of the changed sites showed an increase in cytosine methylation.The results also found that a majority of the methylated sites were from the maternal parent,which suggested that DNA methylation have played a significant role in protecting the maternal genome.Observations in different generations of the allopolyploids found that the extent of cytosine methylation pattern changes between the S_1 and S_2 were significantly higher than that between the S_2 and S_3,suggesting stability in advanced generations which further supported the hypothesis that DNA methylation plays a significant role in the diploidization.
     Analysis of the methylaion sensitive sequences induced by wide hybridization and allopolyploidization indicated that among 15 cloned sequences,seven of them showed high similarity to the known functional genes or genes involved in regulating gene expression. Specific primers were designed and the results from PCR confirmed that the polymorphisms were from the DNA modification.In addition,the reverse transcription-polymerase chain reaction analysis suggested that cytosine methylation might be related to regulation of gene expression,which further supported the hypothesis that DNA methylation plays a significant role in the allopolyploidization.Southern blot analysis indicated that the altered sequences referred to both single-copy and multi-copy sequence.
     Plantlets and seedlings of randomly selected common cucumber 'Changchun mici' were studied to investigate the cytosine methylation changes induced by tissue culture using methylation-sensitive amplified polymorphism.Results revealed that there were no significant differences in the level of cytosine methylation in the plantlets and seedlings. Analysis of the methylation pattern found that only 0.6%of total sites changed in plantlets compared to the seedlings,suggesting that tissue culture could not induce a large array of cytosine methylation changes.
引文
1.陈劲枫,罗向东,钱春桃,等.附加Cucumis hystrix Chakr.染色体的两个黄瓜单体异附加系[J].园艺学报,2003,30(6):725-727
    2.陈劲枫,钱春桃,林茂松,等.甜瓜属植物种间杂交研究进展[J].植物学通报,2004,21(1):1-8
    3.陈劲枫,钱春桃.利用几种园艺作物卷须制片鉴定染色体数目的研究[J].园艺学报,2002a,29(4):378-380
    4.陈劲枫,任刚,余纪柱,等.甜瓜属远缘杂种回交自交群体的过氧化物酶同工酶分析[J].武汉植物学研究,2002b,20(5):336-337
    5.程治军,秦瑞珍,张欣,等.多倍体化引起植物表型突变的分子机理研究[J].作物学报,2005,31(7):940-943
    6.刁现民,孙敬三.植物体细胞无性系变异的细胞学和分子生物学研究进展[J].植物学通报,1999,16(4):372-377
    7.董玉柱.小麦人工和天然多倍体基因组变异的研究.东北师范大学博士学位论文,2003
    8.傅体华,任正隆.小麦遗传背景对普通小麦×6X小蔟麦杂种F_1减数分裂行为的影响及育性[J].遗传学报,1999,26(4):363-369
    9.关和新,陆普媛.植物人工异源多倍体的遗传及后遗传变化[J].中国生物工程杂志,23(9):34-39
    10.桂琴,徐延浩,王建波.多倍体植物中基因表达模式的变化[J].武汉植物学研究,2007,25(2):198-202
    11.郭军洋,陈劲枫,罗向东,等.Cucumis属Cucumis hytivus Chen& Kirkbrid小孢子发生和雄配子发育的细胞学研究[J].西北植物学报,2005,25(1):0022-0026
    12.侯建华,云锦凤.羊草与灰色赖草杂交后代遗传学特性及育性恢复的研究[J].草地学报,2005,13(1):82-83
    13.蒋继明,陈佩度,刘大钧.硬粒小麦-簇毛麦-黑麦兰属杂种及后代的形态和细胞遗传学研究[J].南京农业大学学报,1989,12(2):1-5
    14.李梅兰.DNA甲基化与白菜的生长转变.浙江大学博士学位论文,2001
