激光热弹超声体力源和对应波形的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用有限元方法建立了用于研究脉冲激光在不同性质固体材料中热弹激发超声波的数值模型,进而对不同性质固体材料中的激光超声体力源和超声波的产生机理、传播特征以及力源和波形之间关系进行了数值模拟研究。
     在同时考虑脉冲激光的时间分布和空间分布、介质的热传导效应和激光在材料中的光穿透效应以及材料性质随温度变化的条件下,分别研究了金属材料和非金属材料中激光热弹超声力源和超声波的产生和传播过程,分析了金属和非金属材料中激光超声波的特点。结合对心波形,得到了不同力源模型下的应力场和对应超声波波形间的物理关系。
     利用有限元方法研究了脉冲激光在透明薄膜/基底系统中激发超声力源和超声波的产生和传播过程。分析了该系统中激光激励产生埋藏体力源的特点以及和超声波波形之间的关系,研究了透明薄膜厚度对超声力源和超声波波形的影响及规律。结果表明,透明薄膜厚度的增加对系统温度场和应力场的影响效果并不相同;透明薄膜的约束使热弹应力场的轴向应力增大,但透明薄膜厚度超过一定值后,继续增加厚度对激光超声力源的形成不产生新的影响。
     研究了脉冲激光在具有横观各向同性的单向纤维加强复合材料平行薄板中激发超声力源的产生和传播过程,利用应力分布和薄板变形的时间演变过程分析了激光超声Lamb波不同模态的力学产生和传播过程。采用上述方法研究了单向纤维加强复合材料厚板中超声体波的产生和传播过程,分析了横观各向同性材料不同传播平面内的应力场和超声波的产生和传播特征。结果显示,激光超声波在各向异性材料中的传播特征与超声波的传播方向有密切关系。
     本文所建立的不同性质固体材料中的激光超声波和材料参数、激光参数间的定量关系,可用于不同性质材料中的激光超声产生和传播规律的研究,为金属、非金属、薄膜/基底系统和复合材料的激光超声无损检测和评估及参数优化提供理论依据。
A numerical model dealing with laser-generated ultrasound in solid materials with different properties is presented by using the finite element method (FEM). By means of this model, the features of laser buried force and consequent ultrasound generated by pulsed laser, as well as the relationship between the force source and the ultrasonic waveforms are studied numerically.
     Taking into account of the finite width and duration of the laser source, the effects of thermal diffusion and optical penetration, as well as the temperature dependence of material properties, the generation of laser ultrasonic force source and propagation of laser-generated ultrasound in metallic material and non-metallic material are simulated, respectively, and waveform characteristics of ultrasound waveforms in metallic materials and non-metallic materials are analyzed. The relationship between the different force models and ultrasound waveforms are presented based on epicenter waveforms.
     The generation of buried force and propagation of consequent ultrasound in transparent coating/substrate system are studied using FEM. The relationship between the buried force source and the ultrasound waveforms is analyzed, and the influence of transparent coating thickness on force source and ultrasound waveforms is presented. The numerical results indicate that the increase of the coating thickness has different effects on temperature field and stress field in the transparent coating/substrate system. Due to the constraint of transparent coating, the axial stress increases with the increase of the coating thickness, however, when the transparent coating thickness reaches a certain value, the laser-generated ultrasonic buried force source does not change any longer.
     The generation of laser ultrasonic force source and propagation of laser-induced Lamb waves in thin unidirectional fiber-reinforced composite plate, transversely isotropic, is simulated. The mechanical generation process of Lamb wave is presented intuitively by analyzing the stress field propagation and the deformations of plate in detail. By the same method, the generation and propagation of laser-generated ultrasonic bulk waves in thick composite plate are also studied. The propagation features of the laser ultrasonic stress filed and ultrasound waves in principal planes are analyzed. The numerical results indicate that the features of laser-generated ultrasound waveforms have closely relation with the propagating direction in anisotropic specimen.
     The method in this paper provides insight into the generation and propagation of the laser-generated ultrasound wave in different property solid materials and establishes quantitatively relationship between the ultrasound waveform and the laser input as well as the specimen parameters. It presents theoretical basics to optimize ultrasonic signal generation in nondestructive measurement and evaluation by using laser-induced ultrasonic in metallic material, non-metallic material, coating/substrate system and composite materials.