    15.李再云,华玉伟,葛贤宏,等.植物远缘杂交中的染色体行为及其遗传与进化意义[J].遗传,2005,27:315-324
    16.刘爱华,王建波.序列消除与异源多倍体植物基因组的进化[J].武汉植物学研究,2004,22(2):158-162
    17.刘宝,郝水.植物远缘杂交和多倍体化中的表观遗传变异[J].中国农业科技导报,2007,9(6): 18-21
    18.刘宝,胡波,董玉柱,等.多倍体小麦物种形成可诱发稳定遗传的胞嘧啶甲基化变异[J].自然科学进展,2000,8:710-715
    19.刘大钧.细胞遗传学[M].北京:中国农业出版社.1999.162-166
    20.刘大钧.细胞遗传学[M].北京:中国农业出版社.1999.159-161
    21.娄群峰,陈劲枫,Molly Jahn,等.黄瓜全雌性基因的AFLP和SCAR分子标记[J].园艺学报,2005,32(2):256-261
    22.卢圣栋.现代分子生物学技术[M].北京:高等教育出版社.1993
    23.罗向东.栽培黄瓜(Cucumis sativus L.)与酸黄瓜(C.hystrix Chakr.)的种间杂种及异染色体系的创制与评价.南京农业大学博士学位论文.2006
    24.钱春桃,陈劲枫,娄群峰,等.黄瓜花粉母细胞减数分裂行为的研究[J].武汉植物学研究,2003,21(3):193-197
    25.钱春桃,陈劲枫,罗向东.黄瓜抗枯萎病异源易位植株AT-04的鉴定筛选[J].南京农业大学学报,2006,29(2):20-24
    26.钱春桃,陈劲枫,庄飞云,等.弱光条件下甜瓜属种间杂交新种的某些光合特性[J].植物生理学通讯,2002,38(4):336-338
    27.任刚.甜瓜属种间杂交新种(Cucumis hytivus Chen & Kikbride)的遗传特性、同工酶标记极其分类地位研究.南京农业大学硕士论文.2003
    28.唐益苗,马有志.植物反转录转座子及在功能基因组学中的应用[J].植物遗传资源学报,2005,6(2):221-225
    29.王超,张宗申,王建波.植物多倍体起源与分子进化研究进展[J].武汉植物学研究,2000,18(4):339-343
    30.王建波,张文驹.异源多倍体植物核rDNA序列的同步进化[J].遗传,2000,22(1):54-56
    31.王坤波,黎绍惠,叶武威,等.陆地棉与澳洲2个野生棉杂种细胞学研究[J].棉花学报,1994,6(1):23-28
    32.王永明.水稻和菰(Zizania latifiolia)的远缘渐渗性杂交引起水稻基因组广泛的遗传变化.东北师范大学博士学位论文.2004
    33.吴刚.crylAB基因在转基因水稻中的遗传、表达与沉默.浙江大学博士学位论文.2000.63-66
    34.许早时.组织培养紫叶酢浆草DNA甲基化的研究[J]_安徽农业大学学报,2007,34(4):567-256
    35.杨继.植物多倍体基因组的形成与进化[J].植物分类学报,2001,39(4):357-371
    36.杨寅贵,庄勇,娄群峰,等.适于cDNA-AFLP的黄瓜幼叶总RNA快速高效提取方法[J].江西农业大学学报,2007,31(1):129-134
    37.云锦凤,王照兰,杜建才.加拿大披碱草与老芒麦种间杂交及F_1代细胞学分析[J].中国草地,1997,48(1):32-35
    38.张剑锋.利用DNA分子标记检测组织培养诱导水稻DNA甲基化变异.东北师范大学硕士学位论文.2006
    39.朱玉贤,李毅.现代分子生物学[M].北京:高等教育出版社,1997,305-314
    40.庄飞云,陈劲枫,钱春桃,等.甜瓜属人工异源双二倍体(Cucumis hytivus)染色体组间重组的细胞学及分子标记研究[J].中国农业科学,2005,38(3):582-588
    41.庄飞云,陈劲枫,钱春桃,等.新种Cucumis xhytivus及其回交后代对低温的适应性[J].南京农业大学学报,2002,25:27-30
    42.庄勇,陈龙正,杨寅桂,等.植物异源多倍体进化中基因表达的变化[J].植物学通报,2006,23(2):207-214
    43.Adams K L,Cronn R,Percifield R,et al.Genes duplicated by Polyploid show unequal contributions to the transcriptome and organ-specific reciprocal silencing[J].Proc Natl Acad Sci USA,2003,100:4649-4654
    44.Adams K L,Percifield R,Wendel J F.Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid[J].Genetics,2004,168:2217-2226
    45.Adams RLP,Burdon R H.Molecular biology of DNA methylation.New York,Berlin,Heidelberg,and Tokyo:Spring-Verlag.1985.1,6-7,9-10,13-14,182-183
    46.Akashi Y,Fukuda N,Wako T,et al.Genetic variation and phylogenetic relationships in east and south Asian melons,Cucumis melo L.,based on the analysis of five isozymes[J].Euphytica,2002,125:385-396
    47.Axesson T,Bowman C M,Sharpe A G,et al.Amphidiploid Brassica juncea contains conserved progenitor genomes[J].Genome,2000,43:679-688
    48.Bao W K,Yan Y R.Octoploid triticale in China.Advance in Science of China[J].Biology,1993,3:55-76
    49.Baumel A,Ainouche M,Kalendar R,et al.Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E.Hubbard(Poaceae)[J].Mol Biol Evol,2002,19:218-1227