引文
1.陆建,倪晓武,贺安之.激光与材料相互作用物理学.第1版.北京:机械工业出版社,1996
    2.孙承伟,陆启生,范正修,陈裕泽,李成富,关吉利,关崇文.激光辐照效应.第1版.北京:国防工业出版社.2002
    3.Allmen,M.V,漆海兵译.激光束与材料相互作用的物理原理和应用.第1版.北京:科学出版社,1994
    4.周南,乔登江.脉冲束辐照材料动力学.第1版.北京:国防工业出版社.2002
    5.小原实,神成文彦,佐藤俊一著,李元燮泽,应用激光光学.第1版.北京:科学出版社,2002
    6.袁易全,陈思忠.近代超声原理与应用.第一版.南京:南京大学出版社 1996
    7.R.E.Lee and R.M.White,Excitation of surface elastic waves by transient surface heating,Applied Physics Letters,1968,12(1):12-14.
    8.Todd W.Murray and James W.Wagner,Laser generation of acoustic waves in the ablative regime,Journal of Applied Physics,1999,85(4):2031-2040.
    9.张淑仪,激光超声与材料无损评价[J],应用声学,1992,11(4),1-6
    10.张淑仪,超声无损检测高新技术[J],国际学术动态,1998,8,58-60
    11.应崇福.超声学.北京:科学出版社,1993
    12.D.E.Chimeni,Guide wave in plate and their use in materials characteristics,Appl.Mech.Rev.,50(1997):247-284
    13.R.J.Dewhurst,C.E.dwards,A.D.W.Micie,and S.B.Palmer,Estimation of thickness of thin metal sheet using laser generated ultrasound,Appl.Phys.Lett.1987 51(14)1066-1068
    14.J.B.Spicer,A.D.W.Micie,and J.W.Wagner,Quantitative theory for ultrasonic wave in a thin plate,Appl.Phys.Lett.1990 57(18)1882-1884
    15.H.Nakano,S.Nagai,Laser generation of antisymmetric lamb waves in thin plates,Ultrasonics 1991 29 230-234
    16.S.E.Bobbin,J.W.Wagner,and R.C.Cammarata,Determination of the flexural modulus of thin films from measurement of the first arrival of the symmetric Lamb wave,Appl.Phys.Lett.199159(13)1544-1546
    17.M.A.Johson,Y.H.Berthelot,P.H.Brodeur,and L.A.Jacobs,Investigation of laser generation of Lamb waves in copy paper,Ultrasonics 1996 34 703-710
    18.C.Desmet,U.Kawald,A.Mourad,W.Lauriks,J.Thoen,The behavior of Lamb waves in stressed polymer foils,J.Acoust.Soc.Am.1996 100 1509-1513
    19.D.E.Chimenti,Lamb waves in micro structured plates Ultrasonics 1994 32 255-260
    20.T.Kundu,A.Majj,T.Ghosh,and K.Maslov,Detection of kissing bonds by Lamb waves Ultrasonics,1998 35 573-580
    21.T.Hayashi and K.Kawashima,Mode extraction multi-modes of Lamb wave,Review of Quantitative Nondestructive Evaluation,2002 21 219-224
    22.C.Valle,J.W.Littles Jr.,Flaw localization using the reassigned spectrogram on laser-generated and detected Lamb modes,Ultrasonics 39(2002):535-542
    23.R.Chona,C.S.Suh,and G.A.Rabroker,Characterizing defects in multi-layer materials using guided ultrasonic wave,Optics and Lasers in Engineering 2003 40 371-378
    24.Xinya Zhang,Ted Jackson,Emmanuel Lafond,Stiffness properties and stiffness orientation distributions for various paper grades by non-contact laser ultrasonics,NDT&E International 39(2006):594-601
    25.王小民,李明轩,复合材料的超声检测与评价,应用声学,1998 17(6)39-43
    26.L.Wu,J.C.Cheng,S.Y.Zhang,Mechanisms of laser-generated ultrasound in plates,J.Phys.D:Appl.Phys.1995,28,957-964
    27.J.C.Cheng,T.H.Wang,S.Y.Zhang,Normal mode expansion method for laser-generated ultrasonic Lamb waves in orthotropic thin plates,Applied Physics B:Lasers and Optics.70(2000),57-63
    28.章肖融,用激光超声评估复合材料,应用声学,2000 19(5),1-8
    29.Weimin Gao,Christ Glorieux,Silvio Elton Kruger,Kris Van de Rostyne,Vitalyi Gusev,Walter Lauriks,Jan Thoen,Investigation of the microstructure of cast iron by laser ultrasonic surface wave spectroscopy,Materials Science and Engineering,A313(2001):170-179
    30.J.D.Aussel,A,L.Brun and J.C.Baboux,Generating acoustic waves by laser:theoretical and experimental study of the emission source,1988,Ultrasounics,26 245
    31.C.M.Scala P.A.Doyle Time-and frequency-domain characteristics of laser-generated ultrasonic surface waves J.Acoust.Soc.Am 1989 85(4)1569-1576
    32.H.Coufal,R.K.Grygier,Broadband detection of laser-excited surface acoustic waves by a novel transducer employing ferroelectric polymers,J.Acoust.Soc.Am.1992 92(5)2980-2983
    33.H.Coufal,K,Meyer,and R.K.Grygier,Precision measurement of the surface acoustic wave velocity on silicon single crystals using optical excitation and detection,J.Acoust.Soc.Am.199495(2)1158-1160
    34.A.A.Kolomenskii,M.Szabadi,P.Hess,Laser diagnostics of C_(60)and C_(70)films by broadband surface acoustic wave spectroscopy,Applied Surface Science,1995 86 591-596
    35.P.Hess,Laser diagnostics of mechanical and elastic properties of silicon and carbon films,Applied Surface Science,1996 106 429-437
    36.P.Hess,Determination of mechanical properties of superhard amorphous nanocrystalline and microcrystalline materials by laser-based surface acoustic waves,SPIE 2002 4703 1-9
    37.P.A.Doyle and C.M.Scala,Near-field ultrasonic Rayleigh waves from a laser line source,Ultrasonics 1996 34 1-8
    38.D.Schneider,T.Schwarz,H.J.Scheibe,M.Panzner,Non-destructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves,Thin Solid Films,1997 295107-116
    39.D.Royer and C.Chenu,Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source,Ultrasonics 2000 38(9)891-895
    40.D.Royer,Mixed matrix formulation for the analysis of laser-generated acoustic waves by a thermoelastic line source,Ultrasonics 2001 39(5)345-354
    41.A.B.Temsamani,S.Vandenplas,L.V.Biesen,Surface waves investigation for ultrasonic materials characterization:theory and experimental verification Ultrasonics 40(2000):73-76
    42.A.Zerwer,M.A.Polak,and J.C.Santamarina,Rayleigh wave propagation for the detection of near surface discontinueities:finite element modeling,Journal of nondestructive evaluation,2003 22(2)3952
    43.Waled Hassan,William Veronesi,Finite element analysis of Rayleigh wave interaction with finite-size,surface-breaking cracks,Ultrasonics 2003 41 41-52
    44.P.A.Fomitchov,A.K.Kromin,S.Krishnaswamy,J.D.Achenbach,Imaging of damage in sandwich composite structures using a scanning laser source technique,Composites:Part B,35(2004):557-562
    45.T.W.Murray,O.Balogun,T.L.Steen,S.N.Basu,V.K.Satin,Inspection of compositionally graded mullite coatings using laser based ultrasonics,International Journal of Refractory Metals & Hard Materials 23(2005):322-329
    46.Y.Pan,C.Rossignol,B.Audoin,N.Chigarev,Identification of laser-generated ultrasounds in the response of the cylinder over time and space,Ultrasonics,44(2006):e1249-e 1253
    47.胡文祥,钱梦騄,激光脉冲线源位移场的数值模拟与实验研究,声学学报,2000 25(4)345-349
    48.孟振庭,激光脉冲激发的超声脉冲波形的理论研究,科学通报,2001 17(5)38-42
    49.高会栋,沈中华,徐晓东,张淑仪,固体中脉冲激光激发声表面波的理论研究,应用声学,2002 21(5)19-24
    50.胡文祥,孙伟,钱梦騄,脉冲激光线源热弹激励的圆柱表面波声场,同济大学学报(自然科学版),2005 33(3):400-404
    51.A.Neubrand,P.Hess,Laser generation and detection of surface acoustic waves:Elastic properties of surface layers,J.Appl.Phys.1992 71(1)227-236
    52.T.T.Wu,Y.C.Chen,Dispersion of laser generated surface waves in an epoxy-bonded layered medium,Ultrasonics 1996 34 793-799