    50.Beguiristain T,Grenbastien M,Puigdomenech,et al.Three Tnt1 subfamilies show different stress different stress-associated pattern of expression in obacc 1.Consequences for retrotransposon control and evolution in plants[J].Plant Physiol,2001,127:212-221
    51.Beharav A,Cohen Y.Effect of gama radiation on vitality and fertilization ability of Cucumis melo and C.metuliferus pollen[J].Curcubit Genet Coop Rpt,1994,17:94-96
    52.Brochmann C,Nilsson T,Gabrielsen T M.A classic example of postglacial allopolyploid speciation re-examined using RAPD markers and nucleotide sequences:Saxifraga osloensis(Saxifragaceae)[J].Symb Bot Upsala,1996,31:75-89
    53.Brown PTH,Gobel E.Lorz H.RFLP analysis of Zea mays callus cultures and their regenerated plants[J].Theor Appl Genet,1991,81:227-232
    54.Chatterjee M,More T A.Interspecific hybridization in Cucumis spp[J].Cucurbit Genet Coop Rpt,1991,14:69
    55.Chen J F,Adelberg J W,Staub J E,et al.A new synthetic amphidiploid in Cucumis from a C.sativus ×C.hystrix F_1 interspecific hybrid.In:J.McCreight(ed):Cucurbitaceae '98-Evaluation and enhancement of Cucurbit germplasm.ASHS Press,Alexandria,Va.U.S.A.1998,336-339.
    56.Chen J F,Adelberg J.Interspecific hybridization in Cucumis-progress,problem,and perspectives [J].HortScience,2000a,35:11-15
    57.Chen J F,Kirkbride J H Jr.A new synthetic species Cucumis(Cucurbitaceae) from interspecific hybridization and chromosome doubling[J].Brittonia,2000b,52:315-319
    58.Chen J F,Staub J E,Tashiro Y,et al.Successful interspecific hybridization between Cucumis sativus L.and C.hystrix Chakr[J].Euphytica,1997a,96:413-419
    59.Chen J F,Isshiki S,Tashiro Y,et al.Biochemical affinities between Cucumis hystrix Charkr.and two cultivated Cucumis species(C.sativus L.and C.melo.L.) based on isozyme analysis[J].Euphytica,1997b,97:139-141
    60.Chen J F,Isshiki S,Tashiro Y,et al.Studies on a wild cucumber from China(Cucumis hystrix Chakr.).I.Genetic distances C.hystrix and two cultivated Cucumis species(C.sativus L.and C.melo L.) based on isozyme analysis[J].J.Jpn.Soc.Hort.Sci,1995,64(2):264-265
    61.Chen J F,Staub J E,Qian C T,et al.Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr.×C.sativus L[J].Theor Appl Genet,2003a,106:688-695
    62.Chen J F,Luo X D,Staub J E,et al.An allotriploid derived from an amphidiploid×diploid mating in Cucumis I:production,micropropagation and verification[J].Euphytica,2003b,131:235-241
    63.Chen Q,Armstrong K C.Genome in site hybridization in Avena sativa[J].Genome,1994,37:607-612
    64.Chen Z J,Comai L,Pikaard CS.Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing in Arabidopsis allotetraploids[J].Proc Natl Acad Sci USA,1998,95(25):14891-14896
    65.Chen Z J,Pikaard CS.Epigenetic silencing of RNA polymerase I transcription:a role for DNA methylation and histon modification in nucleolar doraince [J]. Genes Dev, 1997,11: 2124-2132
    