    53.T.T.Wu,Y.H.Liu,Inverse determination of thickness and elastic properties of a bonding layer using laser-generated surface waves,Ultrasonics 1999 37 23-30
    54.B.Knight,M.Hussain,J.Frankel,J.F.Cox,J.Brraunstein,P.J.Cote,Coating evaluation using analytical and experimental dispersion curves,Review of Quantitative Nondestructive Evaluation 2000 CP509 263-270
    55.C.M.Hernandez,T.W.Murry,and S.Krishnaswarmy,Photo acoustic characterization of the mechanical properties of thin films,Appl.Phys.Lett.20002 80 691-693
    56.H.A.Schuessler,S.N.Jerebtsov,A.A.Kolomenskii,Determination of linear and nonlinear elastic parameters from laser experiments with surface acoustic wave pulses,Spectrochimica Acta Part B,58(2003):1171-1175
    57.T.W.Murry,S.Krishnaswarmy,and J.D.Achenbach,Laser generation of ultrasound in film and coatings,Appl.Phys.Lett.1999 74(23)3561-3563
    58.A.Cheng,T.W.Murry,and J.D.Achenbach,Simulation of laser-generated ultrasonic wave in layered plates,J.Acoust.Soc.Am.2001 110(2)848-854
    59.A.P.Cheng,T.W.Murry,A.Cheng,and J.D.Achenbach,Laser-generated ultrasonic signals in anisotropic layered systems:simulation and measurement.Review of Quantitative Nondestructive Evaluation 2002 CP615 308-315
    60.陈晓,万明习,弱界面固体附层中的类Rayleigh波[J],声学学报,2001,26(6),507-510
    61.沈中华,张淑仪,薄膜-基片中的激光超声研究[J],声学学报.2002,27(3):203-208
    62.赵雁竹,张淑仪,张永康,非均匀固体热导率分布的重建:利用光声技术激光冲击的铝合金[J],声学学报,2002,27(1),7-12
    63.王培吉.钱梦騄,压电光声技术检测非均匀材料热物理性的理论研究[J].声学学报,2002,27(6),536-540
    64.徐晓东,张淑仪等,利用光差分技术检测激光激发声表面波定征薄膜材料[J],声学学报,2003,28(3),201-206
    65.D.Schneider,E.Stiehl,R.Hammer et al,Nondestructive testing of damage layers in semiconductor materials by surface acoustic waves[J],Proceeding of SPIE,2002,Vol.4692,195-211
    66.R.J.Dewhurst,D.A.Hutchins,S.B.Palmer and C.B.Scruby,Quantitative measurement of laser-generated acoustic waveforms J.AppI.Phys.1982 53(6)4064-4071
    67.James Wagner,James Spicer,A Technology Assessment of Laser Ultrasonic,1998
    68.C.B.Scruby,R.J.Dewhurst and S.B.Palmer,Quantitative studied of thermally generated elastic waves in laser-irradiated metals.J.Appl.Phys.1980 51(12)6210-6216
    69. L. R. F. Rose, Point-Source representation for laser-generated ultrasound, J. Acoust. Soc. Am. 1984 75(3), 723-732
    70. G. Rosa, P. Psyllaki, R. Oltra, S. Costil, C. Coddet, Simultaneous laser generation and laser ultrasonic detection of the mechanical breakdown of a coating-substrate interface, Ultrasonics. 39 (2001)355-365
    71. G. Rosa, R. Oltra, M. Nadal, Evaluation of the coating-substrate adhesion by laser-ultrasonics: modeling and experiments, J. Appl. Phys. 91, 6744-6753 (2002). Vol.91,No.10
    72. M. Dubois, F. Enguehard, L. Bertrand, M. Choquet, and J. P. Monchalin, Modeling of laser thermoelastic generation of ultrasound in an orthotropic medium. Appl. Phys. Lett. 64, (1994) 554-556
    73. D. H. Hurley, J. B. Spicer, Point-source representation for laser-generated ultrasound in an elastic, transversely isotropic half-space, J. Appl. Phys., 86(1999), 3423-3427
    74. D. H. Hurley, J. B. Spicer, J. W. Wangner, et al., Investigation of the anisotropic nature of laser-generated ultrasound in zinc ang unidirectional carbon epoxy composites, Ultrasonics 36 (1998), 355-360
    75. A. Rwzaizadeh, J. C. Duke, Pulsed-laser ultrasound generation in Graphite/Epoxy plate, Res. Nondestr. Eval. (2000), 191-215.
    76. F. Reverdy, B. Audoin, Composite materials characterization using phase velocities measured with laser generated ang detected ultrasonic waves, Review of Progress in Quantitative Nondestructive Evaluation, edited by D. O. Thompson and D. E. Chimenti, CP509,(2000):1167-1173
    77. C. Edwards, T. Stratoudaki, S. Dixon and S. B. Palmer, Laser based ultrasound generation efficiency in Carbon fiber reinforced composites, Review of Progress in Quantitative Nondestructive Evaluation Vol. 20, ed. by D. O. Thompson and D. E. Chimenti, CP557(2001):(220-227)
    78. B. Audoin, Non-destructive evaluation of composite materials with ultrasonic waves generated and detected by lasers, Ultrasonics, 40(2002), 735-740
    79. P. Burgholzer, C. Hofer, B. Reitinger, et al., Non-contact determination of elastic moduli of continuous fiber reinforced metals, Composites science and technology, 65 (2005), 301-306
    80. F. Zhang, S. Krishnaswamy, C. M. Lilley, Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films, Ultrasonics 45 (2006): 66-76
    81. M. Perton and B. Audoin, Y. D. Pan, C. Rossignol, Bulk conical and surface helical acoustic waves in transversely isotropic cylinders; application to the stiffness tensor measurement, J. Acoust. Soc. Am. 119(2006), 3752-3759
    82. R. E. Green Jr., Non-contact ultrasonic techniques. Ultrasonics, 42(2004), 9-16
    83. M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, K. R. Yawn, S. -Y. Chuang, Experimental verification of effects of optical wavelength on the amplitude of laser generated ultrasound in polymer-matrix composites, Ultrsonics 40, 809-812 (2002)
    84. T. -T. Wu, Y. -H. Liu, On the measurement of anisotropic elastic constants of fiber-reinforced composite plate using ultrasonic bulk wave and laser generated Lamb wave, Ultrasonics, 37(1999), 405-412
    85. J. C. Cheng, Y. H. Berthelot, Theory of laser-generated transient Lamb waves in orthotropic plates, J. Appl. Phys. D: Appl. Phys. 29 (1996) 1857-1867
    86. J. C. Cheng, S. Y. Zhang, Quantitative theory for laser-generated Lamb waves in orthotropic thin plates, Appl. Phys. Lett., 74 (1999), 2087-2089
    87. J. E. Sinclair, Epicenter solutions for point multiple sources in an elastic half-space, J. Phys. D: Appl. Phys., 1979(12) 1309-1315
    88. J. R. Bernstein J. B. Spicer Line source representation for laser-generated ultrasound in aluminum J. Acoust. Soc. Am., 2000 107(3) 1352-1357
    89. P. A. Doyle, On epicentral waveforms for laser-generated ultrasound, J. Phys. D: Appl. Phys. 1986 19 1613-1623
    90. C. Chung, W. Sachse, Analysis of elastic wave signals from an extended source in a plate, J. Acoust. Soc. Am. 1985 77(4) 1335-1341
    91. L. F. Bresse, D. A. Hutchins Transient generation by a wide thermoelastic source at a solid surface J. Appl. Phys. 1989 65(4) 1441-1446
    92. F.A. Mcdonald, On the precursor in laser-generated ultrasound waveforms in metals Appl. Phys. Lett., 1990 56(3)230-232
    93. T. Sanderson, C. Ume, J. Jarzynski. Longitudinal wave generation in laser ultrasonics [J]. Ultrasonic, 1998, 35: 553-561