    66. Clark M S. Plant Molecular Biology: A Laboratory Manual. Heidelberg, Springer: 1997: 163
    
    67. Comai L, Tyagi AP, Winter K, et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids [J]. Plant Cell, 2000,12: 1551-1567
    
    68. Comai L. Genetic and epigenetic interactions in allopolyploid plants [J]. Plant Mol Biol, 2000, 43:387-399
    
    69. Custers J B M, Den Nijis A P M. Effects of aminoethoxyvinylglycine (AVG), environment, and genotype in overcoming hybridization barriers between Cucumis species [J]. Euphytica, 1986, 35:639-647 ..
    
    70. Danin-Poleg Y, Reis N, Tzuri G, et al. Development and characterization of microsatellite markers in Cucumis [J]. Theor Appl Genet, 2001,102: 61-72
    
    71. Deakin J R, Bohn G W, Whitaker T W. Inter-specific hybridization in Cucumis [J]. Econ. Bot., 1971,25: 195-211
    
    72. Devaux P, Kilian A, Kleinhofs A. Anther culture and hordeum bulbosum-derived barley doubled haploids mutations and methylation [J]. Mol Gene Genet, 1993, 241: 5-6
    
    73. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize [J]. Nature, 1997, 386:485-488
    
    74. Fassuliotis G. Self-fertilization of Cucumis metuliferus Naud and its cross-comaatibility with C. melo L. [J]. J Amer Soc Hort Sci, 1977, 102: 336-339
    
    75. Fedoroff N. Transposons and genome evolution in plants [J]. Proc Natl Acad Sci USA, 2000, 97:7002 -7007
    
    76. Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeolegous chromosomes [J]. Genetics, 1997,147:1381-1387
    
    77. Fellner M, Binarova P, Lebeda A. Isolation and fusion of Cucumis sativus and Cucumis melo protoplast. Proceeding of 6th EUCARPIA Meeting. Cucubit Genetics Breeding, 1996, 202-209
    
    78. Finnegan E J, Genger R K, Kovac K A, et al. DNA methyaltion and the promotion of flowering by vernalization [J]. Proc Natl Acad Sci USA, 1998a, 95: 5824-5829
    
    79. Finnegan E J, Genger R K, Peacock W J, et al. DNA methyaltion in plants [J]. Plant Mol Biol,1998b, 49:223-247
    
    80. Finnegan E J, Kovac K A. Plant DNA methylthransferases [J]. Plant Mol Biol, 2000,43: 189-201
    
    81. Franken J, Custers J B, Bino R J. Effects of temperature on pollen tube growth and fruit set in reciprocal crosses between Cucumis sativus and C. metuliferus [J]. Plant breeding, 1988, 81: 233-247
    
    82. Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size [J]. Science, 2000,289: 85-88
    
    83. Fu X, Kohli A, Twyman RM, et al. Alternative silencing effect involve distinct types of non-spreading cytosine methylation at a three-gene, single copy transgenic locus in rice [J]. Mol Gen Genet, 2000, 263: 106-118
    
    84. Galili G, Feldman M. Intergenomic suppression of endosperm protein genes in common wheat [J].Can J Genet Cytol, 1984,26: 651-656
    
    85. Galitski T, Saldanha A J, Styles C A, et al. Ploidy regulation of gene expression [J]. Science, 1999,285:251-254
    
    86. Garcia-Mas J, Oliver M, Gomez-Paniagua H, et al. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon [J]. Theor Appl Genet, 2000,101: 860-864
    