    94. Lei Wu, Jian-Chun Chen, Shu-Yi Zhang, Mechanisms of laser-generated ultrasound in plates J. Phys D:Appl.Phys.1995, 28, 957-964
    95. J. H. Lee, and C. P. Burger, Finite element modeling of laser-generated Lamb waves, Computers & Structures 1995 54(3)499-514
    96. M. Kass, S. Fukushima, Y. Gohshi et al., A basic analysis of pulsed photoacoustic signals using the finite elements method[J], J. Appl. Phys. 1988 64(3), 972-976
    97. X. M. Wu and M. L. Qian, Simulation of the finite element method on wave propagation in cylinders, Progress in Natural Science, 2001, 11: s265-268
    98. B.Q. Xu, Z.H. Shen, X.W. Ni et al. Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method,International Journal of Heat and Mass Transfer,2003 46(25):4963-4968
    99.B.Q.Xu,Z.H.Shen,X.W.Ni et al.Numerical simulation of laser-induced ultrasonic by finite element method,Journal of Applied Physics,2004 94(4):2116-2122
    100.B.Q.Xu,Z.H.Shen,X.W.Ni et al.Finite element modeling of laser-generated ultrasound in coating-substrate system,Journal of Applied Physics,2004 94(4):2106-2115
    101.李维特,黄保海,毕仲波.热应力理论分析及应用.第1版.北京:中国电力出版社,2004
    102.沈观林.复合材料力学.第1版.北京:清华大学出版社,1995年
    103.王震鸣.复合材料力学和复合材料结构力学.第1版.北京:机械工业出版社,1991
    104.王勖成.有限单元法.第1版.北京:清华大学出版社,2003
    105.T.Belytschko,W.K.Liu,B.Moran著,庄茁译,连续体和结构的非线性有限元,第1版.北京:清华大学出版社,2002
    106.K.J.Brahe,E.L.Wilson著,林公豫,罗恩译.有限元分析中的数值方法.第1版.北京:科学出版社,1985
    107.Saeed Moaveni著,欧阳宇,王崧译.有限元分析-ANSYS理论与应用.第1版.北京:电子工业版社,2004
    108.X.Wang,X.Xu,Thermoelastic wave induced by pulsed laser heating,Applied Physics A:Materials Science & Processing,2001 73,107-114
    109.Oden,J.T.and Reddy,J.N.An Introduction to the Mathematical Theory of finite Elements,Wiley,New York,1976
    110.谭建国,使用ANSYS6.0进行有限分析,第1版.北京:北京大学出版社,2002
    111.Y.Sohn,S.Krishnaswamy,Mass spring lattice modeling of the scanning laser source technique,Ultrasonics 2002 39 543-551
    112.M.Dubois,P.W.Lorraine,B.Venchiarutti,et al.,Optimization of thermal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix,in Review of Progress Quantitative Nondestructive Evaluation,ed.by D.O.Thompson and D.E.Chimenti,Plenum Press,New York,287-294(2000)
    113.J.L.Rose.Ultrasonic Waves in Solid Media[M].1st Edition,Cambridge,U.K.:Cambridge University Press,1999.24-30
    114.Y.H.Bai,L.W.Pei,Q.P.Fang,et al.,Experimental studies of directivity patterns of laser generated ultrasound in neutral glasses,Ultrasonics,33(6),429-436(1995)
    115.C.Edwards,T.Stratoudaki,S.B.Palmer,A new thermoelastic source model for non-metals,in Review of Progress Quantitative Nondestructive Evaluation,Vol.22,ed.by D.O.Thompson and D.E.Chimenti,Plenum Press,New York,326-332(2003)
    116. R.Coulette, E. Lafond, M. H. Nadal C. Gondard, F. Lepoutre, O. Petillon, Laser-generated ultrasound applied to two-layered materials characterization: semi-analytical model and experimental validation [J], Ultrasonics, 1998, 36, 239-243
    117. B. A. Auld, Acoustic fields and waves in solids, R. E. Krieger Publishing Company, Malabar, Florida, 1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700