    87. Grant D, Cregan P, Shoemaker R C. Genome organization in dicots: Genome duplication in Arabdopsis and synteny between soybean and Arabidopsis [J]. Proc Natl Acad Sci USA, 2000, 97:4137-4168
    
    88. Grendbastien M A. Activation of plant retrotransposon under stress conditions [J]. Trends Plant Sci,1998,3:181-187
    
    89. Guo M, Birchler J A. Tran-acting dosage effects on the expression of model gene system in maize aneuploids [J]. Science, 1994, 266: 1999-2002
    
    90. Guo W L, Wu R, Zhang Y F, et al. Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. [J] Plant Cell Rep, 2007, 26: 1297-1307
    
    91. Hanson R E, Zhao X P, Islam-Faridi M N, et al. Evolution of interspersed repetitive elements in Gossypium (Malvaceae) [J]. Am J Bot, 1998, 85:1364-1368
    
    92. Harberd N P, Flavell R B, Thompson R D. Identification of a transposon-like insertion in a Glu-1 allele of wheat [J]. Mol Gen Genet, 1987, 209: 326-332
    
    93. He P, Friebe B R, Gill B S, et al. Allopolyploidy alters gene expression in the highly stable hexaploid wheat [J]. Plant Mol Bio, 2003, 52: 401-414
    
    94. Helentjaris T, Weber D, Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms [J]. Genetics, 1998,118:353-363
    
    95. Henikoff S, Matzke M A. Exploring and explaining epigenetic effects [J]. Trends in Genetics, 1997,13(8): 293-295
    96. Houchins K, O'Dell M, Flavell R B, et al. Cytosine methylation and nucleolar dominance in cereal hybrids [J]. Mol Gen Genet, 1997, 255: 294-301
    
    97. Jacobsen S E, Meyerowitz E M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis [J].Sience, 1997,277:1100-1103
    
    98. Jellen E N, Gill B S, Cox T S. Genomic in situ hybridization differentiates between A/D and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena) [J]. Genome, 1994,37:613-618
    
    99. Jenuwein T, Allis C D. Translating the histon code [J]. Science, 2001, 293:1074-1080
    
    100. Jiang J, Friebe B, Gill B S. Recent advances in allien gene transfer in wheat [J]. Euphytica, 1994,73:199-212
    
    101. Jiang J, Gill B S. Different species-specific chromosome translocation in Triticum timopheevii and T. turgidum support the diphylatic origin of polyploid wheats [J]. Chromosome Res, 1994, 2: 59-64
    
    102. Kakutani T, Jeddeloh J A, Flowers S K, et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations [J]. Proc Natl Acad Sci USA, 1996, 93:12406-12411
    
    103. Kalender R, Grob T, Regina M, et al. IRAP and REMAP: two new retrotransponson -based DNA fingerprinting techniques [J]. TheorAppl Genet, 1999, 98: 704-711
    
    104. Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in newly synthesized wheat allopolyploid [J]. Genetics, 2002,160:1651-1659
    
    105. Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat [J]. Nature genetics, 2003,33: 102-106
    
    106. Kaul M L H, Murthy T G K. Mutant genes affecting higher plant meiosis [J]. Theor Appl Genet,1985,70:449-466
    
    107. Kenton A, Parokonny A S, Gleba Y Y, et al. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics [J]. Mol Gen Genet, 1993, 240: 159-169
    
    108. Kho Y O, den Nijs A M P, Franken J. Interspecific hybridization in Cucumis L. II. The crossablity of species, and investigation of in vitro pollen tube growth and seed set [J]. Euphytica, 1980, 29:661-672
    
    109. Kirkbride J H. Biosytematic monograph of the genus Cucwnis (Cucurbitaceae). Parkaway Publ.,Boone,N.C. 1993
    
    110. Kovarik A, Matyasek R, Leitch A, et al. Variability in CpNpG methylation in higher plant genomes [J]. Gene, 1997, 204: 25-33
    
    111. Lagererantz U, Lydiate D J. Comparative genome mapping in Brassica [J]. Genetics, 1996, 144: 1903-1910
    
    112. Larhamraer D, Lydiate D J. Comparative genome mapping in Brassica [J]. Genetics, 1996, 144:1903-1910
    
    113. Lee H S, Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids [J].Proc Natl Acad Sci USA, 2001, 98: 6753-6758
    
    114. Leitch I J, Bennett M D. Polyploidy in angiosperms [J]. Trends Plant Sci, 1997, 2: 470-476
    
    115. Leutwiler L S, Hough-Evans B R, Meyerowitz E M. The DNA of Arabdopsis thaliana [J]. Mol Gen Genet, 1984,194: 15-23
    
    116. Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes [J]. Genome, 2001, 44: 321-330
    
    117. Liu B, Segal G, Vega J M. Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat [J]. Plant J, 1997,11: 959-965
    
    118. Liu B, Vega M J, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy non-coding DNA sequences [J]. Genome, 1998a, 41:272-277
    
    119. Liu B, Vega M J, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences [J]. Genome, 1998b, 41:535-542
    
    120. Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids [J]. Mol Phylogenet and Evol, 2003, 29: 365-379
    
    121.Liu B, Wendel J F. Non-mendelian phenomena in allopolyploid genome evolution [J]. Curr Genomics, 2002, 3: 489-505
    
    122. Liu Z L, Han F P, Tan M, et al. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions [J]. Theor Appl Genet, 2004,109: 200-209
    
    123. Louise J A, Thomas C L, Andrew M. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA vius [J]. Euro Mol Biol Organi Jour, 1998, 17 (21):6385-6393
    
    124. Ma X F, Gustafson J P. Genome evolution of allopolyploids: a process of cytological and genetic diploidization [J]. Cytogenet Genome Res, 2005,109: 236-249
    
    125. Madlung A, Masuelli R W, Watson B, et al. Remolding of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids [J]. Plant Physiol, 2002, 129:733-746
    126. Martienssen R A, Colot V. DNA methlation and epigenetic inheritance in plants and filamentous fungi [J]. Science, 2001, 293: 1070-1074
    
    127. Masterson J. Stomata size in fossil plants: Evidence for polyploidy in majority of angiosperms [J].Science, 1994,264:421-424
    
    128. Matsuura S. Paternal inheritance of mitochondrial DNA in cucumber (C.sativus L) [J]. Rep.Cucubit Genet. Coop, 1995,18: 31-33
    
    129. Matzke M A, Matzke A J. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses [J]. Cell Mol Life Sci, 1998, 54: 94-103
    
    130. Matzke M A, Mette M F, Matzke A J M. Transgene silencing by the host genome defense:implications for the evolution of epigenetic control mechanisms in plants and vertebrates [J]. Plant Mol Biol,2000, 43: 401-415
    
    131. McClintock B. The significance of responses of the genome to challenge [J]. Science, 1984, 266:792-801
    
    132. Messer W, Nover-Weidner M. Timing and targeting: the biological function of dam methylation in E. coli [J]. Cell. 1988, 54: 735-737
    
    133. Meyer P, Saedler H. Homology-dependent gene silencing in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1996,47:23-28
    
    134. Michaels S D, Amasino R M. Flowering locus C encodes a novel MADS-domain protein that acts as a repressor of flowering [J]. Plant Cell, 1999, 11: 949-956
    
    135. Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysisof contigs grouped from a large number of expressed sequence tags [J]. Mol Gen Genomics, 2003, 270: 371-377
    
    136. Moore G, Devos K M, Wang Z. Grasses, line up and form a circle [J]. Curr Biol, 1995, 5: 737-739
    
    137. Muller E, Brown P T H, Hartke S, et al. DNA variation in tissue-culture-derived rice plants [J].Theor Appl Genet, 1990, 85: 673-679
    
    138. Murray H G, Thompson W F. Rapid isolation of higher weights DNA [J]. Nucleic Acids Res, 1980,8:4321
    
    139. Newell-Price J, Clark A J L, King P. DNA methylation and silencing of gene expression [J]. TEM,2000, 11 (4): 142-148
    
    140. Niemirowica-Szczytt K, Kubiki B. Crosser fertilization between cultivated species of genera Cucumis L. and Cucurbit L [J]. Genetica Polonica, 1979,20: 117-125
    
    141. Norton J D, Granberry D M. Characteristics of progeny from an interspecific cross of Cucumis melo with C. metuliferus [J]. J Amer Soc Hort Sci, 1980, 105: 174-180
    142. Noyer-Weidner M, Trautner T A. Methylation of DNA in prokaryotes. In: J P Jost and H P Saluz (Eds) DNA methylation: molecular biology and biological significance. Birkhouser Verlag, Basel.1993, pp. 39-108
    
    143. Osborn T C, Pires J C, Birchler J A, et al. Understanding mechanisms of novel gene expression in polyploids [J]. Trends Genet, 2003,19 (3): 141-147
    
    144. Osborn T C. The contribution of polyploid to variation in Brassica species [J]. Physiol Plantarum,2004,121:531-536
    
    145. Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group [J]. Plant Cell, 2001, 13: 1735-1747
    
    146. Ozkan H. Genomic changes in newly synthesized amphiploids of Aegilops and Triticum. Ph.D. Thesis (Adana, Turkey: University of Cukurova)
    
    147. Perl-Treves R, Zamir D, Navot N, et al. Phylogeney of Cucumis based on isozyme variability and its comparison with plastome phylogeny [J]. Theor Appl Genet, 1985, 71: 430-436
    
    148. Phillips R L, Kaeppler S M, Peschke V M. In Proceedings of the Seventh International Congress on Plant Tissue and Cell Culture, eds. Nijkamp, H. J. J., Van Der Plas, L. H.W. & Van Aartrijk, J.(Kluwer, Dordrecht, The Netherlands), 1990 pp. 131-141
    
    149. Pikaard C S. The epigenetics of nucleolar dominance [J]. Trends Genet, 2000, 16: 495-500
    
    150. Pires J C, Gaeta R T, Leon E J, et al. Flowering time divergence and genomic rearrangements in resynthesized. Brassica polyploids (Brassicaceae) [J]. Biol J Linn Soc, 2004, 82: 675-688
    
    151. Ramachandran C, Narayan R K J. Chromosomal DNA variation in Cucumis [J]. Theor Appl Genet,1985, 69: 497-502
    
    152. Reinisch A J, Dong J, Brubaker C L, et al. A detailed RFLP map of cotton, Gossypium hirsutum × G.barbadense: chromosome organization and evolution in a disomic polyploid genome [J]. Genetics,1994,138:829-874
    
    153.Rieseberg LH, Van Fossen C, Desrochers AM. Hybrid speciation accompanied by genomic reorganization in wild sunflowers [J]. Nature, 1995, 375: 313-316
    
    154. Roelofs D, van Velzen J, Kuperus P, et al. Molecular evidence for an extinct parent of the tetraploid species Microseris acuminata and M. campestris (Asteraceae Lactuceae) [J]. Mol. Ecol, 1997, 6:641-649
    
    155. Sambrook J, Russell D W. Molecular cloning: A laboratory manual (third edition). New York: cold spring harbor laboratory press, 2001:11.38-11.48
    
    156. Sang T, Crawford D J, Stuessy T F. Documentation of reticulate evolution in peonies using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution [J]. Proc Natl Acad Sci USA, 1995, 92: 6813-6817
    
    157. Santoro R. The silence of the ribosomal RNA genes [J]. Cell Mol Life Sci, 2005, 62: 2067-2079
    
    158. Scheid O M, Jakovleva L, Afsar K, et al. Changes in ploidy can modify epigenetic silencing [J].Proc Natl Acad Sci USA, 1996, 93: 7114-7119
    
    159. Schranz M E, Osborn T C. Novel flowering time variation in the resynthesized polyploid Brassica napus [J]. J Hered, 2000, 91(3): 242-246
    
    160. Schulman A H, Flavell A J, Ellis T H N. The application of LTR retrotransposons as genetic markers in plants. In: Miller W, Capy P (eds) Mobile genetic elements: protocols and genomic applications. Humana Press, Totowa. 2004. pp. 145-173.
    
    161. Shaked H, Kashkush K, Ozakan H, et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat [J].Plant Cell, 2001,13:1749-1759
    
    162. Shan G H, Jose L M J, Antonio G J. Mitotic stability of infection-induced resistance to plum poxpotyvirus with transgene silencing and DNA methylation [J]. Mol Plant Microb Interactions,1999, 12(2): 103-111
    
    163. Shawn M, Kaeppler, Heidi F. Epigenetic aspects of somaclonal variation in plants [J]. Plant Mol Biol, 2000, 43:179-188
    
    164. Singh A K, Yadava K S. An analysis of interspecific hybrids and phylogenetic implifications in Cucumis (Cucurbitaceae) [J]. Plant Syst Evol, 1984, 147: 237-252
    
    165. Soltis D E, Soltis P S. The dynamic nature of polyploid genome [J]. Proc Natl Acad Sci USA, 1995,92: 8089-8091
    
    166. Song K, Lu B, Tang K, et al. Rapid genome changes in synthetic polyploids of Brassica and its implications for polyploid evolution [J]. Proc Natl Acad Sci USA, 1995, 92: 7719-7723
    
    167. Soria C, Gemez-Guillamin M L, Esteva J, et al. Ten interspecific crosses in the genus Cucumis: a preparatory study to seek crosses resistant to melon yellowing diseases [JJ. Cucurbit Genet Coop Rpt, 1990, 13:31-33
    
    168. Staub J E, Fredrick L, Marty T L. Electrophoretic variation in cross-compatible wild diploid species of Cucumis [J]. Can J Bot, 1987, 65: 792-798
    
    169. Stebbins G L. Chromosome evolution in higher plants [M]. Addisorr Wesley, 1971
    
    170. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000, 408: 796-814
    
    171. Vision T J, Brown D G, Tanksley S D. The origin of genomic duplications in Arabdopsis [J].Science, 2000, 290: 2114-2117
    172. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Res, 1995, 23: 4407-4414
    
    173. Waters E R, Schaal B A. Biased gene conversion is not occurring among rDNA repeats in the Brassica triangle [J]. Genome, 1996, 39:150-154
    
    174. Waugh R, Mclean K, Flavell A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence specific amplification polymorphism (SSAP) [J]. Mol Gen Genet, 1997, 253: 687-694
    
    175. Wendel J F, Schnabel A, Seelanan T. Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium) [J]. Proc Natl Acad Sci USA, 1995, 92: 280-284
    
    176. Wendel J F. Genome evolution in polyploids [J]. Plant Mol Biol, 2000, 42: 225-249
    
    177. Wolffe A P, Matzke M A. Epigenetics: regulation through repression [J]. Science, 1999, 286:481-486
    
    178. Wu R L, Gallo-Meagher M, Littell R C, et al. A general polyploid model for analyzing gene segregation in outcrossing tetraploid species [J]. Genetics, 2001,159: 869-882
    
    179. Xiong L Z, Xu C G, Saghai Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation sensitive amplification polymorphism technique [J]. Mol Gen Genet, 1999, 261: 439-446
    
    180. Yoder J A, Walsh C P, Bestor T H. Cytosine methylation and the ecology of intragenomic parasites [J]. Trends Genet, 1997,13: 335-340
    
    181. Zhang D, Sang T. Physical mapping of ribosomal RNA genes in peonies (Paeonia; Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution [J]. Am J Bot,1999, 86:735-740
    
    182. Zhao X P, Si Y, Hanson R E, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton [J]. Genome Res, 1998, 8:479-492
    
    183. Zhuang F Y, Chen J F, Staub J E, et al. Assessment of genetic relationships among Cucumis spp. by SSR and RAPD marker analysis [J]. Plant Breeding, 2004,123 (2): 167-172
    
    184. Zohary D, Feldman M. Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group [J]. Evolution, 1962, 16: 44-61
    
    185.Zwierzykowski Z, Tayyar R, Brunell M, et al. Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lilium multiflorum [J]. J Hered, 1998, 89: 324-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700